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ABSTRACT: This work develops and describes a formal probabilistic protocol via which the process
of identifying lines of evidence for climate change, assessing likely causes for changes in the evi-
dence, and combining the lines of evidence to make overall attributions of cause to greenhouse gases
can be made. This open and detailed model of the detection and attribution process is designed to
identify issues at stake in detection and attribution, and to facilitate scrutiny and understanding on
this contentious issue in broader communities. The protocol provides a convenient means to make
each of the judgements in this issue explicit. These judgements are characterized via expert elicita-
tion techniques in both quantitative and qualitative form. The protocol focuses on detecting climate
change and attributing causes to the enhanced greenhouse effect rather than on more general
anthropogenic change, because the former is more consequential. Major uncertainties identified in
the protocol relate to characterization of natural variability for each line of evidence, non-greenhouse
forcings, and the climate response to forcing. The relative roles of uncertainty in climate sensitivity
and climate forcings are still unclear in making determinations of attribution. Measures of attribution
need to account for both the amount of signal explained by a postulated cause as well as its associ-
ated probability. When combining lines of evidence to form overall measures of attribution, the level
of dependence assumed among lines of evidence is critical. Finally, the protocol highlights the need

to reevaluate standards of evidence for attributing greenhouse climate change.
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1. INTRODUCTION

The issue of whether, and to what extent, human-
induced increases in greenhouse gases (primarily
carbon dioxide) have caused climate changes is con-
tentious. Considerable effort has been put into detect-
ing climate change from amidst the background fluc-
tuations of natural variability. This is the ‘detection’
problem for climate change, which seeks to determine
if the changes observed this century are unusual or
not. If they are simply natural fluctuations of the cli-
mate system, one might not expect them to be as per-
sistent as compared to the case when some systematic
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forcing is driving the change. If the changes are
unusual, one would like to know what is causing them,
for this will also have implications for their persistence.
If the cause is related to something that is fluctuating
naturally, such as the sun, it will have different impli-
cations than if the cause is increased concentrations
of greenhouse gases. In the latter case, the changes
could be expected to continue in response to increases
in greenhouse gas concentrations. The problem of
attributing causal blame for any unusual climate
changes is known as the ‘attribution’ problem.

The chapter dealing with detection and attribution
issues (Santer et al. 1996a) in the Intergovernmental
Panel on Climate Change (IPCC) second assessment
report (IPCC 1996) was one of the major foci of public
attention when the report was released. Controversy
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arose in part over whether the science was sufficiently
well developed to justify a conclusion that humans
have begun to have a discernible influence on the cli-
mate system (Edwards & Schneider 1997). Controver-
sies such as this one have arisen because of political
interest in the issue of climate change, because of the
open-ended nature of the science itself, and because
of difficulties of communicating uncertainties, both
within and outside the immediate climatological com-
munity.

Past efforts to describe and communicate uncer-
tainty in climate change knowledge have tended to
resist quantification and the temptation to be too spe-
cific.! But this has left outsiders with few concrete
insights into the nature of the difficulties. This has also
led some to perceive a lack of transparency in the pro-
cess by which scientific consensus on climate change is
reached. As a result, some critics have made claims
that the processes of generating the uncertainty esti-
mates are biased and misleading (e.g. Seitz 1996). In
any event, the process of communicating uncertainties
on issues such as detection and attribution of climate
change would benefit from more transparent and for-
mal methods. To this end, we have developed a formal
uncertainty protocol in which each of the steps and
assumptions required to make judgements on detec-
tion and attribution is made as explicit as possible. This
paper presents the rationale for such a protocol, along
with an outline and a discussion of its utility and limi-
tations. Some preliminary results from use of the proto-
col are reported, but only for the purpose of clarifying
its structure and function.

1.1. Evolution of detection and attribution studies

Formal studies of detection and attribution of climate
change go back to at least the early 1980s (Clark 1982).
The early studies of detection and attribution focused
on trends of globally averaged mean surface air tem-
perature (e.g. Wigley & Raper 1990). This is not sur-
prising because global mean temperature change is a
good single aggregate indicator of the climate system,
and sufficient data exists to monitor it for over a cen-
tury now (Jones 1994). More recent efforts have
expanded their focus to include other data sets and the
use of new methodologies based on general circulation
models (GCMs), such as fingerprinting or pattern cor-
relation approaches (Karoly et al. 1994, 1999, Santer et
al. 1995, 1996b, Hegerl et al. 1997). These approaches
have introduced additional metrics for climate change
beyond the global mean temperature record. Most

!There are recent exceptions to this (e.g. Varis & Kuikka 1997,
Kheshgi & White 2000)

have tended to focus on other aspects of the 3-dimen-
sional temperature structure of the atmosphere, for
example, the surface geographical (Santer et al. 1995)
or vertical patterns (Santer et al. 1996b) of temperature
change. Some have focused on temporal features of
the temperature record such as the annual cycle
(Karoly et al. 1999) and autocorrelation structure
(Wigley et al. 1998). Recent summaries of detection
and attribution studies are given by Barnett et
al. (1999) and Mitchell & Karoly (2000).

The different lines of evidence employed include dif-
ferent physical quantities, have varying spatial and
temporal coverage and resulting uncertainties, and
use data from a variety of sources—from global mea-
surement networks to data synthesized from GCMs.
They pose new methodological challenges of finding
systematic ways for combining their influence in order
to evaluate the hypothesis that human activities, and
not other climate forcing such as changes in solar
intensity or internal variability generated by ocean-
atmospheric interactions, are causing the observed
changes in global climate.

When considering multiple lines of evidence, scien-
tists have tended to make implicit and holistic assess-
ments of their subjective confidence judgements in the
overall likelihood of detection and attribution of cli-
mate change. In the 1995 IPCC second assessment
report, the detection and attribution chapter reviewed
the evidence for climate change from a number of
sources, and in summarizing reached the conclusion
that 'the balance of evidence suggests that there is
a discernible human influence on global climate'.
Though consensual, this conclusion was tentative
because it was the first major effort of its kind, and was
based on a rather informal process for weighing the
influence of the different lines of evidence. There have
been few formal studies where the process of making
such inferences is made explicit. An important next
step is to develop formal models for making assess-
ments of detection and attribution, where uncertain
knowledge is represented in a coherent probabilistic
manner.

1.2. Why develop formal methods to represent
uncertainty?

The motivation to develop formal methods to repre-
sent uncertainty in the detection and attribution pro-
cess is derived from both the scientific arena and the
policy arena, and in particular from the intersection of
the two. The scientific motivation is derived from the
need described above for methods that can cope with
multiple lines of evidence, their uncertainties, and
associated inferences. As a public policy issue, climate
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change lies squarely in the ‘post-normal’ domain char-
acterized by Funtowicz & Ravetz (1994), where facts
are uncertain, values are in dispute, stakes are high,
and decisions urgent. In such settings, uncertainties
can play a central rhetorical role, and there is likely to
be increased scrutiny of scientific findings as we have
seen. In response to this and to calls from the second
assessment report,2 Moss & Schneider (1999) devel-
oped a guidance paper for consistent assessment and
reporting of uncertainties in the IPCC third assessment
report (scheduled for 2001). This guidance document
grew out of a need to produce a ‘traceable account of
how estimates are constructed' throughout the IPCC
report (Pearce 1999). So long as the methods used in
constructing such traceable accounts are relatively
transparent, they afford a means by which to commu-
nicate scientific findings to broader communities such
as the IPCC and its audience.

1.3. How should it be done?

It is now widely held that there is a need for formal
methods to describe uncertainty in communications
about climate change. However, the form that such for-
mal methods should take has been only loosely pre-
scribed. Moss & Schneider (1999) emphasize the need
for careful quantification of statements about levels of
certainty and likelihood in describing outcomes from
the science. Such statements will ultimately be
expressed probabilistically. Further, they stress that
the probability metrics will need to be ‘Bayesian’' or
‘subjective’ in characterizing uncertainty rather than
‘classical’ or 'frequentist’ (see Hasselmann [1998] for a
comparison of these approaches to detection and attri-
bution). The reason is that it is often impossible to pro-
duce the many realizations of an experiment (climate
change) that are required for generating a statistical
sample in the frequentist paradigm. Perhaps the only
way to generate frequentist statistics is by performing
model experiments of the real system. However, the
reliability of climate models is still not well known
(IPCC 1996, Risbey & Stone 1996), and some element
of subjective interpretation would still be required to
translate the frequentist climate model statistics into
statements of uncertainty.

2For example, chapter 11 in the IPCC second assessment re-
port notes that 'IPCC projections are often expressed with
upper and lower limits. These ranges are based on the col-
lective judgement of the IPCC authors and the reviewers of
each chapter, but it may be appropriate in the future to draw
on formal methods from the discipline of decision analysis to
achieve more consistency in setting criteria for high and low
range limits’

Beyond the ability to produce quantitative subjective
probability judgements, formal methods should have
the following characteristics: In order to produce a
traceable account of the method, each step in the pro-
cess should be made as explicit as possible. The vari-
ous assumptions employed should be articulated,
along with the elements of judgement. For trans-
parency, the methods should be coherent and consis-
tent with the science. Judgements that need to be
made should be tractable and meaningful. Further,
where there is a range of disagreement in making
judgements based on reasonable arguments, that
range should be captured in representing the judge-
ments.

