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ABSTRACT: Several statistical downscaling methods and large-scale predictors are evaluated to ascer-
tain their potential to determine daily mean temperatures at 39 stations in central Europe. The methods
include canonical correlation analysis, singular value decomposition, and 3 multiple regression models.
The potential large-scale predictors are 500 hPa heights, sea level pressure, 850 hPa temperature and
1000-500 hPa thickness. The performance of the methods is evaluated using cross-validation and root-
mean-squared error as a measure of accuracy. The stepwise screening of gridpoint data is found to be
the statistical model that performed the best. Among the predictors, temperature variables yield more
accurate results than circulation variables. The best predictor is the combination of 500 hPa heights and
850 hPa temperature. Geographical variations of the specification skill, mainly the differences between
the elevated and lowland stations, are also discussed.
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1. INTRODUCTION

There are several methodologies to bridge the gap
that exists between what the general circulation mod-
els (GCMs) are able to simulate with enough accuracy
and what is needed in climate impact studies (von
Storch 1995, Kattenberg et al. 1996, Wilby & Wigley
1997). Statistical downscaling methods (or, in a some-
what narrower sense, regression methods) are perhaps
the ones most widely used. Their essence is to seek sta-
tistical relationships between the variables simulated
well by GCMs, which are treated as predictors, and
those required by impact researchers, treated as pre-
dictands.

GCMs do a reasonable job in simulating large-scale
upper-air features but fail to reproduce surface vari-
ables on regional and local scales (Grotch & Mac-
Cracken 1991, Gates et al. 1996), which are essential
in assessments of climate change impacts. Therefore,
large-scale circulation (geopotential height or sea
level pressure) patterns have been used as the only
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predictor in many downscaling studies for various
variables, including temperature (Hewitson & Crane
1992, Hewitson 1994, Schubert & Henderson-Sellers
1997), precipitation (von Storch et al. 1993, Noguer
1994, Corte-Real et al. 1995, Saunders & Byrne 1996)
and sea level (Heyen et al. 1996). However, the
assumption that changes of surface climate elements
due to the enhanced greenhouse effect are attribut-
able to changes in circulation only does not appear to
be realistic because observed changes in circulation
are not a dominant agent in long-term surface climate
trends (Yarnal 1985). The application of downscaling
based on circulation only to a GCM run for the 2 x
CO, climate may lead to an entirely unrealistic result
of virtually no temperature change, although a direct
GCM output indicates warming by several degrees
(Schubert 1998). Several recent studies avoid that
questionable assumption and include among predic-
tors other variables such as upper air temperature (or
equivalent thickness) (Kaas & Frich 1995, Cavazos
1997) and moisture variables (Crane & Hewitson
1998, Wilby et al. 1998).

Several statistical methods are applicable to the
description of relationships between large-scale
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upper-air fields and local climate elements. Multiple
linear regression (MLR), either based directly on grid-
point data or on principal components (PCs) of predic-
tor fields, and canonical correlation analysis (CCA)
have been used most widely. Recently, non-linear
methods have emerged, including multi-variate splines
(Corte-Real et al. 1995) and neural networks (Cavazos
1997, Crane & Hewitson 1998, Wilby et al. 1998).

The aim of this study is to evaluate and compare the
performance of several linear methods of downscaling
the daily mean temperature for a variety of predictors,
including both upper-air circulation and temperature
variables. The evaluation is carried out on a network of
39 stations, covering 6 countries in central and western
Europe, for the observations under present climate
conditions. The study is confined to winter (December
to February), when circulation is best pronounced in
the northern mid-latitudes. However, circulation’s
links with surface temperature have been shown to be
of similar strength both in winter and summer at sev-
eral stations in the Czech Republic (Huth 1997).

2. DATASETS USED

The study examines 8 winter seasons (December to
February) from 1982-1983 to 1989-1990. The source of
large-scale upper-air fields was the NCEP reanalyses.
The potential predictors include 500 hPa heights
(Z500), sea level pressure (SLP), 850 hPa temperature
(T850) and thickness (relative topography) of the
1000-500 hPa layer (RT), all defined on a 5° x 10° grid
extending from 45°W to 45°E and from 35° to 70° N,
which covers most of Europe and adjacent parts of the
Atlantic Ocean.
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Fig. 1. Geographic locations of the stations used in the study.
For their names see Table 1

The station network with daily mean temperature
data is composed of 39 stations in Austria, Belgium, the
Czech Republic, Germany, Slovakia and Switzerland,
situated in different orographic conditions, ranging
from the sea coast to mountain valleys and summit sta-
tions. For the locations of the stations see Fig. 1; a list of
the station names together with their altitudes is pro-
vided in Table 1.

