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1. INTRODUCTION

The Mediterranean Basin is vulnerable to climate
change particularly through the effects on the water
balance and the implications for agriculture and
domestic and industrial water supply (Brandt &
Thornes 1996, Jeftic et al. 1996). However, when sce-
narios are constructed directly from GCM (general
circulation model) output, they are unsuitable for use
in impact studies because the spatial resolution is too
coarse (von Storch et al. 1993, Palutikof & Wigley
1996). Downscaling techniques are therefore required
to generate scenarios with a finer spatial resolution.
The first step is to estimate the baseline climatology at
a high spatial resolution. Here, as a basis for downscal-
ing, the possibilities of using a GIS (Geographic In-
formation System) to spatially interpolate climate data

from point sources (either station observations or GCM
grid-points) in the Mediterranean Basin are assessed,
using information such as height above sea level, dis-
tance to the sea, and latitude/longitude as predictors. 

A GIS is an effective tool for data integration and
spatial analysis (Rhind 1991) and has been used to
model climate conditions in Scotland (Matthews et al.
1993, Aspinall & Matthews 1994, Cornford 1997), in
Great Britain (Lennon & Turner 1995), and in Ireland
(Goodale et al. 1998) with some success. The current
work uses a grid-based analysis in which the attributes
(represented by temperature and precipitation) are a
function of the location, expressed as an absolute (lati-
tude, longitude, elevation, etc.) and as a relative (dis-
tance to sea, slope, etc.). The underlying hypothesis is
that climate at any location is influenced by the envi-
ronmental attributes of the surroundings. The Arc/Info
GIS is used to map (1) observed seasonal means of
temperature and (2) precipitation, at an approximate
resolution of 1 km.
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High spatial resolution climatologies are required for
hydrological and geomorphological applications. The
Mediterranean is an area subject to soil erosion and
land degradation, problems which may become more
severe if global warming trends continue (for example,
Poesen & Hooke 1997, Kirkby et al. 1998, Mulligan
1998). Hydrological and geomorphological impact
models, at the level of a catchment or slope, require cli-
mate variables at a spatial resolution of 1 km or less
as input. We therefore use a 1 km resolution DEM to
construct a 1 km resolution baseline climatology for
temperature and precipitation.

2. DATA ACQUISITION

The climate data (seasonal mean temperature and
precipitation) were assembled from the CRU (Climatic
Research Unit, UK) archives of climate observations,
resulting in a network of 248 temperature sites and 285
precipitation sites. Station data were averaged over
the period 1952 to 1989 (being the period with the most
dense network). Standard seasons were used: Decem-
ber, January, and February for winter, March, April,
and May for spring, etc. A point coverage of the cli-
mate stations used for parameterising the model was
created in Arc/Info (see Fig. 1). The study area is of
rectangular dimension (south-west corner 35° N, 10° W;
north-east corner 45° N, 30° E). A 1:1 million-scale vec-
tor coastline of this area and the administrative bound-
aries was obtained from the ESRI (1992) Digital Chart
of the World (DCW). DCW data are available in 10° × 10°
tiles, which were joined with the internal boundaries
dissolved using Arc/Info. The vector coastline was then
converted to raster (gridded) data at the same resolu-
tion as the elevation data, 0.5 dm (decimal minutes).
Land cells were assigned a value of 1, and sea cells
a value of 0. The digital elevation model (DEM)
30ASDEM forms the basis for spatial interpolation be-
tween point sources, and is the preliminary release of

30 arc second (approximately 1 km) digital elevation
data from the US Geological Survey (available from
USGS 1997).

The terrain and location variables listed in Table 1
were offered as candidate variables in the regression
models and were derived from the 1 km resolution
DEM. Elevation (ELEV) is included because it is
known to be a strong determinant of climate. Vertical
lapse rates average 6°C km–1 in the free troposphere,
although there are seasonal and geographical varia-
tions (Meteorological Office 1991). Precipitation is in
general positively correlated with altitude, although
the rate of increase is modified by local factors such as
the proximity to large water bodies or rainshadows
(Dingman 1981, Daly et al. 1994). The mean elevation
within chosen radii (1, 2, 3, 4, 5, 10 km) was also
derived using the FOCALMEAN function in Arc/Info
to measure the wider influence of elevation at any one
location. The maximum elevation (using FOCALMAX)
within a wedge of given orientation and radius (ZXx)
was included to measure the influence of orographic
forcing on precipitation, since cells located on the lee-
ward side of mountains should be drier than those on
the windward side. This variable will be most appro-
priate where the topography is fairly regular and the
prevailing wind is from a clearly defined direction.