To summarize, the kinds of formal methods used for
developing assessments on detection and attribution
and highlighting uncertainties should:

* make explicit as many of the relevant judgements in
the process of detection and attribution as is reason-
able/possible;

 allow for quantitative representations of those judge-
ments;

* be cast in subjective probability terms; and

* capture the range of reasonable opinion on these
judgements.

Given these requirements, we have developed a
protocol where the problem of detection and attribu-
tion is structured and each of its component steps out-
lined. We tried to capture as much as possible of the
full chain of logic in detection and attribution studies in
developing the protocol. We classify this as a protocol
rather than a survey because of the attempt to provide
structure and complete detail in setting out the rele-
vant questions. It is not a survey of overall opinions on
detection and attribution, but a tool to identify judge-
ments and provide diagnostic guidance. We use expert
elicitation methods (Morgan & Henrion 1990) to fill out
the set of detailed judgements in the protocol. We do
this because the judgements that need to be made
have subjective components on which experts can
deliberate. These deliberations are asked for in both
qualitative and quantitative form. The qualitative
explanations provide a means for the experts to articu-
late the reasoning behind each of their judgements.
This helps in diagnosis of disagreements among
experts and it also helps each expert in providing
quantitative responses to the protocol. The quantita-
tive responses are given in the form of probability dis-
tributions to capture the subjective nature of the
judgements and to represent uncertainties.

A range of experts (approximately 20) will complete
the protocol in order to sample from among the spec-
trum of opinion on detection and attribution issues. It
will not be distributed as a remote survey to a large
group of climatologists because the detection and attri-
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bution problem requires a high degree of familiarity
with the underlying data and methods applied. Such
familiarity is not widely distributed outside the com-
munity dedicated to this issue. Further, the protocol is
designed to elicit the reasoning underlying each of the
judgments made, and this is more easily understood in
personal interviews than remote surveys. Our selection
of experts contains some geographic bias toward
North America and Europe (to minimize travel costs).
The selection includes about 8 of the authors from the
IPCC detection and attribution chapters, a mix of
observationalists, theoreticians, modellers, and gener-
alists, as well as scientists with a diverse range of opin-
ions on the severity of greenhouse climate change
issues. All of the selected experts publish work rele-
vant to detection and attribution issues. Further details
on the experts will be provided in a forthcoming com-
panion paper describing results from the protocol.

A more 'objective’ alternative formal approach to the
one we have outlined would be to attempt to make
each of the determinations in the detection and attri-
bution chain of logic in a climate model (rather than
using expert judgement). But to do that still requires
that the steps in the process be identified so that diag-
nostics can be formulated and calculated in a model.
A protocol of the kind we outline here is a useful first
step in developing any formal approach to describing
uncertainties in the manner outlined above. In later
work the protocol will include results from a variety of
climate models to compare models with one another
and with the subjectively determined results.

The remainder of this paper is arranged as follows:
First we describe the elements of a formal protocol for
making judgements on detection and attribution. Then
we describe some of the judgement issues at stake and
the role they play. Examples of these issues are pro-
vided with reference to one of the key lines of evidence
in the detection and attribution protocol. After describ-
ing the protocol, we then discuss its utility, making
particular reference to the manner in which it has been
received in the climate change community and the
functions it is intended to perform. The principal pur-
pose of this presentation of the protocol is to describe
the issues at stake in detection and attribution studies,
not their results.

2. ELEMENTS OF A DETECTION AND
ATTRIBUTION PROTOCOL

A detection and attribution protocol provides a sys-
tematic and formal approach for analyzing the prob-
lem of detection and attribution of climate change. The
protocol must use current scientific understanding, be
transparent without sacrificing the complexity of the

issue, and allow for a range of expert opinions. The
protocol also needs to provide an intuitively appealing
structure to the detection and attribution problem and
to account for multiple lines of evidence.

The protocol uses as inputs, probabilistic judgements
by climate experts regarding the different lines of evi-
dence, and their interactions. Experts consider the
problem in its component steps, which include select-
ing lines of evidence, and making judgements regard-
ing the detection and attribution of climate change for
each line of evidence in isolation, and in combination
with other lines of evidence. For each line of evidence,
the experts provide probability distributions for the
accuracy of observations, and for the size of naturally
occurring fluctuations. This allows calculation of the
degree to which observed trends exceed estimates of
naturally occurring fluctuations. Experts then provide
probability distributions for the representation of cli-
mate forcings from different causes (including both
human activities [e.g. greenhouse gas and aerosol
emissions| and natural processes [e.g. solar fluctua-
tions and volcanic eruptions]) and the representation
of climate model generated responses to the forcings.
They also provide measures of attribution to different
forcings. This is represented by the fraction of change
in a line of evidence caused by different candidate
forcings, conditioned on the actual values of the forc-
ing.

The components in the detection and attribution pro-
tocol are as follows:

Determination of evidence entails the selection of
relatively independent lines of evidence for detection
and attribution of climate change. Each line of evi-
dence must be expressed with a quantifiable metric
and examined over a specified period of interest.

Evaluation of evidence relates to the confidence one
has in the validity of the data used to represent the line
of evidence. This is an assessment of the likelihood
that the data represent the 'true’ underlying variable
and is represented by a probability distribution for
each line of evidence.

Detection of change is the process of identifying a
signal of change in a climate variable that exceeds the
range of background noise of natural climate variabil-
ity on the relevant time scales. We define natural vari-
ability as internally generated, i.e. not induced by
external changes in radiative forcing, regardless of the
source. Detection requires an assessment of the proba-
bility distribution for natural variability in a line of evi-
dence. By comparing that distribution with the distrib-
ution identifying changes in a line of evidence, one can
assess the probability that the observed change
exceeds natural variability. This does not identify the
cause of any climate change, but merely identifies that
a change has been detected.
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Attribution of cause for any residual signal (in excess
of natural variability) of climate change for each line of
evidence must be made among the candidate forcings.
Thus the potential causes of any residual signal must
be identified. These will typically include changes in
greenhouse gas forcing, changes in aerosol forcing,
changes in solar forcing, changes in volcanic forcing,
and changes in ozone forcing. Since changes in radia-
tive forcing are also uncertain, attribution requires an
assessment of the probability distributions for each of
the different types of forcing, and an assessment of the
fraction of change in the residual signal that can be
attributed to each forcing.

Inferences about attribution for lines of evidence
taken in combination, accounting for possible depen-
dence among different lines.

Each step in the process above can be represented
probabilistically. The first step entails selection and
characterization of each of the multiple lines of evi-
dence, E;, i =1, I (I is the total number of lines of evi-
dence, typically 4 here). The probability density func-
tion (pdf) for the observed change over a specified
period for each line of evidence, given by f(E;) for line
of evidence I, is elicited from the expert. This is fol-
lowed by an elicitation of the pdf for the natural vari-
ability f(IN;) over the same time period for that line of
evidence. In some cases the distributions are drawn,
and in some cases the distributions are estimated by
discretizing across the range of the distribution and
asking the experts to assign probability masses within
each specified interval.

The probability of detection, P(D;), is the probability
that the observed change in a line of evidence, f(E)),
exceeds the natural variability, f(IV;). That is:

P(D;) = P(IE; —-N;1>0) = I:f(zi)dzj (M

where f(z;) = f(E;— N;) is the pdf for the residual signal.
It follows that P(D;) > 0.5 implies that the observed
change in a line of evidence exceeds the natural vari-
ability and some residual signal has been detected.
Thus, for example, P(D;) = 0.9 implies that there is only
a 10 % chance that the observed change in a line of ev-
idence is a result of natural variability. P(D;) < 0.5 im-
plies that the signal cannot be distinguished from the
noise. By defining detection in this way one has effec-
tively ruled out natural variability as a potential cause
of any residual signal, and one must choose among
other factors (climate forcings) in making an attribution
of cause. In the attribution stage, the probability judge-
ments assume that a change has been detected.
Attribution of causation requires an evaluation of
probability density for the history of each candidate
forcing, Fj;. For each line of evidence, i, the experts
identify the relevant forcing mechanisms, j, that influ-
ence attribution. Each of the forcings have some uncer-

tainty associated with them over the time and space
scales pertinent to the particular line of evidence. This
uncertainty can be represented by a pdf, f(Fj;).

Once the relevant forcings have been characterized,
the task of attributing the residual signal to these forc-
ing mechanisms remains. Note that we are not particu-
larly interested in the probability of attribution per se.
In the limiting case a very small fraction of the residual
signal may be attributed to a forcing mechanism with
probability close to 1, telling us little about the role of
that forcing mechanism. We are really interested in the
extent to which a forcing mechanism can explain the
observed residual signal. Thus, there are 2 elements to
attribution: (1) the fraction of residual signal that can
be attributed to a given mechanism and (2) the proba-
bility with which this attribution can be made. For
example, greenhouse forcing may contribute a small
fraction to the signal with a high probability (say 20 %
to the residual with probability 0.95), or a large fraction
with a low probability (say 95% to the residual with
probability 0.2). In principle, we could ask the experts
to produce a pdf accounting for the probability with
which each fraction (0 to 1) of the residual signal can
be attributed to each forcing mechanism (integrated
across the uncertainty in the forcing distributions). In
practice this is cuambersome, and we simplify by asking
for the expert assessment of just the expected fraction
of the residual signal accounted for by each forcing.
Thus, our simple overall index for attribution for a
given line of evidence is Q;; which is the expected
fraction of the residual signal that can be causally
attributed to a given forcing mechanism, j.

