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ABSTRACT: Synoptic-scale air flow variability over the United Kingdom is measured on a daily time
scale by following previous work to define 3 indices: geostrophic flow strength, vorticity and direction.
Comparing the observed distribution of air flow index values with those determined from a simulation
with the Hadley Centre’s global climate model (HadCM?2) identifies some minor systematic biases in
the model’s synoptic circulation but demonstrates that the major features are well simulated. The rela-
tionship between temperature and precipitation from parts of the United Kingdom and these air flow
indices (either singly or in pairs) is found to be very similar in both the observations and model output;
indeed the simulated and observed precipitation relationships are found to be almost interchangeable
in a quantitative sense. These encouraging results imply that some reliability can be assumed for sin-
gle grid-box and regional output from this climate model; this applies only to those grid boxes evalu-
ated here (which do not have high or complex orography), only to the portion of variability that is con-
trolled by synoptic air flow variations, and only to those surface variables considered here (temperature

and precipitation).
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1. INTRODUCTION

Local weather and its statistics (i.e. local climate) are
controlled by a combination of large-scale forcing,
regional- and synoptic-scale atmospheric circulation
(and moisture/temperature characteristics) and local or
site characteristics. Interactions occur between these
scales. With the exception of the seasonal cycle, vari-
ability on time scales from about 1 d to about 5 yr can-
not be explained without consideration of variations in
the synoptic climate. The reliability of the local climate
(at the grid-box scale, for example) simulated by global
climate models (GCMs) will depend to a considerable
extent, therefore, on how well such models capture the
relationship between synoptic circulation and local cli-
mate. These relationships are currently the subject of
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much interest because of their use in the statistical
downscaling (see, e.g., Enke & Spekat 1997, Wilby et
al. 1998, and references therein) of information from
the synoptic circulation to generate small-scale wea-
ther (e.g. station or catchment precipitation and/or
temperature).

In the present paper, however, our interest is in eval-
uating the reliability of GCMs (in particular, the
HadCM2 GCM of the Hadley Centre, although the
methodology could equally be applied to other GCMs).
This simplifies the approach somewhat, because we do
not necessarily need to identify the method that cap-
tures the circulation-climate relationship fully; pro-
vided that we have a method that captures most of this
relationship, all that is required is that we apply the
same method to both observations and model output
(i.e. a like-with-like comparison). The method we use
is that of Conway et al. (1996), computing values of 3
air flow indices for each day and then averaging the
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Fig. 1. (a) Location of sea level pressure points (x) used to
compute air flow indices, location of the region (shaded) for
which the observed Central England Temperature (CET) is
representative, and locations of the observed regional precip-
itation timeseries (delineated by thick lines; land only).
SWS+NWE and CEE+SEE are averages of the southwest
Scotland and northwest England, and central/eastern Eng-
land and southeast England, regional precipitation series,
respectively. (b) Location of HadCM2 land grid boxes (lines),
the 2 boxes (shaded) from which simulated daily precipitation
(P) is taken, and the box from which simulated daily mean
temperature (T) is taken

temperature and precipitation characteristics of all
days that fall into particular air flow index ranges.
Other downscaling approaches (Wilby et al. 1998)
could be used for GCM validation, although some lack
the physical interpretability that the method used here
provides.

The application of downscaling techniques to model
evaluation has previously been performed at the
monthly and seasonal time scales (Noguer 1994,
Busuioc et al. 1999), but the focus here is the daily time
scale and the single grid-box spatial scale (see also
Wilby & Wigley 1999). This kind of study does not
directly help to explain model performance, but it does
identify regimes that exhibit systematic errors in the
performance of model physics, and which therefore
should be made the subject of model improvement. It
also provides a more stringent test of the model than a
simple evaluation of mean climate, since it tests the
model under a wide range of conditions. Osborn &
Hulme (1998) showed that the atmospheric component
of HadCM2 performs well in comparison with other
models in terms of its simulation of daily precipitation
statistics over Europe.

A general recommendation, particularly from the
modelling community, is that output from single model
grid boxes should not be used in climate analysis be-
cause it is considered to be less reliable than the simu-
lation of larger-scale features. Nevertheless, grid-box
output is commonly used, which is why this paper sets
out and applies a methodology for evaluating varia-
tions in model output at these small spatial scales.
Other studies (e.g. Mearns et al. 1990, Palutikof et al.
1997) have highlighted some of the problems with
using single grid-box data from climate models.

2. MODEL AND OBSERVED DATASETS

Our observed daily data for the United Kingdom
(UK) consisted of 3 variables: daily mean temperature,
daily total precipitation and daily mean sea level pres-
sure (SLP). The same 3 daily variables were taken from
a control simulation of HadCM2 (Johns et al. 1997),
forced by constant radiative forcing applicable to pre-
sent-day levels of greenhouse gases (although with
no anthropogenic sulphate aerosol forcing). From this
control integration, 124 yr of complete daily data were
available.