Distance to the nearest coastline (DISTANCE) is
included to account for maritime/landmass influences
and is generated using a proximity function in
Arc/Info. The logarithm of distance was also obtained
since Cornford (1997) suggests that maritime influ-
ences may not penetrate far inland. Further measures
of coastality, i.e. the mean number of land cells (LANx)
within chosen radii (x = 5, 10, 20, 50, 100, 150 km),
were computed using FOCALMEAN. When wind is
from a clearly defined prevailing direction, only wind-
ward coasts should be affected by the maritime influ-
ence (Cornford 1999). To incorporate this effect, the
direction of the nearest coast was computed for 8 com-
pass points.
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Fig. 1. Geographical location of temperature and precipitation stations used in the study
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The longitude and latitude variables (X and Y) are
included to parameterise large-scale gradients of tem-
perature and precipitation within the Mediterranean.
The direction in which each cell is facing (aspect,
ASPx) may be important because of the effect on the
microclimatology of the wind, and its SLOPE will
determine the amount of solar radiation received and
hence affect temperature. Differential heating of
mountain slopes can trigger convective instability with
spatially distinct rainfall patterns. Slope and aspect
were derived using functions of the same name in
Arc/Info (see Table 1 for a description of these variables).

3. METHODOLOGY FOR CONSTRUCTING
HIGH SPATIAL RESOLUTION BASELINE

CLIMATOLOGIES

A robust algorithm was used to map seasonal tem-
perature and precipitation, based on regression mod-
elling followed by kriging of residuals. This 2-stage
methodology involves both deterministic and stochas-
tic components. In the first stage, the observed temper-
ature and rainfall data are interpolated from the station
locations to a resolution of 0.5 dm using the terrain and
location predictors (Fig. 2). These predictor variables,
in the form of digital maps, are used to parameterise
the regression model and represent the deterministic
component of the model. In the second stage, the resid-
uals from the regression model, treated as random
spatial variables, represent the stochastic components
and are interpolated using the geostatistical model
known as kriging.

Stage I: Terrain/climate model parameterisation

(1) The climate and terrain data were converted to
raster format within the GIS. Each variable was tested
for normality and a functional transformation was
applied on a seasonal basis where necessary. For
example, the variable representing the ratio of land-to-
sea cells in a 150 km radius (LAN150) was exponen-
tially transformed to conform more closely to a normal
distribution.

(2) Stepwise multiple linear regression was per-
formed with climate as the dependent variable and ter-
rain/location variables as the predictors. Regression
has been used as a satisfactory method for identifying
variables used to model climate surfaces in Britain
(Matthews et al. 1994, Lennon & Turner 1995, Corn-
ford 1997) and Ireland (Goodale et al. 1998). In total
8 equations were developed for each season and for
each climate variable.
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Stage II: Estimating and 
refining the climate surface

subtract residuals

Climate variables

Fig. 2. Two-stage methodology for constructing high-resolution 
baseline climatologies

Table 1. Location and terrain variables derived from the 1 km
resolution digital elevation model (DEM) and used in the 

regression models

Variable Description

X Longitude

Y Latitude

DISTANCE Distance to the nearest coast

DIRx Direction of the nearest coast in 8 compass
points, where x is N, NE, SE, SW, W, NW. For
example, DIR_N is given a value of 1 if the
direction of the nearest coast is to the N, and
0 if the nearest coast is in any other direction.
This approach is used to avoid discontinuity
between 359° and 0°

LANx A land-to-sea ratio within a radius x, where x
is 5, 10, 20, 50, 100, and 150 km

ELEV Elevation in metres

ELEVx Mean elevation within x, where x is a radius
of 1, 2, 3, 4, 5, and 10 km

ZXx Max elevation within x, where x is a wedge
with a radius of 1, 2, 3, 4, 5, 10, 20, 50, and
100 km, with direction N, NE, E, SE, S, SW,
W, and NW. For example, ZX100SE is the
maximum elevation in a SE direction within a
45° wedge with a radius of 100 km

SLOPE Slope in degrees, i.e. the maximum rate of
change in elevation from each cell to its
neighbour (where the neighbour is selected
to maximise the slope)

ASPx Aspect in degrees, i.e. the down-slope direc-
tion of the maximum rate of change of eleva-
tion between each cell and its neighbours,
where x is N, NE, E, SE, S, SW, W, and NW.
For example, ASP_N is given a value of 1 if
the cell slopes to the north, and 0 if the slope
of the cell is in any other direction
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Stage II: Estimating and refining the climate surfaces
using geostatistics