Ideally, one would then assess the conditional den-
sity f(Q;;|F;;),j=1,0 for each E; and each forcing mecha-
nism F,. f(F;;),j=1,; is the joint density function for each
of the J competing forcing mechanisms for line of evi-
dence, i. Since the forcing mechanisms are assumed to
be independent of each other,

J
f(Fij)j=10) = |_| f(Fij) (2)
=1
Thus, !
Qi = Ifi (Qi,; | f(Fi1)f(Fi2)... f(F,))dF;dF,...dF; ; (3)

In practice, we did not elicit the conditional density
F(Qyjlf (Fij)) j=1,5, since our pilot test experts found this
to be a very difficult task. We simplified the analysis
by discretizing the range of values that each forcing
f(F;j) can take into m; ranges (typically, m; = 2 or 3).
The experts then partition the probability mass for
each forcing amongst the m; ranges. This procedure
results in a combination of K different forcing cases to
consider, where K = [] jJ=11nj. If forcing f(F; ;) is split
into 3 ranges (m; = 3) and f(F; ,) is split into 2 ranges
(m, = 2), this yields K = 6 forcing combinations to
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assign fractional attributions. For each of the resulting
k = 1,K forcing combinations, we elicit the quantity
Qjjx Qijx is an average value for Q;; over the kth
discrete combination. This reduces Eq. (3) to a simple
summation:

K
Qi = zQi,j,kPk (4)
k=1
where
P = J'f(FM)X...x f(Fi,)dF;; ...dF;; 5)
Jj

is approximated by P, = [] ].J=1 P, where P, are the
probability masses assigned to each of the forcing
ranges.

Eq. (4) considerably reduces the difficulty of the elic-
itation. The illustrative example that follows shows
how. Consider the change in the global mean surface
air temperature over the past century as the line of evi-
dence (i = 1), with greenhouse forcing (j = 1), solar
forcing (j = 2), and all other forcing (j = 3) as the com-
peting mechanisms for attribution. Note that radiative
forcing from aerosols is not a competing mechanism for
attributing the change, since aerosols provide mostly
negative forcing in this case, which would not cause
the positive response of the temperature signal. How-
ever, forcing from aerosols can affect the attributions
that the expert makes for the competing forcing mech-
anisms, since uncertainties in the negative forcing can
change one's view of uncertainties in the positive forc-
ing. Hence aerosol forcing is included in the list of forc-
ings characterized by the experts.

The first step is to divide the relevant forcing
changes into appropriate ranges. Since greenhouse
forcing is relatively well known compared to the other
forcings we ignore the uncertainty in greenhouse forc-
ing and do not elicit a density function f(F; ) or its
equivalent discretized representation. For the case of
solar forcing, we divide the change in forcing over the
past century into ranges of <0, 0-1, and >1 Wm™2 (m, =
3). Similarly we divide aerosol forcing into ranges
<-1.5and >-1.5 Wm™ (ms = 2). The experts assign a
probability to the likelihood that the forcing is in each
of these ranges. Next, assuming a particular forcing
combination as given, we ask the expert to estimate
the fraction of residual signal explained by each of the
forcing mechanisms (greenhouse, solar, and all other
forcings). Thus the expert answers questions such as:
'Given that solar forcing is <0 W m™2 and aerosols
<-1.5 W m?, what fraction of the residual signal can
be attributed to greenhouse forcing?' Similar questions
are asked for each of the 6 forcing combinations (K =
Mg, X M), and answers corresponding to Q;j in
Eq. (4) are obtained. The probability mass Py, ..., Pg

associated with each of the 6 forcing combinations can
be calculated by taking the appropriate product of the
probabilities assigned to each of the discrete range of
values of the forcing. A simple summation is now used
to determine Q;;. Note that the fractional attribution
measure Q;;is not a probability. Rather, it is a measure
of the expected fraction of the residual signal that can
be attributed to each candidate forcing averaged over
the uncertainties in the different forcings.

The final task is to combine the analysis of detection
of change and attribution to cause to provide an over-
all measure for detection and attribution for a given
line of evidence. This is done by multiplying the prob-
ability of detection, P(D;), and fractional attribution
measure, Q;j, to produce an overall measure for attri-
bution P(A;)), i.e.

P(Aj) = P(D) Q;; (6)

P(A;)) is an overall confidence measure for detection
and attribution, and makes intuitive sense. If probabil-
ity of detection P(D;) is high, and fractional attribution
measure Q;; is high, then P(A;;) is high, i.e. one has
high confidence that a change in the line of evidence
has been detected (exceeding natural variability) and
that the change can be attributed to the postulated
forcing. Conversely, if either P(D;) or Q;; are low, then
one has low overall confidence in attribution—even if
either detection or attribution probabilities are individ-
ually high. For example, if P(D;) for change in global
mean surface air temperature is high, yet much of the
change can be attributed to climate forcing from the
sun, then the value of P(A; ;) from greenhouse forcing is
low. In the case that it is difficult to distinguish the
change in global mean surface air temperature from its
natural variability, then even attributing the entire
residual signal to greenhouse forcing would do little to
increase the overall confidence in attribution of this
change to greenhouse forcing. Note that P(4;;) is
strictly speaking not a probability. It is a measure of
confidence in detecting and attributing change in line
of evidence i to forcing mechanism j. Hence, 1 - P(A;))
is a confidence measure that characterizes the state
where either no change in i is detected or the detected
change is not attributed to mechanism j.

After each line of evidence has been analyzed in the
above manner, we then need to consider the attribu-
tion outcomes for the combination of lines of evidence.
The combined (net) confidence for attribution of the
‘balance of evidence' can be calculated as

PAnet) = P(UA;)) (#)

where [J is the union operator and A, is the attribution
for line of evidence i and climate forcing j. Making an
attribution from combined evidence requires that care-
ful attention be paid to whether the lines of evidence
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are independent or not. Since each individual line of
evidence may not be independent of others, depen-
dence among the different pieces of evidence must be
accounted for. In practice, the protocol can be simpli-
fied somewhat by selecting a finite set of relatively
independent lines of evidence. This is the approach we
have taken here. A smaller set of lines of evidence also
reduces the number of combinations that must be
accounted for in assessing dependence. Ultimately, we
calculate results using 3 different assumptions about
the degree of dependence: (1) Assuming indepen-
dence among lines of evidence (providing an upper
bound for attribution). In this case

LI
P(Aney) = 3 P(Aj)= > P(A;)P(A) + [ P(As)
i i=1,1=T7# i<l i
(8)
(2) Assuming complete dependence among lines of
evidence (providing a lower bound for attribution). In

this case
P(Aper,j) = max[P(A; )] 9)

(3) By taking account of the expert's assessment of any
dependence between lines of evidence.

The spread between the independent and depen-
dent assumption cases provides a measure of the
importance of judgements on dependence. The man-
ner of selection of lines of evidence is discussed in the
following section.

3. LINES OF EVIDENCE

A variety of different lines of evidence can be
brought to bear on the question of human influence on
climate change (Santer et al. 1996a). These include:

* the 20th Century long global mean surface air tem-
perature increase;

¢ sea level rise;

* water vapor and evaporation increases over tropical
oceans;

» high latitude precipitation increases;

 the reduction in diurnal temperature range in many
locations;

* better assessments of natural climate variability;

* increasing sophistication and success of pattern
matching exercises relating geographical, vertical,
and seasonal patterns of modeled greenhouse gas
and aerosol climate change with observations;

 the increase in statistical significance of such pattern
fits with time; and

* the inconsistency with solar and volcanic forcing in
the vertical pattern of temperature.

Some of the items in this list are not lines of evidence as

such. For example, assessments of natural climate vari-

ability are relevant to detection for a given line of evi-
dence, but are not lines of evidence in their own right.
A number of experts cite the millenial scale tempera-
ture reconstructions (e.g. Mann et al. 1998, 1999) as
lines of evidence for greenhouse climate change.
Again, we do not consider this to be a line of evidence
in its own right. Part of it is simply definitional, in that
we focus on possible causes of climate changes over
the past 100 yr. Taking this time scale as given, it fol-
lows that the millenial series provide bounds on nat-
ural variability, but do not describe the kinds of climate
changes we are interested in. We are interested in
greenhouse-induced climate change, and the millenial
series cover a period in which the changes in green-
house forcing were relatively small (until the recent
100 yr period that we focus on). Thus, in terms of
greenhouse climate change, there is not much that one
could hope to detect and attribute in that series. In this
protocol, a ‘line of evidence' only qualifies as such if
one can hypothesize some change in the metric for that
line of evidence that might usefully be related to
greenhouse (and other) forcing.

Lines of evidence are used as descriptors of climate
change in the past century. No one line of evidence
suffices to describe this climate change uniquely. A set
of lines of evidence provides a richer picture of that cli-
mate change than any one line of evidence. However,
given the nebulous nature of climate and climate
change (Lorenz 1995), any set of lines of evidence is
still only an approximation. For the development of this
protocol, we chose not to be exhaustive in including all
conceivable lines of evidence. If we did that, the num-
ber of questions posed would be too great to sustain
the attention of the climate experts, and the problem
would be too unwieldy to work through. It is more
fruitful to account for the major issues at stake, and
stop at a point where each additional line of evidence
provides only marginal gains in confidence in detec-
tion and attribution. For example, some lines of evi-
dence are mostly derivative of the fact that 20th Cen-
tury global mean temperatures have increased. This
would remove sea level rise and water vapor and evap-
oration increases over tropical oceans, which are sub-
stantially derivative of the temperature increase. The
point at which one stops adding lines of evidence is
determined empirically in consultation with each of
the experts.