3. METHODOLOGY

3.1. Downscaling methods. Three linear methods of
statistical downscaling are examined: (1) canonical
correlation analysis (CCA) prefiltered by principal com-
ponent analysis (PCA); (2) singular value decomposi-

Table 1. Stations used in the study. Altitudes are in metres
above the mean sea level. Station numbers are used to show
the stations’ positions in Fig. 1

Stnno.  Stn name Country Altitude
1 Hradec Kralové  Czech Republic 278
2 Velké Meziri<i Czech Republic 452
3 Hole$ov Czech Republic 224
4 Mile$ovka Czech Republic 833
5 Teplice Czech Republic 225
6 Husinec Czech Republic 536
7 Hurbanovo Slovakia 115
8 Slia< Slovakia 313
9 Oravska Lesna Slovakia 780
10 2trbské Pleso Slovakia 1360
11 Poprad Slovakia 695
12 Kosice Slovakia 230
13 Norderney Germany 11
14 Hamburg Germany 13
15 Greifswald Germany 2
16 Kleve Germany 46
17 Hameln Germany 66
18 Potsdam Germany 81
19 Cottbus Germany 69
20 Erfurt Germany 316
21 Giellen Germany 186
22 Saarbrticken Germany 319
23 Wirzburg Germany 268
24 Nurnberg Germany 314
25 Stuttgart Germany 373
26 Minchen Germany 515
27 Neuchatel Switzerland 487
28 Basel Switzerland 317
29 Zurich Switzerland 569
30 Séantis Switzerland 2498
31 Davos Switzerland 1590
32 Reutte Austria 870
33 Sonnblick Austria 3105
34 Feurkogel Austria 1618
35 Klagenfurt Austria 447
36 Wien Austria 202
37 Koksijde Belgium 5
38 Deurne Belgium 10
39 Saint Hubert Belgium 556
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tion (SVD); and (3) multiple linear regression (MLR).
The CCA and SVD methods are discussed in detail by
Bretherton et al. (1992). To the author’s knowledge,
SVD has not been applied in the context of downscal-
ing research before, but it has been used as an alterna-
tive to CCA in various climatological studies (e.g. Lau
& Nath 1994, Ward & Navarra 1997). Basically, both
CCA and SVD seek pairs of patterns, one from predic-
tors and one from predictands, that share maximum
correlation (in the case of CCA) or covariance (SVD).
The second, third, etc. pairs (modes) maximize correla-
tion/covariance not captured by the preceding pairs.
Prefiltering and orthogonalization of predictors prior to
CCA, which is performed using PCA, have been rec-
ommended e.g. by Barnett & Preisendorfer (1987) and
Barnston & Ropelewski (1992). Three different MLR
models are considered: (1) stepwise screening of prin-
cipal components (PCs) (hereafter referred to as ‘step-
wise regression’), (2) MLR on PCs without screening,
that is, all PCs being forced to enter the model (‘full
regression’), and (3) stepwise screening of gridded val-
ues (‘pointwise regression’). Unlike CCA and SVD,
MLR calculates the predictand at target stations inde-
pendently of each other. In stepwise screening, each
potential predictor (PC or gridpoint value) is evaluated
for its individual significance level before including it
in the regression equation, and, after each addition,
each variable within the equation is evaluated for its
significance as part of the model. A variable is in-
cluded (retained) in the equation if the corresponding
significance level exceeds 90% (95%o).

For each method, several plausible variants of the
number of PCs and the number of modes have been
examined.

3.2. Analysis procedure. A preliminary analysis
showed that the specification of daily mean surface air
temperature from large-scale upper-air fields is more
accurate for predictors and predictands expressed in
terms of normalized anomalies than for raw values and
non-normalized anomalies (not shown here). There-
fore, both predictors and predictands are treated in the
form of normalized anomalies, i.e. long-term winter
means have been subtracted from the actual station/
gridpoint values and then divided by standard devia-
tions.

