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ABSTRACT: This work aims to characterize the largest drought event to occur in a given period of
time. A Poisson cluster process is used to model drought occurrence and a vector of 3 random vari-
ables (duration, deficit and maximum intensity) to describe their severity. Some results on the distri-
bution of the maximum in a random size sample are developed in order to describe the largest

drought events.
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1. INTRODUCTION

An in-depth study of drought is of interest since it is
a serious problem that recurrently affects many
regions, in particular most southern and eastern areas
of Spain. The description of drought characteristics by
probability distributions provides measures such as
inter-drought recurrence time, expected duration or
mean deficit, which are helpful in water-resource man-
agement.

In previous works on drought analysis, different
approaches have been applied: run theory (Sen 1976,
Moyé et al. 1988) and renewal processes (Kendall &
Dracup 1992). We opted for an approach based on the
excess over threshold (EOT) methodology (Zelenhasic
& Salvai 1987, Madsen & Rosbjerg 1995) and extreme
value theory (EVT), which allows us not only to
describe drought but also to characterize the largest
drought event to occur in a given period of time.

Below-normal precipitation over a period of time is
usually the first sign of a drought. Rainfall shortage
may not only cause meteorological drought but also,
depending on its duration and intensity, have other
consequences, giving rise to hydrological or agricul-
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tural drought. Herein, only meteorological drought is
analyzed, but the methodology employed can be
applied to the study of other aspects and definitions of
the phenomenon. The analysis of the monthly rainfall
series of Huesca, a location situated in the northeast of
Spain, is shown as an example. The length of this time
series is 136 yr.

2. MODEL OF THE DROUGHT PROCESS
2.1. Drought definition

In general, meteorological drought can be defined as
a deficiency of precipitation over an extended period
of time resulting in a water shortage. In practice, how-
ever, the drought definition must reflect differences
caused by climate, regional characteristics and re-
quirements; so, no single definition works in all cir-
cumstances. Operational definitions that allow us to
identify the beginning, end and degree of severity of
the drought are based on the EOT approach, in which
a stochastic process, s(t), related to precipitation or
some other variable describing the hydric state of the
system, is compared to a threshold, U1(t), which repre-
sents a critical level for the process. A drought will
occur when s(t) is below Ul(t), as shown in Fig. 1.
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Fig. 1. Dry event definition. s(t): a stochastic process related to
precipitation or some other variable describing the hydric
state of the system; U1(t): a critical level for the process

Since drought is a phenomenon that requires a
period of time to pass before it is noticed, we used, as
signal s(t), a monthly moving series where each obser-
vation is the accumulated rainfall in the p previous
months. The use of different values of p allows us to
characterize short- and long-term droughts. In this
work p equals 12 mo; thus, the series will reflect water-
resource deficiencies in processes based on long-term
precipitation, such as reservoir levels. Drought effects
in other fields, dry farming for example, should be
based on series with a shorter accumulation period.
Whichever accumulation period we use, the monthly
update is strongly recommended, since it allows a
frequent drought-intensity evaluation.

Our approach for defining the drought threshold is
based on the decile method proposed by Gibbs &
Maher (1967). The threshold is defined as a constant
value equal to a percentile of the rainfall series.
According to the Gibbs & Maher classification, values
below the tenth percentile, denoted by pl0, corre-
spond to an extremely dry period. Obviously, a con-
stant threshold can only be used when there is no sea-
sonal component in the series.

We are not only interested in characterizing drought
occurrence, but also its severity; to describe this, we
use 3 variables: duration or length, L; accumulated
deficit to the threshold, D; and maximum intensity
during the drought, MI.

To illustrate the previous drought definition and to
show what the Huesca series looks like, the differences
from the rainfall series s(t) to the p10 threshold is repre-
sented in Fig. 2. The rainfall amount is measured in deci-
litres (dl), and a monthly time scale is used on the x-axis.