The observed temperatures are from the 1881 to
1993 period of the Central England Temperature
(CET) record of Parker et al. (1992), representative of
the shaded area in Fig. 1a. These were compared with
the simulated temperatures from the HadCM2 grid
box covering central and eastern England (Fig. 1b).
The long-term mean seasonal cycles (Fig. 2) were com-
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puted on a daily basis; the cold bias in the 20

spring and summer of the simulation is i

Observed 4
HADCM2 control

clear (see also Table 1). Each seasonal
cycle was smoothed with a 21 d running
mean (Fig. 2), and then subtracted from its
daily temperature timeseries. By subtract-
ing the observed seasonal cycle from the
observed data and the simulated cycle
from the simulated data, we removed any
bias in the mean simulation so that we
could assess the influence of air flow on
departures of temperature (anomalies)
from the norm.

It is important, particularly for daily pre-

Temperature (°C)

cipitation (Osborn & Hulme 1997), that KA

area-mean rather than single-site observa- H
tions are used for comparison with the grid- r

box precipitation (an area average) simu- 1
lated by climate models. Therefore, the 2
grid-box simulated precipitation timeseries
(Fig. 1b) were evaluated by comparison
with regional observed precipitation time-
series (Fig. 1a). The focus was on the cen-
tral and eastern England region, where the
observed timeseries is an average of the SEE and CEE
timeseries of Gregory et al. (1991, and references
therein), each being a combination of 7 station time-
series covering the period 1931 to 1983. Some results
from the comparison between the more northern
model grid box and the more northern region (an aver-
age of the NWE and SS regions of Gregory et al. 1991)
are also presented, since orography is more important
there (particularly for the observations, but the model
elevation is also higher, being 165 m compared to 73 m
for the central/eastern England grid box).

No seasonal cycles were removed from the precipita-
tion timeseries (see Table 2 for a comparison of
observed and simulated seasonal means). Compared
to observations over central and eastern England,
HadCM?2 is wetter and has too many wet days (except
in autumn), simulates lower wet day amounts in
autumn, and fails to capture the summer maximum
in intense events. Over the more northern region,
HadCM2 simulates the mean precipitation well in
spring and summer, but is drier in winter and particu-
larly autumn.

The HadCM2 daily SLP was regridded from its 2.5°
latitude by 3.75° longitude grid onto the same 5° by 10°
grid that the observed SLP is available on (Jones 1987).
Then, 16 grid-point values (Fig. 1a) were used to cal-
culate 3 air flow indices: geostrophic flow strength, F,
with units hPa per 10° latitude at 55°N (each unit is
equivalent to 1.2 knots), geostrophic vorticity, Z, with
units hPa per 10° latitude at 55°N (100 units being
equivalent to 0.46 times the Coriolis parameter at

100 200 300 365
Day of the year

Fig. 2. Seasonal cycle of observed and simulated daily mean temperatures,
computed on a daily basis and also smoothed with 21 d running means,

from the central/eastern region of England

55°N), and geostrophic flow direction, D, with 0° and
360° representing flow from the north, 90° from the
east, 180° from the south, etc. Jenkinson & Collison
(1977) and Jones et al. (1993) describe and evaluate the
basis for these calculations. The small artificial down-
ward trend in the HadCM2 simulated SLP (see Appen-
dix A of Osborn et al. 1999) does not affect the results
of the present study because all the air flow indices are
computed from pressure differences rather than from
absolute pressure values.

3. SIMULATION OF DAILY AIR FLOW
VARIABILITY

The observed distributions of air flow index values
for the UK have been shown before on an annual basis
(Conway et al. 1996), but we extend their work by
showing the seasonal distributions and comparing
them with the distributions simulated by HadCM2
(Fig. 3). In this, and subsequent figures, each index is
divided into 20 bins (defined in the legend of Fig. 3)
and all days with an index value that falls within a par-
ticular bin (range) are used to identify the frequency of
occurrence and the climate characteristics of those
days. The shading in Fig. 3 (and Figs. 4 to 7) shows the
range into which the simulated results could fall and
still be statistically indistinguishable from the observed
results with 90% confidence—i.e. shading is between
the 5 and 95% cutoff values. Appendix 1 gives details
of their estimation. For Fig. 3, each simulated distribu-
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Fig. 3. Frequency with which daily air flow indices fall into particular bins on a seasonal basis (DJF = winter, MAM = spring,

JJA = summer, SON = autumn). Each index is divided into 20 bins, with open-ended extreme bins. Flow strength: bin size = 2;

vorticity: bin size = 6.5; flow direction: bin size = 18°. Thick line: HadCMZ2; thin line: observations (shading: 90% interval for
comparing the simulated values with those observed—see Appendix 1)
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tion can also be compared with the observed distribu-
tion via a ¥? test; results indicate that all distributions
are significantly different from those observed, with
the exception of flow strength in summer. This is con-
sistent with the confidence intervals shown in Fig. 3,
since summer flow strength is the only index for which
all simulated values lie within the confidence intervals.