Since the downscaling methods allow only a part of
the total variance of daily temperature time series to be
explained, the downscaled temperatures (i.e. anom-
alies resulting from the downscaling multiplied by
the observed standard deviation and increased by
the observed mean) have smaller variance than the
observed series. To retain the original variability, the
downscaled time series are inflated, i.e. their standard
deviation is increased by dividing the temperature
anomaly on each day by the correlation between orig-

inal and downscaled series (Karl et al. 1990). This has
been the most common way of handling the unex-
plained variance so far. However, the variance infla-
tion implicitly assumes that all local variability is
related to large-scale variability, which is not valid
(von Storch 1999). An alternative to inflation is to add
noise to the downscaled series to represent the pro-
cesses unresolved by the large-scale predictor. In this
study | use inflation; as a result, the downscaled tem-
peratures reproduce the mean and variance of the
observed series. A comparison of the downscaling
schemes based on inflation with noise addition is a
subject of further research.

The downscaling methods are evaluated within the
cross-validation framework, which allows an unbiased
estimate of potential ‘predictability’. Cross-validation
consists of omitting one case in turn, building the
whole statistical model on the remaining dataset, and
applying the statistical model to the omitted case
(Michaelsen 1987). Since time series of daily tempera-
tures exhibit considerable autocorrelation, the above
procedure would lead to an optimistic bias of down-
scaling skill if only 1 day were omitted each time. |
have used a more appropriate approach: 1 season at a
time is removed, and the statistical model built on the
remaining 7 seasons is tested on the omitted period. All
the statistical models are thus built 8 times.

The accuracy of the downscaled values is quantified
in terms of the root-mean-squared error (RMSE) of the
downscaled values relative to the observed. The
results based on RMSE may, however, be biased
because the variance inflation leads to an overestima-
tion of the RMSE (von Storch 1999). The results were
qualitatively the same, nevertheless, i.e. the rating of
the methods did not change, when the correlation
coefficient was used as a measure of accuracy (not
shown). Since inflation has no effect on the correlation
coefficient, we may conclude that the inflation does not
impact adversely the results of this study in terms of
RMSE. To obtain 1 number for each method to charac-
terize its performance, the RMSE values are averaged
over the stations.

There are other possible criteria according to which
the degree of reproduction of original time series may
be evaluated: for example, their time structure (persis-
tence) and the spatial structure (correlations, modes of
variability) are also of importance in many applica-
tions. The way the unexplained part of variance is
treated is likely to affect the time and space structure
of downscaled series quite considerably. The analysis
here, however, concentrates on the accuracy of specifi-
cation; investigations on the time and space structure
of downscaled temperatures, with emphasis on the
effect of the treatment of the unexplained variance,
are underway.
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Table 2. Percentage of variance explained by the 15 leading PCs (principal com-
ponents) of 500 hPa heights in the whole dataset (All) and in datasets used in
cross-validation by omitting the first to eighth year (1 to 8)

logical downscaling’. Several observa-
tions can be inferred from Fig. 2:
(1) The pointwise regression performs

best, and seems to represent an upper
PC All 1 2 3 4 S 6 7 8 limit of performance for other meth-
1 21.80 21.30 2231 21.40 21.84 21.98 22.09 22.30 21.96 ods. (2) Tr.]e higher the humbe.r of PCs,
2 1621 1638 1587 16.03 1624 1599 16.73 16.66 16.15 representing the predictor field, the
3 12.67 1259 12.64 13.11 12.49 12.85 12.64 12.09 12.99 better the performance of the methods
4 10.64 10.80 10.40 10.80 10.79 10.87 10.86 10.47 9.86 that use prefiltering by PCA (stepwise
5 761 729 759 751 763 758 745 777 7.60 and full regression, and CCA). (3) The
6 535 567 533 511 517 523 525 548 565 erformance of stepwise and full re.
7 436 423 431 466 447 427 436 425 422 performan stepwise ¢ u
8 316 308 318 324 319 314 314 315 3.21 gression is almost identical. (4) In
9 269 279 269 273 267 263 260 268 281 CCA, the increase in the number of
10 2.42 2.56 2.43 2.40 2.33 2.41 2.49 2.21 2.40 canonical modes leads to an improve-
11 220 222 228 206 226 220 200 217 2.27 . - .
12 151 1.49 153 152 155 155 149 151 145 ment f'rSt,‘ but afterattammgg satura
13 133 135 134 134 136 127 125 138 1.33 tion level’ (3 to 4 modes), adding more
14 092 096 094 095 091 093 0.86 090 0.96 modes into the model deteriorates the
15 085 093 087 086 08 087 078 084 0.86 results. (5) The performance of the