2.2. Extreme value theory

Well-known EVT results (e.g. Davison & Smith 1990,
Embrechts et al. 1997), assert the following:

e The occurrence of excesses in independent or
short-term-dependent stationary processes con-
verges to a homogeneous Poisson process (PP)
when high-enough thresholds are used.

e The distribution of the excess amount converges to
a generalized Pareto (GP) distribution.

According to these results, the occurrence of dry
periods could be properly modelled by a PP if we
define them by using a sufficiently extreme threshold.
Since the PP is a point process, an occurrence point
must be assigned to each dry period; in the checking
analysis similar results were obtained using the initial,
central and maximum intensity points in the period.

The validity of the model was checked using 6 long
Spanish rainfall series: Burgos, Daroca, Huesca,
Madrid, Murcia and San Fernando. Just as an exam-
ple, we present some results from the Huesca series.
More details on the analysis for Huesca and the other
series can be found in Cebridn (1999).

2.3. Threshold selection

The first step in applying the model is to select a
proper threshold, and this is not a trivial task since the
only available tools are graphical methods. In the inter-
pretation of the graphs we have to bear in mind that
we are dealing with deficits to a threshold instead of
excesses, the type of extreme events usually analyzed
by the EOT approach. Consequently, herein, an ex-
treme threshold is not a high but a low one, and the
observations we are interested in are u - X | X < u and
not X — u | X = u; however, we shall retain the tradi-
tional EOT terms, such as excess, exceedances, etc.,
instead of terms related to shortage.

The graphical tools are based on properties of the PP
or the GP distribution. In Fig. 3a, the mean-variance
ratio of the number of events in a period of time, T,
which in a PP must be 1, is represented as a function of
the threshold. The record of the series was divided into
18 periods of length T = 90 mo to calculate the sample
ratios represented in the plot.

Fig. 3b is the mean excess plot, where, in this case,
an empirical estimation of E[u - X | X < u] is repre-
sented as a function of the threshold; when the ex-
ceedances follow a GP distribution, the mean excess is
a linear function of the threshold. Given the linearity
observed from values slightly below u = 4000 dl, the
extreme behaviour of the exceedances can be assumed
using this value or any more extreme (lower) thresh-
old. According to these results, a threshold equal to the
tenth percentile (3700 dl) suggested by Gibbs & Maher
(1967) was selected; the corresponding dry-period
series is denoted by dp10.

To confirm the validity of the threshold, we check the
distribution of the distance between 2 consecutive
events, which must be exponential in a PP. In Fig. 4 the
exponential gg-plot of inter-event distances in the
dp10 series is shown. In spite of the 2 largest observa-
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to the thirtieth percentile (4600
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Fig. 3. (a) Mean-variance ratio and (b) mean excess plots for the Huesca series
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Fig. 4. Exponential gg-plot of the inter-drought distances for
the Huesca dp10 series

tions in the sample, the exponential character cannot
be rejected according to the Kolmogorov-Smirnov
goodness-of-fit test (p-value = 0.126).

Once the dry periods are defined, the parameter A of
the PP can be easily estimated by maximum likelihood
from the sample of the inter-event distances.

The checking of the PP as an occurrence model was
satisfactory for the 6 dp10 series analyzed (see Cebrian
1999); only certain homogeneity problems were de-
tected in San Fernando, but these were not statistically
significant at the 5% level.

2.4. Characterization of dry period severity.
Clustering of the events

A characterization of drought severity is needed to
complete the model, so a random vector formed by 3
variables representing the event duration (L), the accu-
mulated deficit (D) and the maximum intensity ob-
served during the dry period (MI) was defined. The

analysis of these variables revealed that the dry events
could not be considered independent, since some kind
of dependence exists between the severity of closed
events. More precisely, significant auto-correlation
was found in the deficit and the maximum intensity
series; the Kendall T coefficient for the first-order auto-
correlation of the 3 severity series and the correspond-
ing p-values from testing the hypothesis Hy: T = 0 can
be seen in Table 1.