The seasonal shift in the flow strength distribution
(skewed towards weaker flow in summer and stronger
flow in winter) is well captured by HadCM2. The
model simulation, however, significantly overestimates
the frequency of moderate flows and underestimates
the high-flow-strength end of the distribution. The sea-
sonally changing shape of the vorticity distribution is
also well captured, but the simulation is not skewed
towards anticyclonic (negative vorticity) conditions as
much as is observed. The predominance of observed
flow between southwesterly and westerly directions in
winter, summer and autumn is clear from Fig. 3. The
model captures this pattern too, particularly so in win-
ter and autumn. The weakest distribution is of flow
direction in spring, and this is simulated least well by
HadCM2.

Hulme et al. (1993) evaluated the simulation of
weather types (derived objectively from the air flow
indices used here) by an earlier climate model (UKHI)
of the UK Meterological Office. The UKHI model
underestimated anticyclonic types and overestimated
cyclonic types in all seasons except autumn. As noted
above, a similar error in the vorticity distribution is pre-
sent in HadCM2, though to a much smaller degree
compared with the biases in UKHI. The UKHI biases in
directional types noted by Hulme et al. (1993) have
mainly been removed, except for the overestimated
frequency of spring easterlies, at the expense of west-
erlies and northwesterlies. This spring directional bias
is at least as large in HadCM2 as it was in UKHI, and
still occurs even if all weak flow days (whose flow
direction is less well defined) are excluded. We note
that UKHI already showed a realistic distribution of
winter wind direction (Gregory & Mitchell 1995) and
this has been maintained in HadCM2 (in terms of
geostrophic flow direction).

4. INFLUENCE OF AIR FLOW ON TEMPERATURE

Gregory & Mitchell (1995) evaluated the depen-
dence of simulated temperature over southern Eng-
land on wind direction for the winter simulation of the
UKHI model. Here, we repeat this analysis for the
HadCM2 model, and extend it to all seasons and to the
3 air flow indices (Fig. 4 shows the mean temperature
anomalies of all days that fall into each air flow index
bin). Flow strength and vorticity are strong controllers

of temperature during winter, with the still, clear air
related to weak flow and/or strong anticyclonicity
leading to radiative cooling and cold daily mean tem-
peratures. The winter vorticity relationship is too
strongly simulated, a bias that worsens during spring.
With that exception, the model simulation is very good,
even capturing the more subtle summer relationships.

The central England temperature anomalies, how-
ever, are most strongly dependent upon flow direction,
with a seasonal shift between warm (cold) winter west-
erlies (easterlies) and cold (warm) summer westerlies
(easterlies). The HadCM2 simulation captures the
shape and seasonality well (Fig. 4). The range of mean
anomalies is, however, slightly too strong in all sea-
sons, but a large improvement over UKHI, where the
winter range was double that observed (Gregory &
Mitchell 1995). In that model, the enhanced range was
caused by easterlies that were too cold, which then
drove down the simulated mean winter temperature
over England to more than 6°C colder than observed.

While the mean errors are much smaller in HadCM2
(Table 1) than in UKHI (Gregory & Mitchell 1995), it is
still of interest to use our results to diagnose the source
of the remaining model biases. The curves in Fig. 4 are
all computed from the mean of the temperature anom-
alies of days with particular air flow index values, with
the mean seasonal cycles of temperature having first
been removed. Had the means not been subtracted
before the analysis, or if the observed means had been
subtracted from both observed and simulated temper-
atures, the effect would have been to move the simu-
lated curves in Fig. 4 down by about 1.2°C in spring
and summer, down by 0.3°C in autumn and up by
0.3°C in winter relative to the observational results
(see Table 1). The largest apparent model errors are in

Table 1. Seasonal mean temperatures (°C) observed over cen-
tral England, and simulated over central and eastern Eng-
land. Observed values are from the 1881 to 1993 period; sim-
ulated values come from the HadCM2 control integration.
The actual model error is given, together with the implied
errors due to biases (see text for bias calculation), in the sim-
ulated univariate and bivariate distributions of air flow index
values (F = flow strength, Z = vorticity, D = flow direction)

DJF MAM JJA SON
Observed 4.06 8.28 15.28 9.90
HadCM2 4.37 7.12 14.06 9.63
‘Error’
(Model-0Obs) +0.31 -1.16 -1.22 -0.27
F bias -0.35 -0.09 -0.05 -0.06
Z bias +0.38 +0.30 -0.06 +0.11
D bias -0.14 -0.06 -0.08 -0.03
F, Z bias +0.03 +0.19 -0.06 +0.03
F, D bias -0.36 -0.15 -0.09 -0.08
Z, D bias +0.31 +0.17 -0.13 +0.08
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Fig. 4. Mean temperature anomaly of days whose air flow indices fall into particular bins, on a seasonal basis and for the 3 indices.
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spring and summer, when the simulated temperature
is too cold (Table 1); shifting the relationships shown in
Fig. 4 to include this bias would show that it is spring
and summer northerlies that are particularly too cold in
HadCM2.