SVD method worsens with the inclu-

4. EVALUATION OF METHODS

The performance of the downscaling methods is
evaluated for 500 hPa heights used as a predictor.
Three of the 5 methods (CCA and stepwise and full
regression) require PCs of predictors as input; CCA
also needs PCs of predictands. The percentage of vari-
ance explained by the leading PCs is displayed in
Tables 2 & 3 for the Z500 field and daily mean temper-
atures, respectively. Values are shown both for the
whole dataset and for the 8 subsets used in cross-vali-
dation. Plausible numbers of PCs to retain and enter
the statistical models can be derived from the separa-
tion of eigenvalues; according to O’Lenic & Livezey’s
(1988) recommendation, the PCs should be cut just
behind the section with a relatively small slope on an
eigenvalue versus PC-number diagram. Tables 2 & 3
confirm that the suitable numbers of
PCs to retain are the same in all
datasets: 4, 7 and 11 for the Z500 field
and 4, 7 and 9 for temperature.

The area-averaged standard devia-

sion of a larger number of modes.

The results are somewhat surprising in several
aspects. First of all, the PCs explaining a small portion
of variance, which are frequently considered to be
noise and to adversely affect the regression results,
contribute non-negligibly to an improvement in the
accuracy of specification by both CCA and regression
methods. This effect occurs naturally if the evaluation
is performed on the dependent sample; the surprising
fact is that no apparent overfitting of the statistical
models by weakly significant predictors is observed.
The improvement due to the inclusion of additional
PCs into the statistical models is not spatially homoge-
neous. Fig. 3 suggests that there are sites where the
PCs of higher order do not bring a pronounced
improvement of specification (e.g. at Norderney, Stn
13, the addition of the 5th to 11th PCs lowers the RMSE
by 0.2°C only). Adding PCs 5 to 7 to the full regression

Table 3. Percentage of variance explained by the 12 leading PCs of surface daily
mean temperature in the whole dataset (All) and in datasets used in cross-
validation by omitting the first to eighth year (1 to 8)

tion of daily mean temperature is
4,96°C. This may be considered as pC All 1 2 3 4 5 6 7 8
a lower benchmark for downscaling 1 7622 7684 7671 73.60 7626 7611 76.73 77.28 75.52
methods, representing the accuracy of 2 637 6.06 630 759 6.17 618 6.17 633 6.62
a ‘climatological downscaling’, since 3 499 492 490 547 518 469 501 462 531
it is identical with the RMSE if daily 4 3.41 3.38 3.41 3.60 3.51 3.57 3.43 3.04 3.34
temperatures were replaced with the 5 126 124 123 136 133 135 118 1.22 1.28
mp p i 6 098 096 093 1.03 095 108 092 096 1.02
winter seasonal mean. The spatially 7 0.86 083 084 093 086 090 084 084 0.90
averaged values of RMSE for several 8 066 067 065 074 067 070 064 066 0.70
variants of regression, SVD and CCA | 000 [0 046 085 039 052 047 047 053
are displayed in Fig. 2, manifesting a 11 038 038 036 041 035 038 038 039 039
considerable improvement for a large 12 031 031 031 036 032 034 031 030 032
majority of variants over the ‘climato-
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Fig. 2. Accuracy (in terms of spatially averaged RMSE; in °C)
for various downscaling methods and humbers of PCs/modes:
(@) regression and SVD (singular value decomposition),
(b) CCA (canonical correlation analysis); all for Z500 (500 hPa
height) as predictor. Note that the RMSE scale is reversed: the
higher the bar, the more accurate the specification

model (Fig. 3a) brings about the largest improvement
at elevated stations both in the Alps and in Slovakia
(with a maximum RMSE decrease of more than 1°C at
the Austrian summit stations) whereas the improve-
ment is only marginal (decrease by RMSE of less than
0.2°C) at the maritime sites in the northwest of the
region. The 8th to 11th PCs lead to an improvement of
more than 0.2°C in the central part of the region
(mainly in southern Germany) whereas a negligible
improvement is observed in the north; at Ko$ice (the
easternmost station), even a slight deterioration
appears. A qualitatively similar picture appears for the

CCA method. It is difficult to identify physical reasons
for spatial differences in the RMSE improvement in
Fig. 3, especially because the higher-order PCs consti-
tute a mixture of processes with various areal extent
and time behaviour. | do not make such an attempt
here.