This auto-correlation is caused by the signal we
used and the characteristics of the drought process;
in fact, during a lengthy drought period it can be
observed that the signal slightly exceeds the thresh-
old for a short period of time, dividing a large
drought into a number of minor dry spells. Such a
cluster of dry spells should be treated as 1 drought
as long as its impact is not eliminated by a non-dry
period. Such a clustering of dry spells can be ob-
served in Fig. 2.

2.5. Poisson cluster process

One model that allows us to represent this structure
is the Poisson cluster process (PCIP), in which clusters
representing droughts occur according to a PP and are
formed by a random number of points, corresponding
to dry spells which form a subsidiary process. The
number of events per cluster must be independent and
identically distributed. The use of a PCIP for modelling

Table 1. Kendall's T and p-values of the auto-correlation
test for the Huesca dp10 series

Duration Deficit Max. intensity
Kendall's © -0.107 -0.256 -0.281
p-value 0.263 0.015 0.007

5500
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Fig. 5. Cluster composition diagram

drought occurrences using extreme enough thresholds
is asymptotically justified in Cebridn (1999).

The main drawback of this model is the difficulty in
determining the cluster composition. Davison & Smith
(1990) suggested the use of parametric models such as
the Neyman-Scott and Bartlett-Lewis models; but they
conclude that, in general, such models do not improve
the results obtained using empirical rules. Moreover,
since we are interested in characterizing the whole
cluster (the drought) and not the internal distribution
of their points (the dry spells), we did not consider
these types of models. After trying out several criteria,
we used an empirical rule based on those of Madsen &
Rosbjerg (1998) and Rasmussen et al. (1994), but tak-
ing into account more information about the separat-
ing non-dry periods. Two dry events are considered to
belong to the same cluster if

e the time between their occurrence is less or equal
to 6 mo;

* no intensity value during that time reaches a value
U2 equal to the thirtieth percentile, considered as a
normal rainfall value according to the Gibbs &
Mabher (1967) classification.

The value U2, which for the Huesca series equals
4600 dl, has been represented in Fig. 2 as the constant
line y = 860; this value is the difference to the thresh-
old U1 = 3740 dl. This helps us to observe the clusters
formed in the Huesca series. A more detailed example
of clusters defined in this way is shown in Fig. 5. The
series of droughts obtained by applying this definition
will be denoted drp10.

The PCIP was applied to the 6 former series and its
fitting was satisfactory with the tenth percentile as the
threshold in Burgos, Daroca and Huesca; a more ex-
treme threshold, about the sixth percentile, is required
in Madrid and Murcia in order to make the model
work. In San Fernando, a seasonal behaviour was de-
tected in the occurrence process of the droughts.

The exponential gg-plot for recurrence times be-
tween droughts in the Huesca series is shown in Fig. 6.

Again, 2 observations show a deviation from the distri-
bution, but the Kolmogorov-Smirnov test for exponen-
tiality was not rejected (p-value = 0.144).

2.5.1. Drought severity

As in the dry-event process, the drought-occurrence
model must be completed with a characterization of the
drought severity. Again, a vector formed by the 3
variables L, D and MI of the cluster is considered. How-
ever, a new definition of deficit is needed, since now a
drought can be formed by more than 1 dry event and the
rainfall amount during the separating non-dry periods
must be taken into account. To solve this question we
finally opted for defining the deficit with respect to
another threshold, U2 (the normal rainfall value p30),
instead of using U1 (the threshold used to define dry
spells). This definition represents the drought severity
better than the one suggested by Zelenhasic & Salvai
(1987), and it cannot assume negative values, such as the
one by Madsen & Rosbjerg (1998). The definitions of the
3 variables are illustrated in Fig. 7.