We conducted an initial survey with a number of
experts to assess the degree to which they converge in
this manner. In practice, experts largely agree on a
core set of about 4 distinct lines of evidence as markers
of greenhouse climate change. Few added additional
lines of evidence beyond the following: (1) the global
mean surface air temperature increase during the
20th Century; (2) the reduction in diurnal temperature
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range over land areas; (3) the geographical/

spatial pattern of changes in surface tempera- 1.0
ture; and (4) the vertical pattern of changes in

global temperature. These lines of evidence

form the core set for the protocol. However, the 0.5
protocol allows experts to select their own lines
of evidence and to add to this set (or subtract
from it) until they feel they have accounted for
the important lines of evidence.

The above lines of evidence were selected as
diagnostics of greenhouse climate change, not
of more general anthropogenic climate change.
This is because the search for anthropogenic
climate change, irrespective of cause, can
be readily established from the impact
of ozone depletion on stratospheric tempera-
tures (Chanin & Ramaswamy 1999). Further,
the problem of climate change in the longer
run is mostly a problem of controlling emissions
of greenhouse gases. While aerosol emissions
and ozone depletion have important impacts on
current climate, their role is expected to dimin-
ish in the future relative to the greenhouse gas
contribution. While the protocol is structured to detect
greenhouse climate change, the contributions from
other natural and human forcings are explicitly in-
cluded at each step as well.

The selection of lines of evidence is also constrained
to some degree by the sources, quality, and quantity of
available data. Thus more weight tends to be placed on
lines of evidence that can be characterized by reliable
long-term observational records. This favors the global
surface air temperature record (e.g. Jones 1994) over
the much shorter upper air satellite record (e.g. Christy
& Spencer 1995) for example. It also favors tempera-
ture-based lines of evidence over hydrologically based
lines of evidence (e.g. precipitation; Karl & Knight
1998) which have less homogeneity or have been less
well observed (Wigley 1999). This bias presents the
possibility that searches for greenhouse climate
change will lamppost’ (Ravetz 1997) around available
data. This is difficult to overcome save for main-
tainance of a general awareness of the problem.

0.0

4. GLOBAL MEAN SURFACE TEMPERATURE
EXAMPLE

To provide the flavor of the set of judgements identi-
fied in responding to the protocol we trace through
some of the elements of the protocol for a single line of
evidence. We have selected the century-long trend in
the global mean surface temperature for this example
(i = 1) because it is the best known and studied among
the different lines of evidence. Perhaps not surpris-
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Fig. 1. Long-term global mean surface temperature anomalies. The
thicker line represents a five-year running mean. The data are
from Jones (1994) and Jones et al. (1999), and provided via http://

www.cru.uea.ac.uk

ingly, preliminary work with the protocol reveals that it
is also the line of evidence with the highest levels of
confidence for detection and attribution. A representa-
tion of the time series of the global mean surface tem-
perature is shown in Fig. 1. This series shows a cen-
tury-long warming on the order of 0.5°C. To clarify the
questions pertaining to this line of evidence we will
provide responses from one of the experts (Expert 11)
who completed the protocol. We stress that results
from this expert are given to highlight specific issues
that arise in detection and attribution, but not for the
purpose of drawing conclusions about the data. A full
set of results from all the experts for all lines of evi-
dence will be reported elsewhere.

4.1. Eliciting probability density for evidence: [f(E))]

The first confidence judgement to make is in each
line of evidence as such. The evidence itself will be
subject to various limitations. For example, observa-
tions of the century-long global mean surface air tem-
perature record are subject to a variety of limitations
related to: sparse observations with incomplete cover-
age, especially over oceans; changes in locations of
measuring stations; changes of instrumentation/
method for determining sea surface temperatures; and
urban heat island effects (Jones & Wigley 1990). The
question being asked at this point is the extent to
which the evidence is ‘real’. This judgement is
expressed in the form of the expert's pdf assessing the
possible values for the global mean surface tempera-
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Fig. 2. Expert 11's probability
density function for an estimate
of the century-long trend in 021
global mean surface air tempera-
ture (solid line) and for the cen-

tury-long trend in natural vari- -1
ability (dashed line)

ture change over the period. This will typically take the
form shown by the solid line in Fig. 2, which is the pdf
for f(E,) given by Expert 11. This expert believes that
the most likely value for the century-long change is
0.5 K, but allows some uncertainty and provides a stan-
dard deviation of 0.2 K about this value. Note that,
while this expert used a normal distribution for the pdf,
any distribution could be given. The tails of the distrib-
ution indicate that, given this experts estimate of the
uncertainty, there is a small probability that the actual
temperature change could be as low as zero or as high
as 1 K.

Once confidence in the evidence has been assessed,
the next task is to characterize natural variability in the
line of evidence and to make judgements on the signif-
icance of any trends relative to natural variability. This
is the detection stage.

4.2. Eliciting probability density for natural
variability: [f (V)]

Each expert's judgement of the magnitude of natural
variability of the global mean surface temperature
change over the past century is also represented by a
pdf, f(IN;). The experts are first asked about the pro-
cesses responsible for setting natural variability on this
time scale, and about their confidence in understand-
ing of the pertinent processes. For global mean surface
air temperature, the natural variability is set by the

internal dynamics of energy exchange among reser-
voirs with different time constants. For example,
storms in the atmosphere pump energy into and out of
the ocean, and the ocean moves heat around between
the surface and deeper layers via a variety of circula-
tion mechanisms with different time constants. Experts
tend to agree on the processes driving natural variabil-
ity, but are less sanguine about the ability to model
them. After a discussion of these kinds of processes the
experts are asked to specify a distribution for f(INy).
Natural variability, f(IN;), is difficult to characterize
from observations for most lines of evidence. This is
because we do not have reliable long-term measure-
ments of the 3-dimensional temperature structure of
the atmosphere. Direct observations of surface temper-
ature cover only the period since the industrial revolu-
tion began (and greenhouse gas concentrations started
to increase), while measurements above the surface
are even more recent. Thus detection studies usually
make use of representations of natural variability in
climate models as a proxy for the actual natural vari-
ability (e.g. Santer et al. 1996b, Tett et al. 1996). The
question arises as to how good the model-generated
estimates of natural variability are. The protocol con-
tains questions asking the experts to provide confi-
dence judgements in the representation of natural
variability in models to ascertain whether there are
likely to be significant biases introduced by use of
model proxy measures of natural variability. It is gen-
erally considered that the models underestimate the
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‘true’ natural variability, though there is little consen-
sus on the degree of underestimation. Expert 11 esti-
mates that there is about a 30% chance that the true
natural variability is between 0.5 and 1.5 times the
value typically estimated by models (i.e. models about
right) and about a 70% chance that the true natural
variability is greater than 1.5 times the value typically
estimated by models.

In specifying the spread of the distribution for f(IN;)
of the global mean temperature over the past 100 yr,
experts frequently make reference to proxy recon-
structions of this quantity over multiple century time
scales (e.g. Mann et al. 1998, Briffa & Osborn 1999).
While proxy reconstructions are limited in global
coverage and infer temperatures indirectly, they are
invoked to provide loose bounds on the potential mag-
nitude of century-scale natural variability. The ex-
pected mean trend in century-long series of (internally
generated) natural variability is typically zero unless
there are reasons to expect a prolonged cooling or
warming on this scale. The proxy records indicate
some natural cooling over the past millenium (Mann et
al. 1999), though this is loosely attributed to astronom-
ical forcing, which is an external forcing. Since the
mean of the expected trend in natural variability is
close to zero on 100 yr time scales, the spread and tails
are the more critical aspects of this distribution for
detection studies. Expert 11's distribution for natural
variability, f(IN;), is shown by the dashed line in Fig. 2.
It has a mean of zero (assumes no natural long-term
warming or cooling) with a standard deviation of 0.2 K.
From this distribution we would conclude that century-
long temperature excursions of +0.5 K can occur natu-
rally, but with low probability.

4.3. Calculating probability of detection: [P(D;)]

By comparing the expert's pdfs for f(E;) and f(INVy)
one can calculate the probability of detection, P(Dy).
This is the probability that the observed trend of global
mean surface temperature exceeds natural variability
of this quantity on the century time scale. By specifying
probability distributions for both the size of the trend
in global mean surface temperature change and the
expected value of natural variability over the same
period the experts are effectively answering the ques-
tion: Is the trend unusual, and, given the uncertainty of
the estimates, would we know it if it was? For the
global mean surface air temperature, a preponderance
of results from the literature and the expert assess-
ments with this protocol suggest that the trend is
indeed unusual compared to natural variability. The
detection probability for Expert 11, calculated from the
distributions given in Fig. 2, is 0.95.

Once a trend in global mean surface temperature
has been detected at some level of confidence, one has
now effectively ruled out natural variability as the
source of any residual signal. Of course, if an expert
believes there is effectively no residual signal, that
would be accounted for by a very low estimate in the
detection probability P(D;). For the global mean sur-
face air temperature, detection levels tend to be uni-
formly high across experts, though 3 of the 16 experts
who have currently completed the protocol yielded
P(D;) < 0.95. Once the probability of detection has
been calculated, the next step is to attribute causes to
any residual signal.