(1) Climate fields for each season were estimated
using the developed regression models. The residuals
from these models were rasterised and subsequently
analysed for spatial autocorrelation and trend using
a variogram (see Isaaks & Srivastava 1989 for an
overview of variograms). The experimental variogram
shows semi-variance (γ) against the separation dis-
tance (h) between point sources, and can be estimated
by:

(1)

where n is the number of pairs of sample points (x), and
z represents the residuals of temperature and rainfall.
The variogram was fitted to the semi-variance points
using the Levenberg-Marquardt method (Press et al.
1988) of non-linear least squares approximation. The
residuals, treated as a spatially dependent variable
(Burrough 1986), can be used in a geostatistical sense
to partially account for any spatial correlation in the
residual temperature and precipitation fields. The
residuals were interpolated using local ordinary krig-
ing (see Oliver et al. 1989, Aspinall & Matthews 1994,
Cornford 1997) and subtracted from the predicted
‘observation’ surfaces. Kriging was performed on the
data using several different methods (spherical, circu-
lar, exponential, Gaussian, and linear). Each method
was then tested by constructing the variogram. Models
that provided optimal fit to the semi-variance points
were selected. The final selection was made on the
basis of the RMSE (root mean square error) calculated
for the validation samples. In fact, the choice of inter-
polation algorithm is considered to be less important
when a full set of terrain data is available (Cornford
1999), i.e. the choice of mapping algorithm has less
effect on the accuracy of the interpolated surface than
in the case where little or no additional information is
available.

(2) Validation sites were selected to cover a wide
range of Mediterranean environments. The models
were validated by computing the RMSE and correla-
tion coefficients between the predicted and observed
climate for the sample (36 temperature validation sta-
tions and 35 precipitation validation stations).

4. TERRAIN/CLIMATE RELATIONSHIPS

Deterministic relationships between the observed
climate data and the location and terrain variables
have been identified on a seasonal basis and are sum-
marised in Tables 2 & 3. For both temperature (Table 2)

and precipitation (Table 3), the highest correlation
coefficients are with latitude (Y). With higher latitudes,
temperature decreases and precipitation increases,
although the strength of the relationship varies from
season to season. For temperature, the relationship is
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Table 2. Temperature correlations with important environment
and location variables. Correlation significance: *0.05 level
(2-tailed); **0.01 level (2-tailed). LN: natural log transforma-

tion; EX: exponential transformation

DJF MAM JJA SON

X –0.35** –0.15* 0.19** –0.16*
Y –0.74** –0.68** –0.59** –0.74**
ELEV –0.51** –0.65** –0.49** –0.59**
DISTANCE –0.65** –0.48** –0.36** –0.61**
LAN5 –0.36** –0.29** –0.13 –0.34**
LAN20 –0.51** –0.42** –0.24** –0.49**
LAN50 –0.56** –0.47** –0.31** –0.55**
LAN100 –0.63** –0.51** –0.37** –0.62**
LAN150EX –0.68** –0.54** –0.41** –0.66**
SLOPELN –0.12 –0.14* –0.05 –0.14*
DIR_S –0.02 0.02 0.02 –0.00
DIR_SE –0.03 0.03 0.10 0.02
DIR_SW –0.29** –0.21** –0.19** –0.27**
DIR_W 0.06 0.02 –0.01 0.05
DIR_N 0.12 0.06 0.04 0.09
ASP_S 0.05 0.02 0.00 0.02
ASP_SW 0.01 0.02 0.00 0.01

Table 3. Precipitation correlations with important environment
and location variables. Correlation significance: *0.05 level
(2-tailed); **0.01 level (2-tailed). LN: natural log transforma-

tion; EX: exponential transformation

DJF MAM JJA SON

X 0.17** 0.12 0.34** 0.21**
Y –0.01 0.50** 0.87** 0.46**
ELEV 0.02 0.21** 0.28** 0.08
ZX100W –0.19** –0.01 0.22** –0.01
ZX100SE 0.25** 0.44** 0.41** 0.31**
ZX100S 0.05 0.28** 0.42** 0.12
ZX100SW –0.12* 0.10 0.35** 0.01
ZX100E 0.34** 0.40** 0.25** 0.41**
ZX50S 0.08 0.27** 0.37** 0.17**
ZX20W 0.02 0.20** 0.27** 0.11
DISTANCE –0.17** 0.12 0.37** –0.16**
LAN5 –0.09 0.09 0.11 –0.11
LAN20 –0.11 0.18** 0.22** –0.10
LAN50 –0.13* 0.20** 0.27** –0.10
LAN100 –0.15* 0.19** 0.31** –0.11
LAN150EX –0.14* 0.20** 0.35** –0.11
SLOPELN 0.10 0.15* 0.11 0.08
DIR_S –0.06 –0.05 –0.07 –0.07
DIR_SE –0.26** –0.18** 0.01 –0.20**
DIR_SW 0.11 0.21** 0.30** 0.21**
DIR_W 0.18** 0.15* –0.07 0.15*
DIR_N 0.14* –0.03 –0.07 0.02
ASP_S –0.14* –0.11 –0.06 –0.09
ASP_SW 0.09 0.08 0.04 0.19**
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strongest in autumn and winter (r = –0.74) and weakest
in summer, while for precipitation the relationship is
strongest in summer (r = 0.87) and weakest (close to
zero) in winter.