In addition to errors in the temperature characteris-
tics associated with flow properties (Fig. 4), we have
already identified some biases in the frequency with
which some flow properties occur (Fig. 3). To assess
the impact on mean temperature of the latter biases,
we can combine the simulated temperature-flow rela-
tionship with the observed frequency of air flow index
values to obtain the implied temperature bias (by mul-
tiplication of the temperature anomaly associated with
each bin by the frequency of occurrence of the bin, fol-
lowed by summation over all the air flow index bins).
The results depend on which season and which air
flow variable is used, and are summarised in Table 1.
For example, consider vorticity: in all seasons, except
summer, positive vorticity is associated with anom-
alously warm temperatures in HadCMZ2; the positive
skew of the HadCM2 vorticity distribution relative to
observations (Fig. 3) thus implies temperatures in win-
ter, spring and autumn (Z bias in Table 1) are warmer
than would have occurred with the observed vorticity
distributions. The vorticity bias might, therefore, partly
cause the HadCM2 warm bias in winter, but cannot
explain the mean temperature errors of the other sea-
sons. We say ‘might’, because the temperature effects
implied by the biases in the flow strength distributions
(Fig. 3) are of opposite sign to those implied by the vor-
ticity biases (Table 1), except in summer. Whether the
different effects can simply be summed depends upon
whether the different air flow indices are independent
of each other in the determination of temperature. This
is considered further in Section 6.

Finally, note that the air flow index with the most
biased distribution is the flow direction in spring

(Fig. 3). This large error does not imply a large mean
temperature bias (Table 1, D bias), however, due to
cancellation of opposite temperature anomalies and
because the frequencies of the warmest (southerly)
and coldest (northerly) flows are well simulated (see
Figs. 3 & 4).

5. INFLUENCE OF AIR FLOW ON PRECIPITATION

The temperature analysis was repeated for daily pre-
cipitation totals (Fig. 5). The seasonal means were not
removed prior to this analysis because the seasonal
cycle is fairly weak and interpretation of the results is
not hindered. It should be borne in mind that differ-
ences in the seasonal means between observations and
model (Table 2) will be apparent in the circulation-pre-
cipitation results. As expected (from the results of, e.g.,
Conway et al. 1996), vorticity is the strongest control
on precipitation over central and eastern England, in
all seasons and in the simulated data too (Fig. 5). The
reduction in mean precipitation with increasingly neg-
ative vorticity is well captured by HadCM2; it is at the
high-vorticity end that model errors are apparent, with
less precipitation than observed on winter and autumn
days with high vorticity, and slightly too much in sum-
mer.

The weaker dependencies on flow strength and
direction are well captured in the model simulation,
once mean errors (Table 2) are ignhored. The only ex-
ception to this is that wettest spring and summer con-
ditions are associated with easterlies in the observed
record, but with southerlies in HadCM2.

The northwest England and southwest Scotland
regional observed and grid-box simulated precipita-
tion provides an interesting comparison. Orography is
more important here, and the region is also more cen-
tral within the group of SLP points used to compute the

Table 2. Seasonal mean precipitation (mm d-1), probability of a wet day (at least 1 mm), and mean precipitation amount on days
with at least 0.1 or 5 mm, as observed and as simulated over central/eastern England (C&EE) and over northwest England/south-
west Scotland (NWE&SWS). Observed values are from the 1931 to 1983 period; simulated values come from the HadCM2 control

integration
Region Dataset Statistic DJF MAM JIA SON
C&EE Observed Mean 1.85 1.57 1.79 2.05
HadCM2 Mean 2.33 1.95 221 1.89
Observed P(wet) 0.41 0.37 0.37 0.40
HadCM2 P(wet) 0.46 0.47 0.49 0.38
Observed Mean (>0.1) 2.65 2.58 3.038 3.11
HadCM2 Mean (>0.1) 2.68 2.44 3.05 2.54
Observed Mean (>5) 8.23 8.17 9.10 9.21
HadCM2 Mean (>5) 8.80 7.78 7.58 8.78
NWE&SWS Observed Mean 3.59 2.50 2.81 4.11
HadCM2 Mean 2.98 2.39 2.90 2.82
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air flow indices (Fig. 1). Vorticity is still the key con-
trolling factor on precipitation for much of the year
(Fig. 6), and the model still underestimates the mean
precipitation on winter and autumn days with positive
vorticity (indeed, the bias is somewhat worse than it
was for the central and eastern region of England). For
the more northern region, however, both flow strength
and flow direction have increased in importance, par-
ticularly in winter and autumn (as previously noted by
Wigley & Jones 1987). Wet and windy go together,
with the relationship somewhat stronger in the ob-
served data (Fig. 6), even though gauges may under-
estimate rainfall in windy weather. In the observations,
southwesterlies are associated with the greatest pre-
cipitation in all seasons, while HadCM2 has souther-
lies as being the wettest.