4.4. Identifying and characterizing the forcing:

[f (Fi))]

The first issue to grapple with in determining the
cause of any residual signal is to identify the set of pro-
cesses that might be responsible. This amounts to an
identification of possible climate forcings (causes) over
the relevant period and requires that probability distri-
butions be specified for the possible values of each
forcing, f(F;;). For each postulated forcing of a residual
signal, one needs to characterize the forcing history in
space and time in order to generate a response which
can be compared against the observed response of the
system. There are a variety of plausible forcings for
each line of evidence and each will typically contribute
in varying amounts.

For the global mean surface temperature trend there
are many different forcing processes that could play
some role, although the dominant ones are thought to
be increases in greenhouse gases, aerosols, and solar
variability. These different forcings are known with
different degrees of confidence. Fig. 3 shows one esti-
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Fig. 3. Global mean radiative forcing for the period from pre-
industrial times to the present. From Shine & Forster (1999)
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Table 1. Partitioning of probability mass between the nomi-
nated forcing ranges for the global mean surface air tempera-
ture line of evidence for Expert 11

Solar forcing  Probability Aerosol Probability
(Wm~2) mass forcing (Wm™) mass
<0 0.15 0--1.5 0.8
0-1 0.80 -1.5 0.2

>1 0.05

mate of the range of relevant forcings, together with an
assessment of the confidence in each forcing from
Shine & Forster (1999). The forcing due to increases in
carbon dioxide (the most important anthropogenic
greenhouse gas) is reasonably well known over the
past 100 yr and the forcing is relatively homogeneous
across the planet. While the forcing due to the sun is
also relatively homogeneous in space, it is very poorly
known as a function of time before direct measure-
ments began in the satellite era (ca 1978) (Kelly &
Wigley 1990). For aerosols the forcing is heteroge-
neous in space and the magnitude of the forcing due to
indirect processes (interactions of aerosols with clouds)
is poorly known (Kiehl & Briegleb 1993), even now
(Shine & Forster 1999). Other forcing factors that are
thought to play a role in setting global mean surface
temperature trends are cloud processes, changes in
ozone, stratospheric aerosols from volcanic eruptions,
and land surface physics.

Expert 11 identified each of the above forcings as rel-
evant for the century-long change in global mean sur-
face air temperature, though attributed smaller magni-
tudes to the latter 3. The forcing from volcanic aerosols
was judged to be slightly negative on the time scale of
the past century. Land use changes were argued to be ei-
ther slightly negative due to albedo
changes, or slightly positive due to
changes in the surface energy budget.
For aerosols, this expert feels that there
is an 80% probability that the true
aerosol forcing lies in the range be-
tween 0 and —1.5 W m2, and allows a

Once the candidate forcings have been character-
ized, they must each be translated into a response of
the climate system to compare the responses to those
forcings with the actual response of the system (global
mean surface temperature trends in this case). Since
the translation of forcing to response is usually done by
climate models, we ask the experts to describe what
the relevant physics are for translation from forcing to
response, and to assess how well the model represents
the relevant processes. This is done for each of the can-
didate forcings. Different physical processes will be
called into play for different lines of evidence. For ex-
ample, characterization of the global mean surface
temperature response relies on good representations
of temperature-dependent feedback processes in the
models (clouds, snow and ice, water vapor). The char-
acterization of the vertical pattern temperature re-
sponse in climate models relies on having good repre-
sentations of radiative and convective processes in the
model, which are important in redistributing heat
through the vertical atmospheric column. Atmospheric
circulation processes are also important for the vertical
pattern. For the geographical pattern of temperature,
ocean circulation processes will be important in addi-
tion, since they will influence the sea surface tempera-
ture distribution as well as adjacent land temperatures.
For characterization of the diurnal temperature re-
sponse it is important that the model has a good repre-
sentation of boundary layer and land surface physics,
and cloudiness.

4.5. Eliciting fractional attribution: [Q; ;]

Once the forcing history of the various candidate
forcings has been characterized and the translation of

Table 2. Fractional attribution values for Expert 11 for the global mean surface air
temperature. This is the fractional responsibility of greenhouse forcing, solar forc-
ing, and all other forcing in explaining any residual signal in century-long surface
temperature change that exceeds natural variability. This partitioning is carried out
given that the forcing by aerosols and the sun is in the indicated ranges

20% probability that it may be even
stronger negative than that (see
Table 1). For solar forcing, this expert

allocates 80 % probability mass to the <0 Wm™2
range between 0 and 1 W m2 5% to
the possibility of stronger positive forc-

ing, and the remainder to the possibility 0-1
of negative solar forcing. This expert
reasoned that present proxy recon- o1

structions for solar forcing are highly
uncertain and allow for the possibility of
zero, or even negative, forcing.

Solar forcing (W m™2)  Aerosol forcing between Aerosol forcing stronger
0and -1.5 W m™ than -1.5 W m2
Ql,ghg,l = 06 Q1,ghg,2 = 06
Ql,solﬂr,1 =0.0 Ql,solar,Z =0.0
Ql,other,l =04 Ql,other,z =04
Q1,ghg,3 =06 Q1,ghg,4 =06
Q1,solar,3 =0.1 1,solar, 4 = 0.1
Q1,other,3 =0.3 Ql,other,4 =0.3
Q1,ghg,5 =0.6 Ql,ghg,ﬁ =0.6
Ql,solar,S =0.1 Ql,solar,G =0.1
Ql,other,S =0.3 Ql,other,ﬁ =0.3
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those forcings into a response has been assessed, the
next step is to attribute and partition any residual sig-
nal among the candidate forcings. This assessment is
carried out for various combinations of uncertainty
ranges in characterization of the forcing, f(Fy ), so that
we can appropriately take into account the effect of
this uncertainty in the attribution to each forcing.

The fractional attribution values for Expert 11 are
shown in Table 2. The pdf for aerosol forcing has been
discretized into the 2 ranges shown, and that for solar
forcing into the 3 ranges shown. That means that there
are K =6 (2 x 3) different forcing cases of the expert to
consider. The fractional attributions in each of the 6
cases are weighted by the probability masses allocated
to those ranges indicated in Table 1. The highest
weighting (0.8 x 0.8 = 0.64) corresponds to the case
where aerosol forcing is between 0 and —1.5 W m™2 and
solar forcing is between 0 and 1 W m™2 (k = 3). In this
case, Expert 11 partitions most of the responsibility for
the residual century-long warming trend to green-
house forcing (Qjgng,3 = 0.6), with solar forcing
accounting for %, of the residual trend and all other
forcing accounting for the remaining %,.

For the case where aerosol forcing is stronger than
—-1.5 W m~2 and solar forcing is between 0 and 1 W m™2
(k = 4; 0.16 weighting), Expert 11 has not changed the
fractional attributions (Q, j 3 = Q,j4). This determina-
tion relates to assumptions about the relative role of
uncertainties in knowledge of climate sensitivity and
the climate forcings. In this case the aerosol forcing is
stronger than in the previous case, meaning that there
is more negative radiative forcing in the system. Some
experts argue that in order to produce the observed
warming trend with more negative forcing present,
there must be more positive forcing of the system than
previously thought to be the case. In focusing on the
uncertainties in the forcing, the experts note that there
is more uncertainty associated with the estimates of
‘solar’ and 'other’ forcing than with greenhouse forc-
ing. Thus, there is more scope to adjust the estimates of
solar and other forcing upwards to counteract the addi-
tional negative aerosol forcing. These experts there-
fore increase the fractional attribution to solar and
other forcings and decrease the fraction accounted for
by greenhouse forcing in this case. Alternatively, some
experts (including Expert 11) argue that one does not
need to adjust ones estimates of the forcings in this
case to account for the observed warming trend. There
could simply be less net positive forcing of the system,
and it may be the understanding of climate sensitivity
that is in error. With less net positive forcing, one
assumes that the climate sensitivity is higher than pre-
viously thought in order to account for the observed
warming. With this argument the fractional attribu-
tions for each of the j forcing candidates do not need to

be adjusted between cases k = 3 and k = 4. Expert 11
believes that errors in understanding of climate sensi-
tivity are more likely to be important in this case than
uncertainty in the forcing.®

From the information in Tables 1 & 2 we can use
Eq. (4) to calculate Expert 11's fractional attribution to
each of the forcings, Qy,;, for the global mean surface
air temperature line of evidence. This yields Qq gy =
0.6, Qqso1ar = 0.09, and Q) other = 0.31, confirming the
lead role of greenhouse forcing (for this expert) when
uncertainty in the forcing is taken into account. The
overall fractional attribution to the forcings, P(A, ), can
then be calculated using Eq. (6). Because the probabil-
ity of detecting a residual signal from natural variabil-
ity, P(D,) is so high (0.95) for Expert 11 for this line of
evidence, the overall fractional attributions are almost
identical to the fractional attributions. Thus this expert
attributes about % of the responsibility for the change
in global mean surface air temperature to increased
greenhouse forcing.

By the time the final confidence estimate in attribu-
tion of the change in a line of evidence to a specific
forcing is made, each expert has explicitly considered
each step in the chain from characterizing the initial
evidence to get to this point. By structuring the prob-
lem in this manner, the assumptions and reasoning are
made clear, the questions are specific enough to have
meaning to the experts, and one can assess where con-
fidence is high or low at specific steps in the process.