200

expected exponential x(i)
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Fig. 6. Exponential gg-plot of the inter-drought distances for
the Huesca drp10 series
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Fig. 7. Severity variables associated with a drought (cluster)

Table 2. Kendall's T and p-values of the auto-correlation
test for Huesca drp10 series

Duration Deficit Max. intensity
Kendall's T -0.041 -0.053 -0.074
p-value 0.656 0.613 0.479

The 3 severity series L, D and MI defined for clusters
are no longer auto-correlated (see Table 2) nor is any
other reason to reject the independence hypothesis
found in any case. Concerning homogeneity, the
results are satisfactory except in Madrid and San Fer-
nando, where seasonal behaviour is detected. No time
trend is observed in any of the series; however, using
series s(f) with a shorter accumulation period p = 3,
Huesca and some other series showed an increase in
drought severity from approximately 1970 onwards
(see Abaurrea & Cebridn 2001).

Under these conditions, marginal distributions for
each variable can be fitted using maximum-likelihood
methods. Several positive distributions—exponential,
Weibull, Gamma, log-normal, log-logistic and GP
distributions—were considered for modelling D and
MI. For L, the same continuous distributions (but
shifted, since drought length is always = 1) were
tested, and discrete distributions such as geometric
and Poisson distributions were also considered.
Graphical tools, and likelihood tests when possible,
were used to select the best distribution and to check
the goodness of fit.

For the Huesca series, we found that the duration
requires a no-memory distribution such as the shifted
exponential distribution; the best fit for the deficit is
provided by the log-normal distribution and, for the
maximum intensity, by the GP distribution, as ex-
pected from EVT results. Details are in Cebridn
(1999).

3. DISTRIBUTION OF THE MOST SEVERE
DROUGHT TO OCCUR IN A GIVEN PERIOD
OF TIME

An interesting issue concerning drought analysis is
the characterization of the most severe drought to
occur in a given period of time. This information can
be useful in water-resource planning in order to help
estimate, for example, the required capacity of a
reservoir.

In the previous section, the following conclusions
were stated:

* Droughts, defined as clusters of dry periods, occur
according to a PP with A intensity, PP[A] in short.
This means that the number of droughts in a time
period of length n will be a Poisson variable, N,
with mean A, = An.

® Drought severity can be described using (L;, D;
M1;);—1.. .~ a series of iid random vectors.

The distribution of the maximum L, maximum D and
MI in a period of length n corresponds to the distribu-
tion of the maximum in a series of independent identi-
cally distributed (iid) random vectors P[A,].

3.1. Some previous definitions
3.1.1. Generalized extreme value (GEV) distribution

The GEV distribution, one of the most important dis-
tributions in EVT, arises as the limit distribution of the
maximum in an iid sample. More precisely, the Fisher-
Tippett theorem (Fisher & Tippett 1928) states that the
GEV distribution is the only non-degenerate limit dis-
tribution for appropriately normalized sample maxima.
The cumulative distribution function (cdf) H corre-
sponding to the standard GEV distribution is:

H(x;y) = exp[—(l + yX)fl/Y]

defined when 1 + yx > 0.

Depending on the value of the shape parameter, vy, 3
distributions are obtained: Gumbel for y = 0, Fréchet
fory> 0 and Weibull for y < 0. The GEV distribution can
be easily generalized by including location and/or
scale parameters, u and o.

3.1.2. Maximum domain of attraction (MDA)

The MDA of a distribution H, MDA(H), is defined as
the set of all distributions such that its maximum con-
verges to H,

lim p(Mni_bH
dn

n—>o

<x) - Hix]
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According to the Fisher-Tippett theorem, only the
MDA of the GEV distribution can be defined. A thor-
ough review of these and other results of EVT can be
found in Embrechts et al. (1997).

3.2. Distribution of My in samples of random
size N ~ P[A]

In an iid sample of size N, the distribution function
of the maximum can be expressed in terms of the
sample cdf F as Fj;,(x) = Fx)N. If N is a random
variable and, in particular, if it follows a Poisson
distribution with the A parameter, we obtain the
following expression:

Fopy(x) = Y P(N = DF'(x) = exp{-M1-F(x)} (1)
i=0

In some cases Eq. (1) provides a simple cdf so that an
exact distribution of the maximum can be used, but
usually the resulting distributions from Eq. (1) are too
complicated and it is better to use the asymptotic
results suggested at the end of this section.