Returning now to the central and eastern region of
England, we break the mixed-type precipitation distri-
bution into its constituents: What is the probability of
precipitation occurring, how much falls on a wet day,
and how do these variables depend upon the synoptic
flow conditions? The seasonal mean values are given
in Table 2, while the relationships with the air flow
indices are given in Fig. 7 (for the probability of at least
1 mm falling on a particular day) and Fig. 8 (for the
mean amounts falling on those days that had at least
0.1 mm or at least 5 mm of precipitation).

Comparing Figs. 5 and 7, it is immediately obvious
that the probability of a wet day shows a very similar
dependence on air flow as the mean precipitation does,
and further that the HadCM2 biases show a very simi-
lar structure in both figures. It is the probability of a
wet day, therefore, that captures most of the air flow
influence on mean precipitation, with the mean wet
day amounts showing much less dependence on syn-
optic air flow (Fig. 8). The mean wet day amount of
almost all wet days (>0.1 mm) shows some depen-
dence on air flow, particularly vorticity. Increasing the
threshold weakens the relationships, so that when only
days with at least 5 mm of precipitation are considered
the mean amount is insensitive to flow strength and
vorticity and only slightly sensitive to flow direction
(Fig. 8, upper curves in each panel).

Despite the weaker relationships with wet day
amount, the HadCM2 model exhibits a structure that is
very similar to that observed—in particular, note the
improvement in the dependence of wet day amount on
flow direction (Fig. 8) compared to the mean precipita-
tion (Fig. 5) or probability of a wet day (Fig. 7) depen-
dencies. Taking the more extreme days (>5 mm), the
underestimate by HadCM?2 of the high intensity part of
the precipitation distribution in summer is clear (Fig. 8,
Table 2). The difference between the simulated and
observed wet day amounts on these very wet summer
days appears to be less for positive vorticity days than

for negative vorticity days (Fig. 8), perhaps indicating
that intense summer precipitation originating from
frontal mechanisms is better simulated than that origi-
nating from convective mechanisms. Note that the reli-
ability of the observed spatial sampling in representing
area averages is dependent on the spatial scale of pre-
cipitation events (Osborn & Hulme 1997), perhaps arti-
ficially contributing to the enhanced amounts under
convective conditions (e.g. summer vs winter or sum-
mer anticyclonic vs cyclonic conditions). To what ex-
tent this artefact might explain differences between
observed and simulated wet day amounts (Fig. 8) is
unclear, although the results of Osborn & Hulme (1997)
suggest it will be small because 14 stations are used to
compute the regional average.

6. MULTIVARIATE CONSIDERATIONS
6.1. Quantitative comparisons

The relationships between temperature or precipita-
tion and air flow indicate the dominance of flow direc-
tion in controlling temperature (Fig. 4) and vorticity in
controlling precipitation (Fig. 5). Nevertheless, sec-
ondary variables may provide important additional
controls on local climate. Before considering multi-pre-
dictor relationships further, a method of quantifying
the skill of the different variables at explaining climate
variations is required. This would also enable a quanti-
tative comparison of the observed and simulated rela-
tionships to augment the visual comparison already
made.

The procedure is as follows: For a particular air flow
variable, its value on a particular day in the observed
(or simulated) record is used to compute (by interpola-
tion between the binned values) the mean temperature
anomaly (Fig. 4) or mean precipitation (Fig. 5) ex-
pected for that air flow value. A timeseries of tempera-
ture or precipitation driven by synoptic variability (the
‘synoptic signal’) can then be built up by repeating this
for each day of the record. A residual timeseries is
formed by subtracting this synoptic signal timeseries
from the original observed or simulated record. The
difference between the variance of the residual time-
series and the variance of the original record, ex-
pressed as a percentage of the latter variance, yields
the percent variance explained by the selected air flow
variable.

These statistics are given in the left-hand panels of
Figs. 9 & 10, for temperature and precipitation respec-
tively (precipitation results are from the central and
eastern England region). Comparing the dark grey
(observed) and light grey (simulated) bars for tempera-
ture highlights the importance of flow strength in win-
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Fig. 10. Central/eastern England precipitation variance explained by flow strength (F), vorticity (Z), flow direction (D), or 3 com-

binations of bivariate predictors [(F,Z), (F,D), (Z,D)]. Results are on a seasonal basis and for 2 time scales (left-hand column: on a

daily basis; right-hand column: evaluated following accumulation of daily values into seasonal means). ([ll) Observed data;
(J) HadCM2 output; and ([]) amount of HadCMZ2 temperature variance that the observed relationships would explain
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ter and the overestimation of the influence of vorticity
in the HadCM2 winter and spring simulations. Flow
direction is important in all seasons, as expected.