Elevation is also a strong determinant of climate.
Correlations between temperature and elevation are
negative as expected (r = –0.49 to –0.65), assuming a
typical atmospheric lapse rate (Table 2), while correla-
tions between precipitation and elevation are gener-
ally positive, although very weak in autumn and win-
ter, and attributable to orographic forcing (Table 3). It
is interesting to note that maximum elevation within
a wider area (generally radius of 100 km, ZX100x)
explains more of the variance than site elevation
(ELEV) for precipitation. In spring, for example, the
correlation coefficient is 0.21 with ELEV and 0.44 with
ZX100SE. Generally there is a positive correlation
between rainfall and the maximum elevation in a
wedge of given radius and direction. However, if the
direction of the wedge is to the west, the relationship is
negative in winter. The selected direction of maximum
elevation, and the sign of the association, should be
related to the direction of the prevailing winds. The
strong differences between the circulation patterns of,
on the one hand, the western and eastern parts of the
Mediterranean Basin and, on the other, winter and
summer (Meteorological Office 1962, 1964, Goosens
1985, Bartzokas 1989) help to account for the com-
plexity of the relationship between rainfall and mea-
sures of elevation.

Distance from the sea and the land/sea ratio are neg-
atively associated with temperature throughout the
year (Table 2). In winter, spring and autumn this may
be attributed to the warming influence of the sea.
However, in summer we would expect the association

to be positive. In fact, the correlations are lower in
summer but still negative. It is possible that the rela-
tionship between latitude and distance to the sea has
some influence in this case. Precipitation decreases
with distance inland (DISTANCE) in winter and
autumn, but increases in summer when convective
forcing has a greater rôle (Table 3). The correlation
coefficients are generally small, the largest being the
summer value of 0.37.

Longitude is a significant but less important predic-
tor of seasonal climate on a local scale. In winter, high
pressure and therefore cold continental air dominates
over central Europe, and hence the eastern basin of the
Mediterranean. Simultaneously, temperatures over the
western basin of the Mediterranean are moderated by
mild maritime airmasses (Wallén 1970). These zonal
differences in circulation patterns, of a warmer airmass
in the western Mediterranean and a colder airmass in
the east, most likely explain the negative relationship
with longitude (X), which is strongest in winter but also
present in spring and autumn. In summer, when the
relationship is positive, the Atlantic Ocean is relatively
cold, with the cooling influence of the Atlantic decreas-
ing eastwards in favour of warm continental air. The
positive relationship between rainfall and longitude in
all seasons is unexpected (Table 3).

For the regression models (Tables 4 & 5), outliers
with a strong influence (tested using Cooks’s Distance)
were removed and the models refined. The amount of
variance accounted for by the terrain and location vari-
ables is higher for temperature than for precipitation,
ranging from 65% in JJA (June, July, August) to 92%
in DJF (December, January, February). The models do
not perform as well for the precipitation data, with the
exception of JJA, which has an adjusted coefficient of
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Table 4. Summary multiple regression results for temperature. +: positive association, –: negative association. Variable abbreviations
are described in Table 1. LN: natural log transformation, EX: exponential transformation. Predictors are given in order of importance

Season Adjusted R2 Variables

DJF 0.92 –Y/–DISTANCE/–X/–LAN150/–LAN5/+SLOPELN/–ELEV/+DIR_W
MAM 0.85 –Y/–ELEV/+SLOPELN/–X/–ASP_NW/–LAN150EX
JJA 0.65 –Y/–ELEV/+X/+LAN20EX/+SLOPELN/–DIR_SW
SON 0.89 –Y/–ELEV/–DISTANCE/–X/–LAN150EX/+SLOPELN

Table 5. Summary multiple regression results for precipitation. +: positive association, –: negative association. Variable abbreviations
are described in Table 1. LN: natural log transformation, EX: exponential transformation. Predictors are given in order of importance