3.2.1. Exact cdf of My

In the case of the exponential and GP distributions
the exact distribution of the maximum can be obtained
(see Cebrian 1999).

e The distribution of the maximum, My, of a sample
of size P(A) and distribution exp(a) is Gumbel
(1/a, In(A)/a).

e The distribution of the maximum My of a sample
of size P(A) and distribution GP(y,0) is GEV
(Y’ o, % ) with the same y parameter

3.2.2. Asymptotic results for the distribution of My

By applying the theorem of Galambos (1978) con-
cerning the limit distribution of the maximum in a ran-
dom size sample, the following result has been proved
(see Cebrian 1999).

Theorem: In a sample with distribution F €
MDA(Gumbel) and size N, where N is a P(A,)-distrib-
uted variable whose parameter depends on n, the
asymptotic distribution of the normalized maximum,
(My — bp)/ap, is Gumbel (1,In(Ay)).

In the drought analysis we are performing, n will be
the size of the time series in which the random number
of events N is observed.

In particular, from the previous theorem we can
obtain the distribution of My in Gamma, Weibull, or

log-normal samples, since all of them belong to
MDA (Gumbel). These distributions, together with the
previously mentioned exponential and GP distribu-
tions, are the most frequently used in environmental
problems. More details can be found in Cebridn (1999).
This theorem is seldom useful in practical applica-
tions due to its asymptotic character and to the fact that
large-enough samples are not usually available. In the
next subsection, a further approximation providing
better results in practical applications is suggested.

3.3. Penultimate approximation
3.3.1. Samples of non-random size n

For non-random size samples, Gomes (1984) and
Castillo (1988) state that if F€ MDA(GEV),

e the convergence of the maximum to the limit distri-
bution is very slow;

* a GEV distribution with cdf H(y,,s,,u,), with its 3
parameters depending on n, called the penultimate
approximation, provides a better approximation
than the limit GEV distribution with a constant
shape parameter, H(y,0,,W,).

3.3.2. Samples of Poisson size N ~ P(A,)

Given the practical interest of the penultimate
approximation, we have developed a similar result for
random size samples, in particular for samples with
size N following a P(A,) distribution.

Theorem: Given a sample with cdf FE MDA(GEYV), if
the penultimate approximation of M, (the maximum in
a sample of non-random size n) is a GEV distribution,
H(y,0nuy), the cdf of the penultimate approximation
of My [the maximum in a sample of random size N ~
P(\y)] will be Hn(y,0,u,), the A, power of the cdf
H(Yn,OnWn).

The following property can also be proved:

Property: If F is the cdf of a GEV(y,o,u) distribution,
Fafor any a > 0 is the cdf of a distribution GEV]y,0a",
u + o(a* - 1)/y]. Since the shape parameter, y, in both
distributions is the same, F and F? are GEV distribu-
tions of the same type.

Bearing in mind the former results, we obtain the fol-
lowing corollary:

Corollary: In samples with cdf F € MDA(Gumbel), in
particular for Weibull, Gamma or log-normal distribu-
tions, the penultimate approximation of My is a GEV
distribution with H(y',, 0’5, u'n), whose 3 parameters (all
depending on n) can be estimated using the percentile
method. In this method the parameters are calculated
by solving an equation system obtained by making
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the expressions of 3 percentiles of a GEV distribution
equal to those obtained from the exact Fyy,, distribution
in Eq. (1).

Proofs and further details for these results can be
found in Cebridn (1999).