The importance of vorticity for controlling precipita-
tion shows a seasonality, with least influence observed
in summer (Fig. 10). This is not well captured by
HadCM2, which has the strongest vorticity influence
in summer and the weakest in winter. Flow strength
makes virtually no contribution, while flow direction
makes a minor contribution, particularly in the model.

The contribution to climate variability made by syn-
optic variability is enhanced when longer time scales
are considered, due in part at least to a reduced rela-
tive contribution of small-scale and site influences. The
results shown in the right-hand panels of Figs. 9 & 10
are the explained variances after the original and ‘syn-
optic signal’ daily temperature and precipitation time-
series are averaged/accumulated into seasonal means.
The interannual variation of seasonal mean tempera-
ture, excluding summer, is considerably better ex-
plained by synoptic variations than is the daily vari-
ability, particularly for flow direction. The HadCM2
simulation also exhibits this increase, although over-
estimated in spring. The seasonality in the strength of
the circulation influence on temperature at both time
scales may be due to weaker horizontal temperature
contrasts in summer and the increased amount of solar
radiation, and hence the enhanced importance of
cloud cover variations. Additional analysis is necessary
to identify alternative important predictors.

The enhanced explained variance at seasonal scales
is clear for precipitation too (Fig. 10), particularly for
vorticity. The seasonality in the observed results is
weak, with least explained variance in summer. This
remains at odds with the seasonality in the simulated
results, for which the explained variance of seasonal
means is least in winter.

Even if the dark and light grey bars have a similar
height in Figs. 9 & 10, indicating that synoptic air flow
is of similar importance in controlling daily and sea-
sonal temperature and precipitation variability in both
datasets, it does not necessarily imply that the relation-
ships between air flow and climate are correct. Visu-
ally, we have already described their similarity (with
some exceptions), but this can also be quantified. We
take the simulated sequence of air flow index values,
but use the observed relationships between air flow
and temperature (Fig. 4) or precipitation (Fig. 5) to
generate the synoptic signal timeseries for that vari-
able. This is then compared with the simulated tem-
perature or precipitation, in terms of the percent vari-
ance explained. Results of this exercise are given by
the unshaded bars in Figs. 9 & 10.

If the observed and simulated relationships between
air flow and local climate were identical, then the

white and light grey bars would be equal. The light
grey bars provide, therefore, the yardstick for compar-
ison. It is impossible for the observed relationships to
do better at generating simulated daily anomalies,
since the simulated relationships already capture the
maximum simulated climate variance at the daily time
scale. Nevertheless, for temperature (Fig. 9), the ob-
served relationships do very well at capturing the sim-
ulated temperature variations, with the exception of
vorticity in spring (which was clearly quite different in
HadCM?2 than in the observed record, Fig. 4). For sea-
sonal mean temperature anomalies, the observed rela-
tionships also perform almost as well as the simulated
ones, except in spring.

The precipitation simulation also provides a very
good match, since the observed and simulated rela-
tionships between air flow and this variable are almost
interchangeable. At the daily time scale (Fig. 10, left-
hand panels) the explained variances (light grey and
shaded bars) are quite similar for the 3 individual pre-
dictors; for seasonal means (right-hand panels) the
observed relationships explain as much or even more
of the simulated interannual variability of seasonal
precipitation totals for some seasons and air flow
indices. The main exception is the influence of flow
direction on spring precipitation, which is not very
important but nevertheless is poorly simulated (see
also Fig. 5). Fig. 10 also shows that the incorrectly sim-
ulated seasonal cycle in the precipitation variance ex-
plained by vorticity is not due to a poor circulation-pre-
cipitation link, since use of the observed relationships
gives the same result.

6.2. Bivariate predictors

Having quantified the influence of individual air flow
variables on temperature and precipitation, and how
realistic the HadCM2 simulation is, we can now con-
sider the additional explanative power attained by con-
sidering combinations of 2 air flow indices. From a
model evaluation point of view, if 2 influences are truly
independent and we have validated the model in terms
of each influence separately, then there is no need to
validate the model in terms of their combined influ-
ence. For most seasons and combinations of predictor
and predictand variables, the multi-predictor relation-
ships are very similar to what would be expected from a
simple combination of univariate (single-predictor) re-
sults. It is of interest, however, to assess whether the ex-
ceptions to this rule are also captured by the HadCM2
simulation; 3 such exceptions are described below.

Consider first the frequency distributions: these have
been computed by binning the index values, but now
each bin is defined by ranges of 2 air flow index values;
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Fig. 12. Mean temperature anomaly (°C) of days that fall in each bin for winter flow direction and flow strength. (a) Distribution
expected by combining the separate univariate observed functions; (b) the actual observed bivariate function; and (c) the
simulated bivariate function. Each index is divided into 10 equal-size bins, making 100 bins in total

for a day to fall into a particular bin, both indices have
to be within the respective ranges. The bivariate distri-
bution of vorticity and flow strength values is stretched
in the weak flow/negative vorticity to strong flow/pos-
itive vorticity direction (Fig. 11b) compared to what
would be expected (Fig. 11a) from the 2 univariate dis-
tributions (Fig. 3) under the assumption of indepen-
dence, and this stretching (i.e. dependence) is appar-
ent in all seasons (only autumn is shown). The
HadCM2 simulation exhibits this non-independence,
but to a weaker extent (Fig. 11c). Flow direction and
vorticity are independent, but the bivariate frequency
distribution for flow direction and strength values
shows differences to what would be expected from the
2 univariate distributions. In all seasons, the distri-
bution of flow strength is skewed towards weaker
flows on days with easterly flow, and skewed towards

stronger flows when the flow is from the west-south-
west. The model exhibits similar behaviour.