4.6. Assessing dependence

After each line of evidence is considered in isolation,
a set of judgements are then made regarding combina-
tions of the lines of evidence. For example, Expert 11
identified 3 major lines of evidence: the century-long
trend in global mean surface air temperature, the
change in geographical pattern of temperature over
the past 30 yr, and the change in diurnal cycle of tem-
perature over land areas over the past 30 yr.? In order

3A third possibility is to conclude that uncertainty in climate
forcings and sensitivity is less important than uncertainty in
the assessment of natural variability. One expert noted that if
the forcing turned out to be different he would first assume
that natural variability was in the tails of his estimated distri-
bution in accounting for the observed climate change

“For consistency among lines of evidence they should all
cover the same time period. Thus, ideally the geographical
pattern of temperature change and diurnal temperature
change would also span the last century. In practice, there is
insufficient observational data to construct reliable trends in
these lines of evidence over more than the past 30 yr or so.
Detection studies on these lines of evidence have therefore
used the shorter time period. For consistency with these stud-
ies we have also adopted the shorter period
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Table 3. Correlations between the global mean surface temperature and the
geographical pattern of temperature change (represented by land-ocean mean
temperatures over the globe where data is available), the diurnal temperature
range over land, and the annual cycle of temperatures over land. Correlations
are based on decadal low-pass filtered data. In the top row none of the time
series has been detrended. In the bottom row each of the time series has been
detrended by removing a linear trend over the period. The period of the data
used is 1880 to 1994, except for the diurnal temperature range where it is 1890
to 1994. Sources of data are Jones (1994), Parker et al. (1994) and Peterson &

The ‘true’ correlation between 2
lines of evidence is dependent on the
degree to which the data underlying
each of them are unique. The degree
of independence for attribution is also
a function of the extent to which the
lines of evidence refer to different cli-

mate processes that are not simple

Vose (1997) o ) ;
derivatives of one another.® This boils
. . down to an assessment of the degree
Geographical Diurnal Annual t hich h i f evid is abl
pattern temperature range cycle 0 whic .eaC '1ne o ?Vl' ence 1s able
to provide differentiation between
Global temperature 0.47 -0.82 -0.57 candidate forcings beyond that which
Global temperature -0.07 -0.14 0.02 is provided by other lines of evidence.
(detrended) In the protocol, subjective judgements

to account for possible dependence among these lines
of evidence, we elicit the conditional probabilities
among the different lines of evidence. An example of
this would be a probability assessment that a change in
geographical temperature pattern (land areas warm-
ing faster than ocean areas) is ‘true,’ given that a
global mean surface air temperature change has been
observed as ‘true.” We have structured the questions so
as to maximize the analytical benefits of conditional
independence. We expect that many lines of evidence
will either be roughly independent of one another,
since the lines of evidence have been chosen at least in
part on the basis of their relative independence, or be
conditionally independent of one another given the
global mean surface temperature change during the
20th Century.

One measure of the degree of dependence between
the different lines of evidence is given by their correla-
tions. These are shown in Table 3 for several lines of ev-
idence correlated with global mean surface temperature.
The correlations are shown with and without detrending
of the data. Detrending effectively removes any century-
long trends in the data, whether the result of natural
variability or external forcing. As seen in Table 3, the de-
trended lines of evidence are effectively uncorrelated on
decadal time scales, while those with trends do exhibit
substantial correlation. In this case the question of the
degree of dependence among the lines of evidence
hinges in part on whether the trends should be removed
from the data—which depends in part on whether you
view the trend as the result of forced changes (remove it)
or natural variability (leave it in). In practice it is a com-
bination of both.® The precise partitioning between these
contributions makes a big difference to the resultant cor-
relation. This is an example of the kind of judgement that
is integral to detection and attribution (whether it is
made explicit or not), which is critical to the results, but
for which there is no unique ‘right’ answer at present.

about dependence among lines of evi-
dence are expressed in probabilistic
form. For Expert 11, as for many other experts, the
degree of dependence among lines of evidence is
assessed to be uniformly low. The one exception for
Expert 11 is for the case of the global mean and geo-
graphical pattern, where the expert reasoned that
there is some overlap in the data, but also considerable
spatial structure that is not connected to the global
mean. Having assessed the degree of dependence
among the lines of evidence, the final step is to develop
a combined measure of attribution across all lines of
evidence for each forcing.

4.7. Assessing combined attribution: [P(A,, ;)]

The fractional attributions to greenhouse forcing for
each line of evidence, P(A; ;) can be given separately or
combined to form a net attribution, P(A,g, ). There are a
variety of ways in which the evidence can be combined,
both quantitatively and qualitatively. One way is to set a
threshold for the lines of evidence, P, and calculate the
number of lines of evidence for which P(A;,) > Pr. This
facilitates the use of qualitative measures such as ‘bal-
ance of evidence' to describe the overall level of attribu-
tion. Examples of other qualitative terms for net attribu-
tion are discussed in Section 5.5. Expert 11's fractional
attributions to greenhouse forcing in explaining the

SNote that high correlations among the variables could also
result from an internal physical driver common among the
variables. Such a relationship would normally apply on dif-
ferent time scales and should therefore survive detrending.
The fact that the correlations plummet when the data is de-
trended suggest that this is not the case

5For example, though sea level rise is a complex phenome-
non, one would expect that thermal expansion in response to
increasing ocean temperatures would result in sea level rise.
Thus, global mean surface temperatures and sea level rise
should be related
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changes in global mean surface temperature, the geo-
graphical pattern, and diurnal cycle are 0.6, 0.5, and 0.25
respectively. If Pr were set at 0.5, for instance, to account
forlines of evidence where greenhouse forcing is always
the dominant factor, then 2 out of 3 lines of evidence
qualify for Expert 11. If Pt were set at 0.95, no lines of ev-
idence would count for Expert 11. Setting Pt = 0.95 is
equivalent to saying that greenhouse forcing accounts
for 95 % of the century-long climate change. This stan-
dard is needlessly stringent, since greenhouse forcing
does not need to account for almost all of the signal in
past climate change to be important (or even dominant)
in future climate changes.

To provide a quantitative assessment of P(A, 1) we
combine each of the P(A;;) using different assump-
tions about the degree of dependence among lines of
evidence. In the case that the additional lines of evi-
dence are completely dependent on the global mean
surface temperature change, P(Ae 1) = P(A;,) = 0.6
(Eq. 9) for Expert 11. In the case that all lines of evi-
dence are independent of one another, Eq. (8) yields
P(Ayet,1) = 0.85 for Expert 11. Thus, the confidence in
combined attribution to greenhouse forcing changes
from 60 to 85% for this expert, depending on the de-
gree of dependence among the data. When the ex-
pert's own assessment of dependence among the data
is taken into account, this figure is 75 %.

Translating these numbers back into qualitative
form, one could say that this expert has ‘'medium’ con-
fidence (see Table 4) in attribution of a greenhouse gas
role to climate change as represented by the global
mean surface air temperature alone. When the expert's
other 2 lines of evidence are included in the represen-
tation of climate change, confidence either remains in
the ‘'medium’ category if the lines of evidence are com-
pletely dependent or increases to the ‘high' level if the
expert's assessment of dependence is taken into ac-
count. This further underscores the importance of de-
pendence issues in making overall judgements across
lines of evidence. Whatever the appropriate levels of
dependence are, the protocol provides a way to make
confidence levels explicit, along with the influence of
critical assumptions on the overall levels of confidence.

Table 4. Scale for assessing state of knowledge in translating
between quantitative probabilities and qualitative uncertain-
ties. From Moss & Schneider (1999)

Probability value Qualitative ranking
1.00-0.95 Very high confidence
0.95-0.67 High confidence
0.67-0.33 Medium confidence
0.33-0.05 Low confidence
0.05-0.00 Very low confidence

5. FUNCTION AND SCOPE OF THE PROTOCOL

The protocol described here for detection and attri-
bution has been distributed among the community of
scholars working in this field, and has tended to pro-
voke either quite favorable or quite unfavorable re-
sponses. This polarization may reflect differently held
paradigms of the proper function and role of science
for policy, and it may also reflect different views about
the intended function and application of the protocol.
We explore both these issues in this section.

5.1. Questioning expertise

The protocol is in some sense very narrow and
pertains specifically to the question of detecting
and attributing possible greenhouse-induced climate
changes. Yet the process of answering this question
calls forth a large number of judgements (which the
protocol is designed to make explicit) covering a range
of areas (radiative forcing, climate modeling, observa-
tional analysis, statistical methods), which tend to be
inhabited by specialists because of the detailed nature
of each of these areas. This raises the question as to
whether any single expert is competent to complete
the entire protocol. In fact, some experts have already
communicated to us that they would not venture to
make some of the judgements. We regard it as an open
question as to whether single experts are able to make
meaningful judgements across the protocol, and will
make efforts to test this by administering specific parts
of the protocol to acknowledged sub-disciplinary
experts (in say radiative forcing), so that we may com-
pare the judgements of those who work directly in a
particular area with one another and with those who
don't work in the area. If it turns out that only special-
ists seem capable of making meaningful judgements
on their ‘own’ data, that finding has implications for
the way in which groups like the IPCC working groups
attempt to come to consensus on issues that span mul-
tiple specialist domains. Preliminary results from the
protocol suggest that spread among experts reflects a
general lack of understanding on some specific issues
(e.g. characterization of the diurnal cycle) more so than
than it reflects the ignorance of non-specialists per se.