3.4. Results

As an example we show the results concerning the
fitting of the distribution of the most severe drought
event expected in a given period of time in Huesca.
Validation of long-term predictions with independent
data is not possible, since no available series is long
enough. Instead, we have made a comparison between
predictions of the maximum in n years based on the
model and the values observed in the record for n =
50 yr and n = 100 yr, obtained in the following way:
The maximum values of L, D and MI observed during
the following n years are determined for every obser-
vation of the series with enough future data. As there
are 1633 monthly observations in the Huesca series,
1034 maximum observations for n = 50 yr and 434 for
n = 100 yr are available from the record. Obviously,
these observations are not independent, but they allow

Table 3. Fitted parameters (Gumbel distribution for maximum dura-
tion and GEV for maximum deficit and maximum intensity) and

some observed statistics in the Huesca series

us at least to perform a certain checking of the model.
The median and mean values of the samples are calcu-
lated and compared with their parametric counter-
parts.

We found that the drought duration fitted an expo-
nential distribution, so, according to the result from
Section 3.2.1, the distribution of the maximum will be
a Gumbel distribution with the parameter values de-
pending on the period of time. The estimated parame-
ters corresponding to periods of 50, 100, 200 and 500
yr are shown in Table 3 (top), together with the mean
and median of the distributions and the correspond-
ing empirical values when they are available. The
drought deficit fitted a log-normal distribution. Apply-
ing the penultimate approximation, its maximum
value will follow a GEV distribution whose parame-
ters are shown in Table 3 (center). Finally, the maxi-
mum intensity was fitted by a GP distribution; thus, as
stated in Section 3.2.1, the maximum will follow a
GEV distribution whose parameters are shown in
Table 3 (bottom).

4. CONCLUSIONS

A deeper knowledge of the characteristics of
the drought process can help to decide which
measures should be taken in order to prevent the
problem. In particular, the characterization of
the severity distribution of the maximum
drought expected in a given period of time is an

T 50 yr 100 yr 200 yr 500 yr
Occurrence (Poisson process)

Ap 11.4 22.8 45.6 114.0
Maximum duration (mo)

w 17.55 22.27 26.99  33.22
o 6.80 6.80 6.80 6.80
E(Mpy) 21.48 26.20 30.91  37.15
Median 15.1 19.8 24.5 30.7
Observed mean 23.9 26.0 - -
Observed median 26 26 - -
Maximum deficit (1)

Y 0.330 0.308 0.290 0.270
w 21978.0 32304.1 45219.7 66988.6
o 13191.2 16643.9 20671.5 26988.9
E(Mpy) 3589.7 49109  6535.0 9227.3
Median 2711.7 3876.2 5321.3  7738.6
Observed mean 3683.3 3829.0 - -
Observed median 3829.0 3829.0 - -
Maximum intensity (1)

Y -0.50 -0.50 -0.50 -0.50
w 1436.93 1614.03 1739.27 1850.39
o 302.34 213.78 151.16 95.61
E(Mpy) 150.6 166.3 177.4 187.2
Median 153.8 168.6 179.0 188.2
Observed mean 163.1 177.9 - -
Observed median 155.0 181.2 - -

important issue in water management, since it
can provide useful information for the design of
the required reservoir facilities in a region and a
firm basis for decisions concerning the most
extreme risk. Mean values and high percentiles,
representing critical drought values, can be
obtained from the probability distribution of the
most severe drought.

We found that one of the problems in drought
analysis is the lack of rainfall records long
enough for the analysis of such an extreme
event. In these circumstances, the suggested
approach based on extreme value theory pro-
vides an optimum frame. The use of the Poisson
cluster model completed by the vector of vari-
ables (duration, deficit, maximum intensity) for
modelling the drought occurrence and severity
was successful. Its validity, suggested by asymp-
totic results, was confirmed through analysis.

The model is useful not only for describing
general drought properties but also as a basis for
predicting the most severe drought characteris-
tics observed in a given period of time. The prob-
ability distribution of these characteristics, ob-
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tained from both the penultimate approximation or the
exact distribution of the maximum in Poisson size sam-
ples, provide satisfactory predictions according to the
observed record. The methodology is widely applica-
ble with common distributions in environmental sci-
ences (e.g. Gamma, log-normal, Weibull).
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