The influence of synoptic air flow index pairs on
temperature also shows some differences to what a lin-
ear combination of the univariate relationships would
imply. In winter, for example, westerly flow is warm,
easterly flow is cold, strong flow is warm and weak
flow is cold (Fig. 4). The temperature anomaly struc-
ture would then be that shown in Fig. 12a. In fact, the
multi-predictor structure (Fig. 12b) indicates that the
coldest mean temperatures do not occur when light
flow is combined with easterlies, but when strong flow
is combined with easterlies. The simulation shows sim-
ilar results (Fig. 12c).

Neither flow direction nor strength is a strong con-
troller of precipitation, and so the univariate relation-
ships predict that strong easterlies would be only a lit-
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tle wetter than other synoptic situations (Fig. 13a). In
fact, this region of central and eastern England is quite
wet under this combination (Fig. 13b), probably evap-
orating moisture from the North Sea to enhance pre-
cipitation. This is true in the observations for all sea-
sons, and the HadCM2 simulation captures this feature
well in winter and summer (despite the simplified
land-sea distribution and coarse resolution of the
model’s North Sea—Fig. 1b), but more weakly in
spring and autumn (the latter is shown in Fig. 13c).

The percent explained variances for temperature
(Fig. 9) indicate that the multi-predictor relationships
do capture more variance than single predictors, ex-
cept in summer at the daily time scale and autumn at
the seasonal time scale. The similarity of the white and
light grey bars in Fig. 9 demonstrates the similarity
between observed and simulated multi-predictor rela-
tionships; these are closest in summer and most differ-
ent in spring. For precipitation, the vorticity and direc-
tion bivariate function [(Z,D) in Fig. 10] explains
marginally more variance than other predictors at the
daily time scale. At seasonal time scales, variances of
the order of 50 to 65% are obtained provided that vor-
ticity is a predictor. The observed and simulated multi-
predictor relationships are still fairly interchangeable,
in that the simulated precipitation series can be repli-
cated to a similar degree whichever relationships are
used, with the exception of the (F,D) combination in
spring, summer and autumn.

In Section 4, the influence of biases in the simulated
synoptic air flow climate (Fig. 3) on the mean tempera-
ture simulated by HadCM2 were considered for the 3
air flow indices separately (Table 1). The analysis was
inconclusive due to the opposing effects of the flow
strength and vorticity biases. Using the multi-predictor
relationships, the analysis can be extended to consider

the influence of biases in the bivariate distributions of
each combination of 2 air flow indices. These results
are also shown in Table 1. The combined effect of the
flow strength and vorticity (F,Z bias) is weaker, but
vorticity is dominant. The small biases introduced by
differences in the frequency distributions of flow direc-
tion will add small negative biases to this. It would
appear, therefore, that the biases in the mean simu-
lated temperature are not due to biases in the simu-
lated synoptic circulation over the UK, although a
small contribution may be made in summer.

It would, of course, be of interest to consider the
trivariate frequency distribution of air flow index val-
ues and the trivariate influence on surface climate,
both for analysis of this bias and for model evaluation,
but the number of bins would then be so high that the
sample in each would be too low to satisfactorily deter-
mine the mean values. An alternative, not undertaken
here, would be to develop a multiple linear regression
model for each season, not using the air flow indices as
predictors (since the relationships with climate can be
non-linear), but using the temperature or precipitation
predicted by each air flow index (via the non-linear
curves in Figs. 4 & 5) as predictors.

7. SUMMARY AND DISCUSSION

An existing methodology (Conway et al. 1996) for
identifying the influence of synoptic air flow on local
climate has been applied to the evaluation of the
HadCM2 global climate model, focusing on the UK
region. The synoptic climatology over the UK is well
simulated and shows improvements over earlier ver-
sions of the UK Meteorological Office climate model.
Smaller systematic biases remain, however, with a
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poor simulation of flow direction in spring, a bias
towards too many weak/moderate flow days and too
few strong flow days, and a skew in the vorticity distri-
bution towards positive vorticity (cyclonic) days com-
pared to observations.