Season Adjusted R2 Variables

DJF 0.36 –ZX100W/+ZX100SE/–DISTANCE/–ASP_N/–DIR_SE/+SLOPELN/–DIR_S
MAM 0.55 +Y/+ZX100SE/–ZX100W/+ZX20W/–DISTANCE/+DIR_W/–X/+SLOPELN/–ASP_S
JJA 0.85 +Y/+ZX20W/+ZX100S/–DIR_N/+X/+DISTLN
SON 0.53 +Y/–DISTANCE/+ZX100E/–ZX100W/+ZX50S/+DIR_W/–ZX100SW/+SLOPELN
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determination (R2) of 0.85. The poorer results for pre-
cipitation are not surprising given the extreme spatial
variability inherent in precipitation data and a bias in
the distribution of precipitation sites towards lowland
locations. The powerful relationship in summer is
principally due to the influence of latitude (correlation
between rainfall and latitude in this season 0.87) and
largely reflects the fact that sites in the south of the
study area will have close to zero summer rainfall.

Latitude (Y) occurs consistently in the regression
models, and with the exception of the winter (DJF) pre-
cipitation model is the most important predictor of cli-
mate. Elevation is found to be the second (first in the
case of DJF precipitation) most important predictor
variable in 6 of the 8 models, either the elevation of the
grid cell (ELEV) for temperature or the maximum ele-
vation within a wedge of some radius and direction
(ZXx) for precipitation. The most useful radius appears
to be 100 km in either a southerly, south-easterly, or
easterly direction (ZX100S, ZX100SE, ZX100E).

A measure of maritime influence greatly improves
the fit of the models, in agreement with the results of
Lennon & Turner (1995), and illustrates the consider-
able influence of the sea on the Mediterranean cli-
mate. Distance from the sea (DISTANCE) appears in
the regression equations for autumn and winter tem-
peratures. In both cases, greater distances are associ-
ated with lower temperatures, as expected in these
seasons. Similarly, an increase in the land/sea ratio is
associated with a decrease in temperature in all sea-
sons except summer. Distance to the nearest coastline
is included in all precipitation models, but is a more
powerful indicator of autumn and winter precipitation
(respectively the second and third variable entered).

Longitude, direction to the nearest coast, aspect, and
slope are secondary predictors of climate, but can be
important in particular seasons. Longitude (X) is in-
cluded as a predictor of temperature for every season
(entered either as the third or fourth variable), but for
precipitation is only included in spring and summer as
a minor predictor.

The natural logarithm of slope is included in 7 of the
models. Aspect is a more significant predictor in the
winter and spring precipitation models than in the
temperature models. Land sloping to the north or south
is drier in winter and spring. The direction to the near-
est coast has more significance in the precipitation
models. In essence, rainfall is higher if the nearest
coast lies between 247° and 292°, the direction of the
prevailing wind for western parts of the Mediter-
ranean Basin between mid-October and mid-May
(Wallén 1970).

The precipitation regression models are generally
constructed using a higher number of explanatory
variables than the temperature regression models.

This complexity may be in part a consequence of the
smaller-scale systems governing spatial patterns of
precipitation (Corte-Real et al. 1995).

It might be expected that a model derived using
observational data from a more geographically rest-
ricted area, e.g. Iberia, would generate more accurate
results than a more general model for the Mediter-
ranean Basin. For example, within a single season the
direction of the prevailing winds varies over the pre-
sent domain, and therefore the impact of variables
such as direction to the nearest coast, and direction of
areas of high elevation, will also vary across the do-
main. This being the case, non-linearities in the rela-
tionships between the geographical predictor vari-
ables and the climate predictands must exist in this
geographically complex region, which cannot be prop-
erly modelled by linear regression equations. It is per-
haps not surprising that the variables selected by the
stepwise procedures tend to be those which vary in the
2 spatial dimensions of the domain, either smoothly
(e.g. latitude and longitude) or not at all (e.g. elevation).

5. REFINING THE REGRESSION MODEL USING
GEOSTATISTICS

The KRIGING command in ARC/INFO was used to
generate variograms and thus kriged surfaces of the
temperature and precipitation residuals. The sample
variogram was used to select the ‘best’ variogram
model. Where the choice of method was not immedi-
ately apparent, the residuals were kriged using several
apparently reasonable kriging models, and the most
appropriate method was then selected on the basis of
the RMSE calculated for the validation sample.