5.2. Identifying important issues

While the response to the protocol may have impli-
cations for the process of achieving consensus on
issues like detection and attribution, it is not designed
as a tool for building consensus. Its goal is to help iden-
tify areas of uncertainty and indicate where agree-
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ment exists and where it does not. It attempts to high-
light the elements of judgement on this issue and
explore how different experts make these judgements.
That may in fact be an impediment to building consen-
sus in making the areas of disagreement explicit. How-
ever, by identifying precisely where in the chain of
logic from identifying evidence to attributing green-
house climate change the disagreements occur, one
can at least develop a sense of whether the disagree-
ments are fundamental or not. Some disagreements
among scientists are germane to policy responses and
some are not. For example, if disagreement focuses on
the vertical temperature pattern, but if that turns out to
be a less critical line of evidence for setting each
expert's overall attribution to greenhouse gases (as
seems to be the case), then it would be useful to know
that.

5.3. Highlighting process

The protocol is designed such that it provides for
quantitative probabilistic responses for each of the
steps in the detection and attribution chain, and calcu-
lates overall probabilities of attribution in a mathemat-
ically consistent manner. However, the focus of interest
is not entirely on the final attribution probabilities that
emerge at the end. Admittedly, the magnitudes of the
attribution probabilities and their spread across ex-
perts are of genuine interest. If the attribution proba-
bilities are uniformly high and the spread is low, that
sends a signal about confidence on this issue that is
very different than if the converse is true. But it is also
possible that even in this case the agreement across
experts on overall attribution probabilities may be for-
tuitous. For example, it might be the result of compen-
sating differences in probabilities of detection and
attribution, or of differences between different lines of
evidence from expert to expert. The overall attribution
results are much more meaningful when considered in
conjunction with the steps that were taken to reach
them. If there is agreement on the series of explicit
judgements underlying the overall attribution proba-
bilities, that is much less likely to be fortuitous. The
information content from the protocol resides more so
in the articulation of process than it does in the final
results.

5.4. Highlighting subjectivity

In our interactions with researchers in this field,
some have objected to the explicitly subjective framing
of the protocol. For example, one critic stated that ‘this
expert elicitation weights the science by people’s prej-

udices and is of no merit. If it were an objective
approach it would be very relevant to IPCC.' This com-
ment weighs in on one side of the long-standing para-
digm dispute over the relative roles of facts and values
in scientific research and analysis. Our critic presum-
ably supports the view that facts and values are sepa-
rable, and that there are facts which are not value-
laden. By contrast, we believe that some subjectivity is
unavoidable, but that it is by no means fatal. As noted
by Shrader-Frechette (1984), just ‘because our obser-
vations may be seen in different ways, it does not fol-
low that they may be seen in any way.’

Subjective judgements are an integral part of the
process of contemporary detection and attribution
studies, whether they are made explicitin a probabilis-
tic protocol such as we have described or whether they
are implicit in the choices used to construct climate
models for detection studies for instance. The notion
that there are purely objective ways to carry out detec-
tion and attribution studies is a convenient fiction. For
many of the relevant lines of evidence for greenhouse
climate change, one fact that all experts can agree on
is that existing data are inadequate to completely char-
acterize the natural variability of the climate system on
the time scales of relevance to the detection problem.
This means that any detection analyst must use some
judgement as to what the natural variability has been.
Without long time series of observational data, studies
frequently use climate models to characterize the nat-
ural variability. Sometimes the analyst will articulate
reasons why they think the natural variability of the
model is under-representing the true natural variabil-
ity of the system. For instance, the models do not
include all the processes occurring in the real system,
and available comparisons of model spectra with
observations suggest that the models lack power at the
lowest frequencies (Barnett 1999). Thus analysts will
sometimes increase the magnitude of natural variabil-
ity in the model to a value that seems like it might bet-
ter represent the natural variability of the real system.
There are sensible choices to make in doing this and
some indications from observations that will guide the
choice, but there is no single ‘objective’ way to match a
figure whose true value is unknown. Thus, one is
always engaged in making some subjective judgement
in a detection and attribution study, whether or not this
subjectivity is identified and articulated.

Of course one might wait until we have long-enough
time series of observational data to unambiguously
determine the natural variability on the time scales
pertinent for greenhouse response (though even this is
difficult, because the time series is already ‘corrupted’
by the forcing). But by then the greenhouse ‘experi-
ment’' will have already been performed and the notion
of a 'detection’ study rendered moot. Thus one can
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adopt a 'subjective’ probability framework and provide
detection and attribution assessments before the fact,
or one can adopt the 'frequentist’ (or ‘objective’) statis-
tical framework and provide input largely after the
fact. But it is a fallacy to argue for frequentist
approaches as alternatives to subjective approaches
for contemporary analyses with existing limited data.

5.5. Communicating results

By highlighting the process used to obtain detection
and attribution results, the protocol allows for more
transparency and nuance in communication of the
results. The result is not just a single number or state-
ment, but a map of the terrain of knowledge and uncer-
tainty on this issue. Further, the probabilistic results from
the protocol can be readily translated into qualitative
statements of confidence using formulations such as that
presented by Moss & Schneider (1999). Their 5 point
scale translates between probabilities and levels of con-
fidence as shown in Table 4. The exact break up of the
scale is not so important as the fact that one uses a com-
mon and well-articulated scale for such translations.

Terms like 'balance of evidence' are also more
amenable to definition when using the protocol. With
probabilities of attribution calculated for each line of
evidence one can define thresholds for attribution (Pr)
and calculate the number of lines of evidence exceed-
ing the thresholds. For example, when all lines of evi-
dence exceed the threshold one could speak of a ‘con-
sensus of evidence." When more exceed the threshold
than not, one could refer meaningfully to a ‘balance of
evidence' and, when fewer exceed than not, one could
use terms like ‘some evidence.’' In each case, it would
be clear exactly what the qualitative label meant in
quantitative terms. The level at which the threshold, Pr,
is set can be varied to set the appropriate burden of re-
sponsibility for greenhouse forcing.

If formal frameworks like the detection and attribu-
tion protocol were used periodically at something like
the frequency of IPCC assessments, they could be ap-
propriate vehicles for reflecting improvements in scien-
tific understanding. In any given period the protocol
could be used to prioritize research by highlighting
where uncertainties or disagreements are large, and
more importantly, where they are likely to be critical in
terms of overall ability to detect and attribute green-
house climate changes.

6. CONCLUSIONS

This paper describes a protocol that provides a
coherent structure to analyse issues of detection and

attribution of climate change. The problem being
addressed is essentially one of developing a methodol-
ogy for coping with multiple causation in the face of
considerable uncertainty. In this case there are a vari-
ety of competing causes that may be responsible in
part or whole for climate changes that have been
observed. The attribution among competing causes is
important for gauging the potential extent of future
possible climate changes. While the science underly-
ing detection and attribution studies has been improv-
ing in sophistication and scope, the results presented
to date have reflected either single isolated studies of
one part of the issue, or have provided holistic assess-
ments lacking detail of the underlying reasoning. The
protocol presented here provides a synthesis of both
these kinds of studies by allowing for overall assess-
ments of attribution while preserving a transparent
trail of the process used to arrive at those assessments.

There are a number of advantages to preserving a
map of the detection and attribution process. First, the
areas of relative agreement and disagreement among
experts can be identified. The relative importance of
any loci of disagreement or uncertainty can be as-
sessed by examining what the contribution of those
steps are in the detection/attribution process to the
overall probability of attribution. This is possible be-
cause the framework is both explicit and quantitative.
By isolating critical aspects of the detection/attribution
process in this manner, research priorities can be set
accordingly. Further, in sorting critical from inconse-
quential disagreements (in terms of their contribution
to overall attribution) the policy community will be bet-
ter informed about the role of uncertainties that may
matter. Formal detection/attribution frameworks also
provide meaningful and unambiguous ways to trans-
late between quantitative expressions of probability
and qualitative expressions of uncertainty. They may
also provide useful means for monitoring and diagnos-
ing progress in the field.

A number of issues in detection and attribution stud-
ies are brought to the surface in the protocol. The first
one identified here is whether one seeks to detect and
attribute causes for anthropogenic climate change in
general or greenhouse climate change in particular.
We focus on the latter because we argue that it is a less
trivial problem and has more direct implications for
future climate changes. The selection of lines of evi-
dence to represent climate change on the time scale of
greenhouse forcing and response (the past century) is
subjective and approximate and is limited by the avail-
ability of suitable observations. Similarly, the charac-
terization of natural variability for each line of evi-
dence is limited by the lack of data and entails an
element of choice, whether characterized by modellers
or experts. Carrying out attribution of cause for
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detected climate changes requires a characterization
of climate forcings and of the translation of forcing to
response. The uncertainty in the latter step is difficult
to include in attribution studies and is rarely made
explicit. The attributions of cause for each line of evi-
dence have 2 components: the fraction of signal that is
attributed to the forcing, and the probability associated
with that fraction. It is useful to specify the fraction
attributed, since one can have a high probability of
attribution to a vanishingly small contribution of the
forcing to the postulated climate change—revealing
little about the role of that forcing.

The judgements entailed in detection and attribution
studies are often complex. When experts are used to
make these judgements, some cognitive limitations are
apparent. For example, it is difficult to make condi-
tional attributions to different forcings when uncer-
tainty in each of the forcings is represented by pdfs.
These judgements can be rendered tractable by ap-
proximating the forcing pdfs by discrete ranges. When
experts make attributions conditional on the forcing,
the contributions of both forcing uncertainty and
uncertainty in climate sensitivity must be weighed.
Neither of these uncertainties has been given much
attention in detection and attribution studies, and it is
not surprising that experts are divided over the relative
importance of these uncertainties.