Second, the inclusion in the regression model of the
PCs not selected by the stepwise screening, i.e. the
redundant ones not having a discernible effect on sur-
face temperature, does not deteriorate the results. In
other words, the stepwise screening of PCs seems to be
a useless complication in the downscaling procedure.
Again overfitting does not take place.

Third, the pointwise regression is superior to (or, if
enough PCs are retained, at least as good as) any other
method. The superiority of the pointwise regression to
regressions based on PCs has already been reported
by Klein & Walsh (1983) in their study on specification
of monthly temperatures from 700 hPa heights. This
superiority occurs despite a larger stability from one
cross-validated subsample to another of PCs and
canonical modes relative to the gridpoints selected to
enter the pointwise regression. Table 4 shows the con-
gruence coefficients for the left and right heteroge-
neous correlation maps between the whole sample and
8 cross-validated subsamples, for 11/9 PCs and 4
canonical modes (which is the optimum number). [The
congruence coefficient is defined similarly to the cor-
relation coefficient except that it does not remove the
mean of the variables. Its use when similarity of mag-
nitude is important in addition to pattern similarity has
been recommended e.g. by Richman & Lamb (1985);
according to them, congruence exceeding 0.98 indi-
cates a ‘perfect’ match. The kth left (right) heteroge-
neous correlations (‘left’ and ‘right’ stand for the pre-
dictor and predictand, respectively) are correlation
coefficients between the gridpoint values of the left
(right) field with the kth right (left) expansion coeffi-
cient (i.e. the time series of ‘intensity’ of the kth canon-
ical mode). The right heterogeneous correlation indi-
cates how well the station temperatures can be
specified from the kth left expansion coefficient
(Bretherton et al. 1992).] The congruence coefficients
in Table 4 exceed the 0.98 threshold in their majority,
indicating a perfect match between the modes in the
whole dataset and in the cross-validated samples. In
other words, the modes are almost unaffected by the
omission of 1 year from the data. The stability of the
pointwise regression model is much less: various grid-
points are selected in different cross-validated sam-
ples. Fig. 4 displays which gridpoints enter the point-
wise regression for Wirzburg (Stn 23) in the whole
dataset and in the 8 cross-validated samples. Although
there is a pronounced spatial coherence in the selected
gridpoints and the sign with which they contribute to



96

Clim Res 13: 91-101, 1999

FULL REGR: 7 vs 4 PCs FULL REGR: 11 vs /7 PCs
55 f ? 8 1'0 1|2 1,4 1.5 1'8 20 22 55 552
29
17 a

53 453 53

¥ 151 O 51
%51‘- 3
2 E
) =
§49- 49 O

7l 447 47

4}52 ; !li é l‘O 1‘2 ll4 1‘6 Ilﬂ 2‘0 212 » s 2 é 1‘0 1‘2 . 1‘4 1‘6 1‘8 2‘0 2‘2

longitude longitude

Fig. 3. Improvement of specification (decrease of RMSE; in hundredths of °C) for the full regression method and Z500 predictor;

(a) 7 versus 4 PCs, (b) 11 versus 7 PCs

Table 4. Congruence coefficients between heterogeneous correlation maps
based on the whole dataset and those based on the cross-validated subsamples
for 4 leading canonical modes; CCA based on 11 Z500 PCs and 9 station tem-
perature PCs. For an explanation of the congruence coefficient see Section 4

The overall performance of the
pointwise regression and full regres-
sion on 11 PCs is the same: the area

averaged RMSE equals 3.94°C. How-

. ever, the performance differs region-

Subsample . Left rr21ap of m3ode no.4 ) Right r;ap of rr310de no.4 ally (Fig. 6). The regression based on
PCs is much better at the Alpine sta-