The variograms computed from the regression model
residuals, for each season and climate variable, re-
vealed smaller values of semi-variance for shorter dis-
tances between pairs of sample input points (the lags).
This suggests that the climate residuals are more simi-
lar for stations located closer together than for those
stations further apart. Fig. 3 shows the sample vari-
ogram generated for summer temperatures. There is
evidence of a positive correlation between semi-vari-
ance and separating distances up to a range of approx-
imately 80 to 100 dm (160 to 200 km). The range
defines the limit of spatial dependence, and is indi-
cated by the point at which the variogram rises linearly
to its upper boundary (sill). At distances greater than
the range there is no discernible spatial correlation in
the residuals. Both Gaussian and spherical methods of
estimated semi-variance seem to provide a reasonable
fit to the sample data. The experimental variograms
did not reveal a gently parabolic concave-upward
shape near the origin, which would have indicated the
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presence of locally changing linear drift (Journal &
Rossi 1989, ESRI 1997). Drift is a systematic change in
z value, here the residuals, in a particular direction.
Ordinary kriging was therefore used (as opposed to
universal kriging) since the variogram appeared to
be free of any structural component (i.e. drift or local
trends), and it can be assumed that the variance de-
pends only on the distance between points.

The range found to be most appropriate for fitting
the temperature residuals was greater than that for
the precipitation residuals by an average distance of
190 km. This implies that spatial dependence exists
over a wider area for temperature than for precipita-
tion. This is in agreement with the results of Corte-
Real et al. (1995), who found that precipitation in the
Mediterranean, being governed by smaller-scale sys-
tems, is less coherent in space than temperature.

The kriging variance surfaces produced can be used
to assign a degree of certainty to the kriged climate
surfaces. Lower values indicate a higher degree of con-
fidence in the interpolated residual field, although this
also depends on the accuracy of the variogram model.
Table 6 suggests that more certainty can be attached to
the interpolated autumn temperature surface (mean
kriging variance of 0.1°C2) than the summer tempera-
ture surface (mean kriging variance of 1.8°C2). In con-
trast, a higher degree of confidence can be attributed

to the interpolated summer precipitation surface (mean
kriging variance of 11 mm2) than the winter precipita-
tion surface (mean kriging variance of 804 mm2). The
spatial pattern in the variance for spring (MAM) pre-
cipitation is shown in Fig. 4, and is typical of that for all
climate surfaces generated. Kriging variance is higher
(i.e. lower certainty) in central Spain, where there are
few climate stations, and around the edges of the
domain beyond which there are no stations from which
to interpolate.

6. VALIDATION OF THE ‘OBSERVATION’
SURFACES

The ‘observation’ surfaces for each climate variable
were generated using 2 methods: predicting the cli-
mate at every point in the surface using (1) regres-
sion alone, and (2) regression followed by kriging of
residuals. Then, for the locations of the validation set,
the predicted values of temperature and precipitation
were extracted for comparison with observations.
The results of the validation are shown for the ‘best’
interpolation model from each method in Tables 7 & 8.
Overall, validation reveals the temperature surfaces
to be more accurate than the precipitation surfaces,
although accuracy varies by season and by method
of generation. After kriging of residuals, the RMSE
for temperature ranges from approximately 0.8 (DJF)
to 1.4°C (JJA). Values of R2 show a seasonal pattern
similar to the RMSE, varying from 0.87 for summer to
0.97 for winter. Kriging the residuals improves the
RMSE in all seasons except spring (MAM). The
greatest improvement is apparent in summer (JJA),
when kriging reduces the RMSE by 0.37°C. As
measured by R2, the improvement varies from an
increase of 0.02 in spring to an increase of 0.11 in
summer.

There seems to be greater seasonal variability in the
accuracy of the precipitation surfaces (Table 8). After
kriging, the RMSE varies from approximately 4 (JJA)
to 27 mm (DJF). Values of R2 display a seasonal varia-
tion from 0.46 for autumn to 0.94 for summer. In agree-
ment with the temperature validation, kriging the
residuals improves the RMSE and R2 in all seasons.
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Fig. 3. Sample variogram for spring temperature (°C2). The fit 
uses a Gaussian model

Table 6. Descriptive statistics for the kriging variance surfaces

Temperature (°C2) Precipitation (mm2)
DJF MAM JJA SON DJF MAM JJA SON

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum 1.0 0.8 2.6 0.2 2064.8 435.2 23.3 841.1
Mean 0.4 0.4 1.8 0.1 804.0 304.2 11.3 166.5
Standard deviation 0.11 0.05 0.16 0.02 343.84 68.88 5.23 109.78
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The greatest improvement is apparent in winter, when
the RMSE decreases from 35.47 to 27.10 mm (a reduc-
tion of 23.6%), and R2 increases by 0.35.