Another important issue for detection and attribution
studies is the role of dependence among lines of evi-
dence. This comes into play when combining attribu-
tions from separate lines of evidence into net measures
of attribution. The higher the level of dependence
among lines of evidence, the lower the net attribution
to a given forcing. The '‘burden of proof' for different
possible causes of climate change can be established
by setting thresholds for each line of evidence. In the
detection and attribution protocol presented here,
attributions are measured in fractional terms. That is,
the attribution assesses the relative contributions of
each possible forcing candidate to the climate change
(accounting for the role of natural variability). When
attribution is measured in this way, it makes little sense
to set thresholds at the 95 % level. If we are concerned
about future climate changes, we want to take account
of the most important processes driving the change,
whether the result of natural variability or externally
forced. If the dominant process is both external and
persistent (as in the case of greenhouse forcing), there
are implications for the persistence of the change.
Dominance among attributions need not be near total
(95 %) to be important.

The problem of detecting unusual environmental
changes and attributing the changes to various uncer-
tain causes is not unique to climate change. A range of
environmental problems from endocrine disruption

(Colborn 1997) to the disappearance of frogs (Phillips
1995) share the problem of identifying probable causes
from a range of potential natural and anthropogenic
perturbations. It is conceivable that some of these
problem domains could benefit from formalizations of
the type we have described here.

Acknowledgements. We are grateful to all those who have
given us feedback on the protocol described here. They
include Mark Handel, Haroon Kheshgi, Benoit Morel,
Stephen Schneider, Urmila Diwekar, Granger Morgan,
Marina Pantazidou, Wendy Parker, Gerard Roe, and the audi-
ences of seminars at Carnegie Mellon and Texas A & M Uni-
versities. We are indebted to all the experts who gave of their
time and wisdom in completing the protocol. We are also
grateful for the detailed comments of several anonymous
reviewers. This work was funded by the NOAA Climate and
Global Change Program. Figs. 1 & 3 and are gratefully repro-
duced with permission from Phil Jones (Fig. 1) and Keith
Shine and Piers Forster (Fig. 3).

LITERATURE CITED

Barnett T (1999) Comparison of near-surface air temperature
variability in 11 coupled global climate models. J Clim
12(2):511-518

Barnett T, Hasselmann K, Chelliah M, Delworth T, Hegerl G,
Jones P, Rasmusson E, Roeckner E, Ropelewski C, Santer
B, Tett S (1999) Detection and attribution of recent climate
change: a status report. Bull Am Meteorol Soc 80(12):
2631-2659

Briffa KR, Osborn TJ (1999) Perspectives: climate warming—
seeing the wood from the trees. Science 284:926-927

Chanin ML, Ramaswamy V (1999) Trends in stratospheric
temperatures. In: Scientific assessment of ozone depletion:
1998. WMO Global Ozone Research and Monitoring
Report No. 44, Geneva, p 5.1-5.59

Christy J, Spencer R (1995) Assessment of precision in tem-
peratures from the microwave sounding units. Clim
Change 30(1):97-102

Clark W (ed) (1982) Carbon dioxide review. Oxford Univer-
sity Press, Oxford

Colborn T (1997) Our stolen future: Are we threatening our
fertility, intelligence, and survival?—a scientific detective
story. Plume, New York

Edwards P, Schneider S (1997) The 1995 IPCC report: broad
consensus or ‘scientific cleansing'? Ecofable/Ecosci 1(1):
3-9

Funtowicz S, Ravetz J (1994) The worth of a songbird: ecolog-
ical economics as a post-normal science. Ecol Econ 10:
197-207

Hasselmann K (1998) Conventional and Bayesian approach to
climate-change detection and attribution. Q J R Meteo-
rol Soc 124(552):2541-2565

Hegerl GC, Hasselmann K, Cubasch U, Mitchell JFB, Roeck-
ner E, Voss R, Waszkewitz J (1997) On multi-fingerprint
detection and attribution of greenhouse gas- and aerosol
forced climate change. Clim Dyn 13:613-634

IPCC (1996) Climate change 1995: The science of climate
change. Houghton et al. (eds). Cambridge University
Press, Cambridge

Jones PD (1994) Hemispheric surface air temperature varia-
tions: a reanalysis and an update to 1993. J Clim 7:
1794-1802



78 Clim Res 16: 61-78, 2000

Jones PD, Wigley TML (1990) Global warming trends. Sci Am
August, 84-91

Jones PD, New M, Parker D, Martin S, Rigor I (1999) Surface
air temperature and its changes over the past 150 years.
Rev Geophys 37:173-199

Karl T, Knight R (1998) Secular trends of precipitation
amount, frequency, and intensity in the United States. Bull
Am Meteorol Soc 79 (2):231-241

Karoly DJ, Cohen JA, Meehl GA, Mitchell JFB, Oort AH,
Stouffer RJ, Wetherald RT (1994) An example of finger-
print detection of greenhouse climate change. Clim Dyn
10:97-105

Karoly DJ, Braganza K, Hirst A, Power S (1999) Climate
change detection and attribution using simple global
indices. In: Proceedings of the 10th Symposium on Global
Change Studies, 10-15 January 1999. American Meteoro-
logical Society, Boston, p 240-241

Kelly PM, Wigley TML (1990) The influence of solar forcing
trends on global mean temperature since 1861. Nature
347:460-462

Kheshgi HS, White BS (2000) Testing distributed parameter
hypotheses for the detection of climate change. J Clim (in
press)

Kiehl JT, Briegleb BP (1993) The relative roles of sulfate
aerosols and greenhouse gases in climate forcing. Science
260:311-314

Lorenz EN (1995) Climate is what you expect. MIT, Cam-
bridge, MA

Mann ME, Bradley RS, Hughes MK (1998) Global-scale tem-
perature patterns and climate forcing over the past six
centuries. Nature 392:779-787

Mann ME, Bradley RS, Hughes MK (1999) Northern hemi-
sphere temperatures during the past millennium: infer-
ences, uncertainties, and limitations. Geophys Res Lett 26
(6):759-762

Mitchell JFB, Karoly DJ (2000) Detection of climate change
and attribution of causes. Intergovernmental Panel on Cli-
mate Change Working Group 1 Third Assessment Report.
Cambridge University Press, Cambridge

Morgan MG, Henrion M (1990) Uncertainty: a guide to deal-
ing with uncertainty in quantitative risk and policy analy-
sis. Cambridge University Press, New York

Moss R, Schneider SH (1999) Towards consistent assessment
and reporting of uncertainties in the IPCC TAR: initial rec-
ommendations for discussion by authors. IPCC Guidance
Paper distributed to lead authors. Cambridge University
Press, Cambridge

Parker D, Jones PD, Folland C, Bevan A (1994) Interdecadal
changes of surface temperature since the late nineteenth
century. J Geophys Res 99:14373-14399

Editorial responsibility: Hans von Storch,
Geesthacht, Germany

Pearce F (1999) Rivers of doubt. New Scientist 161(2174):48

Peterson TC, Vose RS (1997) An overview of the global histor-
ical climatology network temperature data base. Bull Am
Meteorol Soc 78:2837-2849

Phillips K (1995) Tracking the vanishing frogs: an ecological
mystery. Penguin, New York

Ravetz J (1997) Integrated environmental assessment forum:
developing guidelines for ‘good practice’. Working paper
ULYSSES, Darmstadt University of Technology

Risbey J, Stone P (1996) A case study of the adequacy of GCM
simulations for input to regional climate change assess-
ments. J Clim 9(7):1441-1467

Santer BD, Taylor K, Wigley TML, Penner J, Jones PD,
Cubasch U (1995) Towards the detection and attribution of
an anthropogenic effect on climate. Clim Dyn 12:77-100

Santer B, Wigley TML, Barnett T, Anyamba E (1996a) Detec-
tion of climate change and attribution of causes. In:
Houghton et al. (eds) Climate change 1995: the science of
climate change. Cambridge University Press, Cambridge,
p 406-443

Santer B, Taylor K, Wigley TML, Johns T, Jones P, Karoly D,
Mitchell JFB, Oort A, Penner J, Ramaswamy V,
Schwarzkopf M, Stouffer R, Tett S (1996b) A search for
human influences on the thermal structure of the atmos-
phere. Nature 382:39-46

Seitz F (1996) A major deception on global warming. Wall
Street Journal, June 12, New York

Shine K, Forster PdeF (1999) The effect of human activity on
radiative forcing of climate change. A review of recent
developments. Global Planet Change 20(4):205-225

Shrader-Frechette K (1984) Science policy, ethics, and eco-
nomic methodology: some problems of technology assess-
ment and environmental impact analysis. Reidel, Dor-
drecht

Tett S, Mitchell JFB, Parker D, Allen M (1996) Human influ-
ence on the atmospheric vertical temperature structure:
detection and observations. Science 274:1170-1173

Varis O, Kuikka S (1997) BeNe-EIA: a Bayesian approach to
expert judgment elicitation with case studies on climate
change impacts on surface waters. Clim Change 37(3):
539-563

Wigley TML (1999) The science of climate change: global and
U.S. perspectives. Pew Center on Global Climate Change,
Arlington, VA

Wigley TML, Raper SCB (1990) Natural variability of the cli-
mate system and detection of the greenhouse effect.
Nature 344:324-327

Wigley TML, Smith R, Santer B (1998) Anthropogenic influ-
ence on the autocorrelation structure of hemispheric-
mean temperatures. Science 282:1676-1679

Submitted: November 19, 1999; Accepted: May 28, 2000
Proofs received from author(s): October 13, 2000