1 99.8 99.8 989 99.2 100.0 999 999 983 tions; at most lowland stations, the
g ggg ggg gg; g?? 1883 iggg gg? gg; pointwise regression tends to perform
4 99.7 991 998 990 1000 998 998 985 better by a narrow margin. The PC
5 99.6 99.4 -99.7 995 1000  99.9 -1000 993 regression is superior at elevated sta-
6 999 998 993 99.1 100.0 100.0 99.8 98.9 tions probably because of their prox-
7 99.6 996 994 983 99.9 1000 998 994 imity to the free atmosphere: they are
8 99.7 991 985 986 100.0 998 996 993 more tightly related to large-scale cir-

the model (warmer temperatures are connected with
negative 500 hPa anomalies northwest and north of the
station and with positive anomalies south and east of
it), their spread over the map is quite remarkable:
there is only 1 gridpoint (east of Wirzburg) that enters
all the 9 regression models.

The left and right heterogeneous maps of the lead-
ing 4 canonical modes for 11/9 PCs of the whole
dataset are shown in Fig. 5 for illustration. Note the
different behaviour of the elevated stations: they are
more sensitive than the surrounding lowland stations
to the 500 hPa anomaly over southeastern Europe
(Mode 1), in its positive polarity inducing a warm
advection into the region of interest, but less sensitive
to the anomaly over the North Sea (mainly the Alpine
sites; Mode 3) and to a dipole with anomalies centred
over Spain and Scandinavia (mainly the stations in
Slovakia; Mode 2).

culation features such as variability
modes (teleconnections). On the other
hand, at lowland stations, where more local influences
are in effect, the pointwise regression allows some of
the local peculiarities to be explained by a single grid-
point value (or a few of them) specific for the site and
selected so as to fit it best.

Analogous conclusions regarding the relative perfor-
mance of the methods apply if other predictors, dis-
cussed in the following section, are used.

5. EVALUATION OF PREDICTORS

The area averaged RMSE for the statistical model
that performed the best, i.e. stepwise regression, is
presented in Fig. 7 for 5 predictors: SLP, Z500, RT,
T850, and the combination of Z500 and T850. Obvi-
ously, the large-scale free-atmosphere temperature
variables (T850, RT) are much better predictors of sur-

45
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stations, whereas at most lowland sta-
tions, SLP appears to perform better,
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Fig. 4. A scheme indicating which gridpoints (=) enter the pointwise regression
model (Z500 as predictor) for Wirzburg in the whole dataset and 8 cross-vali-
dated samples. +: positive contribution in the regression equation; x: negative
contribution. A symbol at the centre, replacing the square, indicates that the
gridpoint was selected into the regression model for the whole dataset; sym-
bols around the centre indicate that the gridpoint was selected for a cross-
validated subsample. W: approximate position of Wiirzburg

face air temperature than the circulation variables
(SLP, Z500). The best performance is achieved if the
temperature and circulation variables are combined; of
all pairs of variables, 500 hPa heights together with
850 hPa temperatures yield the lowest RMSE of
2.88°C. The corresponding correlation coefficient be-
tween the specified and observed values reaches 0.82.

In the following, the spatial distribution of RMSE is
considered. All results reported in this section are
obtained by the pointwise regression model. First of
all, the performance of SLP and Z500 predictors is
compared (Fig. 8). If averaged over all stations, mid-
tropospheric circulation is a slightly better predictor
than SLP. However, the superiority of the former stems
mainly from its better performance at a few elevated

T REXTE

although by a narrow margin.

The improvement of specification using
70 T850 as predictor relative to Z500 ex-
hibits a different spatial structure (Fig. 9).
There is no pronounced difference be-
65 tween the elevated and lowland stations,
except for the 2 stations with highest alti-
tude (Sonnblick, Stn 33, and Santis, Stn
30) where both predictors perform with
almost the same accuracy. The improve-
ment (T850 being a better predictor than
Z500) tends to gradually increase from
west to east. That is, at maritime sites,
mid-tropospheric geopotential is almost
as good predictor as lower-tropospheric
temperature, whereas in more continen-
tal regions temperature performs consid-
erably better.