Expected values (as predicted by the terrain-climate
model) were plotted against observed values for the
validation sample. The examples for the winter season
are shown in Fig. 5. For temperature, the sample points
cluster closely along the diagonal. However, the sea-
sonal precipitation validations were less successful,
with greater dispersion from the diagonal. The only
exception is for summer precipitation (not shown).

7. TERRAIN-INTERPOLATED CLIMATE SURFACES

The spatial descriptive statistics (minimum, mean,
maximum and standard deviation) shown in Table 9
are computed for each climate surface on a cell-by-cell
basis. Mean monthly temperatures range from 5.3°C in
winter (DJF) to 21.3°C in summer (JJA), with a spatial
variance which is greatest in DJF.

Fig. 6 shows the high-resolution temperature sur-
faces for each season generated by estimating the tem-
perature for each cell (using the terrain regression
model) and subtracting the kriged residuals from the
regression model. Mountainous areas are clearly de-
picted due to the strong negative relationship between
elevation and temperature. The Pyrennees, for ex-
ample, are shown to be considerably colder than the
surrounding lower elevation cells. This altitudinal tem-
perature gradient is superimposed on a large-scale
latitudinal gradient with temperatures decreasing
northwards.

Mean monthly precipitation for the surfaces ranges
from 34.7 mm in JJA to 74.5 mm in DJF (Table 9). Sim-
ilar to the temperature surfaces, the spatial variance is
greatest in DJF (standard deviation of 39.1 mm). The
most prominent spatial patterns of precipitation in the
Mediterranean Basin appear to be similar for the
autumn, winter and spring surfaces (Fig. 7). Precipita-
tion is greatest along western coasts and is lowest in
eastern Spain, northern Africa (approximately 50 km
inland), and the interior of Turkey and Romania (i.e.
inland from the influence of moisture-laden westerlies)
(Fig. 7). This west-east gradient (within each land-
mass) is most apparent in autumn and winter. A posi-
tive relationship with elevation is also clear with, for
example, higher rainfall in the Pyrenees, Cordillera
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Table 7. Validation of the observed temperature values (1952 
to 1989). RMSE: root mean square error

Season Method 1: Method 2:
Regression Regression + kriging

RMSE (°C) R2 RMSE (°C) R2

DJF 1.16 0.94 0.80 0.97
MAM 1.19 0.90 1.21 0.92
JJA 1.76 0.76 1.39 0.87
SON 1.26 0.91 0.99 0.95

Fig. 4. Estimated kriging variance for interpolated MAM precipitation surface (mm2). The lower the variance, the
lighter the shade, and the greater the confidence that can be placed in the interpolated surface. Kriging variance 

is lower where the density of climate observations is higher

Table 8. Validation of the observed precipitation values (1952 
to 1989)

Season Method 1: Method 2:
Regression Regression + kriging

RMSE (mm) R2 RMSE (mm) R2

DJF 35.47 0.16 27.10 0.51
MAM 16.79 0.24 13.61 0.50
JJA 7.52 0.82 4.39 0.94
SON 21.05 0.29 19.64 0.46
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Cantabrica and Cordillera Central in Spain, the south-
ern Italian Alps and the Apeninnes. Summer rainfall
displays a strong latitudinal gradient, increasing north-
wards, and superimposed on this pattern is a relation-
ship with elevation which is more moderate than in the
other 3 seasons but which can be seen, for example, in
an increase in precipitation with altitude in the Pyre-
nees. Relative to the summer surface, the large-scale
latitudinal gradient is weaker in spring and autumn
and non-existent in winter, when broad-scale eleva-
tion patterns are more important in determining pre-
cipitation.

8. MODEL LIMITATIONS AND FUTURE RESEARCH

A GIS-based technique has been outlined for gener-
ating seasonal temperature and precipitation baseline
climatologies at a high spatial resolution. This approach
involves regression using terrain variables as predictors
followed by kriging of the residuals. There are certain
limitations to the technique. (1) The terrain variables
are all derived from a DEM which is known to contain
errors. The estimated absolute vertical accuracy of the
DEM (at 90% confidence) is 30 m linear error, or a
RMSE of 18 m (assuming a Gaussian distribution with a
mean of zero) (DMA 1986). (2) The generation of terrain
variables from the DEM is another source of error
which varies geographically. Florinsky (1998) found
that errors for DEM-derived local topographic variables
(gradient, aspect, horizontal and vertical landsurface
curvatures) are typically highest for flat areas.