The influence on temperature and precipitation of
the geostrophic flow strength, direction and vorticity of
the synoptic circulation is generally well simulated.
The similarity has been evaluated both visually and
quantitatively for mean temperature and precipitation
variability, and visually for the probability of wet days
and the mean precipitation amount on wet days. For
both temperature and precipitation, a maximum of
around 20% of the daily variability can be captured by
using the air flow indices; this dramatically increases to
65% when the interannual variability of seasonal
means or totals are considered. Additional explanative
power can be obtained by considering the relationship
between temperature or precipitation and a pair of air
flow indices simultaneously. We have not, however,
considered the relationship between temperature and
precipitation (as have, for example, Buishand &
Brandsma 1999).

For precipitation, the observed and simulated rela-
tionships appear to be almost interchangeable when
quantified, despite visual differences. For tempera-
ture, using the observed relationships to predict the
simulated temperature from the simulated synoptic air
flow explains almost as much variability as the simu-
lated relationships, doing least well in spring. The dif-
ferences are not large however.

These results imply that, for temperature and precip-
itation over the UK grid boxes considered, the climate
variations generated by the HadCM2 climate model due
to synoptic variability are realistic and believable, even
at the single grid-box spatial scale (with the caveat that

we have not compared how the inter-daily variability
within a circulation class may itself vary with the air flow
characteristics). This applies to simulations of future cli-
mate too, to the extent that if a climate change comes
about solely through a change in the synoptic circulation
climatology then the results presented here suggest that
the temperature and precipitation change will be reli-
ably simulated. Recent studies (e.g. Conway 1998) indi-
cate, however, that the contribution of synoptic circula-
tion changes to anthropogenic climate change may be
rather minor, with non-synoptic processes more impor-
tant. Further work is needed, therefore, to evaluate the
reliability with which the HadCM2 climate model simu-
lates the response of the UK climate to variations in these
other processes (larger-scale circulation changes, at-
mospheric moisture and temperature changes, in situ
radiative changes, etc.).

If sub-grid-scale temperature or precipitation is
required, thereby necessitating the use of a downscal-
ing procedure, then the results reported here suggest
that the simulated grid-box temperature or precipita-
tion should be considered as a potentially useful and
reliable predictor, in addition to other factors. A similar
conclusion was reached by Widmann & Bretherton
(2000), based on an analysis of reanalysis data over
part of the United States.
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Appendix 1. Uncertainty ranges

Uncertainty ranges have been shown in Figs. 3 to 7 to facilitate comparison of model-derived and observation-derived val-
ues. What they represent and how they were computed are described here, but first it is important to understand that they aid
in the point-by-point comparison of the 2 curves in each panel. The curves should be compared as a whole visually, and then
the uncertainty ranges can be used to identify which points show statistically significant differences.

Although the ranges are displayed either side of the observed curves in Figs. 3 to 7, they are not simply observational uncer-
tainty ranges. They show the range of values in which a model value could fall and still be statistically indistinguishable from
the observed value with 90% confidence, taking into account the observed and simulated variability and sample sizes
(reduced appropriately due to autocorrelation in individual samples—Wigley 1983).

The distributions used to estimate the 90% range (i.e. the 5 and 95% cutoffs) are a little different in each case. The values
in Fig. 4, being sample means of daily temperature anomalies, have a near-normal distribution and, therefore, the Student’s t
distribution is used to obtain the ranges shown. The values in Figs. 5 & 6, being sample means of daily precipitation totals, are
not normally distributed. Gregory et al. (1993) showed that the wet day amounts of the UK regional precipitation series can
be approximated by the incomplete gamma distribution, and we adopted a Monte Carlo approach to show that the sample
means of gamma-distributed random values (using a range of parameters given in Gregory et al. 1993) do follow a near-nor-
mal distribution for sample sizes of at least 20 (for large sample sizes this is expected from the Central Limit Theorem). Since
only those values computed from a sample of at least 20 d are shown in Figs. 5 & 6, we are justified in using the Student’s t
distribution again.
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Appendix 1 (continued)

Figs. 3 & 7 show proportions of successes (i.e. the frequency or probability, p, that an event occurs) and so the base distrib-
ution is binomial. However, the normal distribution (with mean p and standard deviation /pg/n is a good approximation to
the binomial when np > 5 and nq > 5, where g = 1 — p and n is the sample size. We therefore base the uncertainty ranges on
the distribution of differences between a normal distribution with observed p, g, and n and one with simulated p, g and n (the
parameters vary from case to case). In Fig. 3, the only cases where the np > 5 criterion is not met are at the high flow strengths
in spring and summer (p is small); here, the range should in fact be somewhat positively skewed compared to that shown, but
such a skew does not affect the interpretation of the results. In Fig. 7, only those values based on a sample of at least 25 d are
shown, and of those only the ranges at the extreme negative and positive vorticities in spring, summer and autumn might be
in error due to the failure to meet the np or nq criteria. These minor errors should be considered when interpreting Fig. 7.

Finally, no attempt has been made to include uncertainty ranges in Fig. 8, because the sample sizes involved are smaller
and make a point-by-point comparison less meaningful. Consideration should instead be given to the overall shape and level

of the curves.
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