The regional distribution of the RMSE
for the combined Z500 and T850 predic-
tor is shown in Fig. 10a. For the sake of
convenience, Fig. 10b displays the ranks

A of the RMSE for each station. Two effects
++ contribute to the degree of accuracy of
the downscaling. First, elevation plays a
role: the specification is most successful
at elevated stations, regardless of their
XX location on summits (Santis, Stn 30;
Sonnblick, Stn 33; Feurkogel, Stn 34; and
also Mile$ovka, Stn 4) or elevated plains
(2trbské Pleso, Stn 10) or in mountain val-
leys (Davos, Stn 31). Second, the accu-
racy improves from east to northwest,
being highest (apart from the mountain
stations) at the maritime sites. The largest
error is observed at the station of Teplice
(Stn 5), located in a valley where frequent
temperature inversions occur and local
weather is only weakly related to large-scale circula-
tion patterns. The improvement in the specification
based on the combined predictor over the Z500 predic-
tor is 1.1°C on average; at individual sites it ranges
from 0.5°C at Séntis and Sonnblick to 1.7°C at 4 sta-
tions in the Czech Republic and Slovakia (see Fig.
11a). The pattern resembles the difference between
T850 and Z500 in that the improvement increases from
west to east in general, with the exception of the 2 most
elevated stations, where the improvement is smallest.
The improvement over 850 hPa temperature, being
0.3°C on average, exhibits no pronounced regional
dependence (Fig. 11b). Worth noting is the fact that at
all stations, adding 500 hPa geopotential as a predictor
to 850 hPa temperature leads to a more accurate spec-
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for various predictors; pointwise regression method is used.

SLP: sea level pressure; Z500: 500 hPa height; RT: thickness

(relative topography) of the 1000-500 hPa layer; T850:
850 hPa temperature

ification, although the improvement approaches zero
(but remains positive) at the 2 southernmost stations of
Davos (Stn 31) and Klagenfurt (Stn 35).

6. CONCLUSIONS

Several statistical downscaling methods and several
large-scale upper air predictors were evaluated to
determine their ability to specify local daily mean
temperatures at 39 central European stations. The
methods include canonical correlation analysis (CCA),
singular value decomposition (SVD) and 3 multiple

Fig. 8. Difference in RMSE (in °C) between SLP and Z500 as
predictors, for pointwise regression method. Positive values
indicate that Z500 performs better
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4 6 8 10 1‘2. 1I4 16 18 20 22
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Fig. 9. Difference in RMSE (in °C) between Z500 and T850 as
predictors, for pointwise regression method. Positive values
indicate that T850 performs better

regression models: stepwise screening of the predic-
tor’s PCs (stepwise regression), regression of the PCs
without screening (full regression) and stepwise
screening of the predictor’s gridpoint values (pointwise
regression). The performance of the methods was eval-
uated using cross-validation and quantified in terms of
root-mean-squared error (RMSE). As large-scale pre-
dictors, 500 hPa geopotential, sea level pressure,
850 hPa temperature and 1000-500 hPa thickness are
examined.

The pointwise regression proved to be the best
method of those considered. The other 2 regression
methods and CCA were comparable if a relatively
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large number of the predictor’s (and the predictand’s in
the case of CCA) PCs, including those explaining a
small share of the variance, enter the statistical models.
The SVD method appeared to be the worst.

Among the predictors, temperature fields result in a
more accurate specification than circulation variables.
The combination of 850 hPa temperature and 500 hPa
heights leads to the smallest error both in a regional
average and at individual stations. The accuracy of
downscaling exhibits geographical variations: it is
highest at elevated stations and tends to increase from
the continent towards more maritime sites.

The results presented in this study were derived for
winter in central and western Europe. Nevertheless,
some generalization appears to be possible. | believe
that the rating of the methods and predictors will apply
to all regions where large-scale fields and local climate
variables are related in a similar way as in the region
investigated, i.e. at least in northern mid-latitudes over
continents. The results may, however, be somewhat
different for other seasons, especially for summer,
when the effect of large-scale, low-frequency circula-
tion features such as teleconnections on surface tem-
perature is weaker than in winter (Huth 1997).

GCMs are likely to simulate different predictors
with different accuracy as well as to be more confident
in simulating large-scale features (teleconnections,
modes of variability) than individual gridpoint values.
Therefore, the rating of methods and predictors may
be different from that presented here if the downscal-
ing is applied to a GCM run simulating present climate
conditions. Further research in this direction is needed
to find out which method(s) and predictor(s) are prefer-
able for constructing site-specific climate change sce-
narios using statistical downscaling of a GCM output.
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Fig. 11. Improvement of specification (difference in RMSE; in °C) by the combined T850 and Z500 predictor over (a) Z500 and
(b) T850
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