Two main limitations are noted in the selection of
candidate variables for regression: (1) The relation-
ships between climate and terrain variables may vary
under different synoptic situations (see Laughlin &
Kalma 1987). For example, lapse rates vary with cloud
cover and humidity, which are synoptically driven. (2)
Several terrain variables have not been included in the
analysis which are expected to have an influence on
the spatial distribution of temperature and precipita-
tion, e.g. landcover and proximity to large bodies of
freshwater.

There are also potential areas of weakness in the
kriging component of the algorithm. If the assumptions
required to krige a surface are fully met, then kriging
by definition will be the best linear unbiased predictor
(Weber & Englund 1994, Cornford 1999). However, the
assumption of stationarity (i.e. that the same pattern of
variation can be observed at all locations on the sur-
face) is rarely met in reality (Fedorov 1989). To test this
assumption, the mean and variance of the residuals in
blocks of approximately 600 km (roughly equivalent to
the range of the variogram plots) were considered.
These were found to be broadly similar although there
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Fig. 5. Scatterplots of observed and expected values for
the validation sample. (a) DJF temperature model; (b) DJF 

precipitation model

Table 9. Basin-wide descriptive statistics for the high-resolu-
tion climate fields

Mean monthly Mean monthly
temperature (°C) precipitation (mm)

Min. Max. Mean SD Min. Max. Mean SD

DJF –9.9 15.2 5.3 3.6 0.0 272.7 74.5 39.1
MAM –4.9 18.3 11.6 2.4 1.9 166.0 57.3 19.8
JJA 5.6 27.7 21.3 2.4 0.0 107.2 34.7 21.8
SON –1.4 21.6 14.0 2.8 0.0 232.5 66.5 30.2
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Fig. 6. Gridded baseline temperature surfaces, resolution 0.5 × 0.5 dm (0.5 decimal min 
is approximately 1 km) 
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Fig. 7. Gridded baseline precipitation surfaces, resolution 0.5 × 0.5 dm (0.5 decimal min is 
approximately 1 km)
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were notable increases in the means of the residuals in
blocks with a high proportion of sea cells as opposed to
land cells. In addition, the accuracy of the kriged sur-
face depends to some extent on the density of the net-
work of climate stations. Plots of the semi-variance
revealed that there were several areas (particularly
central Spain) where more climate sites would improve
the accuracy of the interpolation.

Despite the limitations outlined above, a GIS-based
approach has considerable potential, especially given
the complex land-sea configuration, and the range of
topography, characteristic of the Mediterranean. The
use of terrain variables to predict climate point data
provides a means of constructing a climate surface
with a physical basis. Moreover, the results of the
validation provide clear evidence of the usefulness of
kriging in the spatial interpolation of climate variables.

With respect to future developments of the method,
construction of regional regression models may prove
useful, since there are well-recognised differences in
the circulation patterns for western and eastern parts
of the Mediterranean Basin (Wallén 1970, Flocas 1984,
Reddaway & Bigg 1996). Related to this, the interpola-
tion of the regression residuals may be improved if the
semi-variogram is estimated using a moving-window
approach. A further possibility for future research is to
use average seasonal synoptic circulation patterns as
predictors in the regression model, in addition to the
terrain-based explanatory variables. Further research
is required to assess the transferability of the GIS-
based interpolation method between regions.

9. CONCLUSIONS

This paper investigates the application of a GIS to
construct DEM-derived terrain variables which are
subsequently used to interpolate climate data for every
0.5 by 0.5 dm grid cell within the Mediterranean Basin.
The results presented suggest that regression model
building using terrain variables, followed by kriging
of the regression residuals, is a useful tool for inter-
polating seasonal temperature and precipitation data.
The use of geographical and topographical predictors
provides an estimation of the local spatial structure
of climate which is physically plausible. Interpolation
results can be transferred to any grid point in the
domain for which the characteristics of the predictors
variables are known. Latitude and elevation are found
to be the most powerful predictors of local climate. A
measure of maritime influence also improves the mo-
del fit, a reflection of the importance of oceanic effects
in the Mediterranean region. Validation demonstrates
that kriging the residuals improves the RMSE for 7 out
of the 8 models developed.

The methodology for generating high-resolution cli-
mate surfaces has potential application to statistical
downscaling of general circulation model (GCM) out-
put. Methods used for downscaling are strongly influ-
enced by the systematic errors of GCMs. The use of a
technique which involves both deterministic (terrain
and location parameterisation) and stochastic (interpo-
lation of spatially random variables) components may
contribute to the reduction of this systematic error.
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