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ABSTRACT: Stochastic models of daily precipitation are useful both for characterizing different pre-
cipitation climates and for stochastic simulation of these climates in conjunction with agricultural,
hydrological, or other response models. A simple stochastic precipitation model is used to downscale—
i.e. disaggregate from area-average to individual station—precipitation statistics for 6 groups of 5 U.S.
stations, in a way that is consistent with observed relationships between the area-averaged series and
their constituent station series. Each group of stations is located within a General Circulation Model
grid-box-sized area, and collectively they exhibit a broad range of precipitation climates. The down-
scaling procedure is validated using natural climate variability in the observed precipitation records as
an analog for climate change, by alternately considering collections of the driest and wettest seasons as
‘base’ and ‘future’ climates, and comparing the 2 sets of downscaled station parameters to those fit
directly to the respective withheld observations. The resulting downscaled stochastic model parame-
ters can be readily used for local-scale simulation of climate-change impacts.
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1. INTRODUCTION

Global, coupled atmosphere-ocean General Circula-
tion Models (GCMs) are the most powerful tools avail-
able to simulate evolving and future changes in the cli-
mate system. While these models are most accurate at
large (continental, hemispheric, and global) spatial
scales (Gates et al. 1996), smaller-scale (at or near the
spatial resolution of the GCMs) climatic details are less
well portrayed (Mearns et al. 1990, Grotch & Mac-
Cracken 1991, Kattenberg et al. 1996). However, it is
the changes in near-surface local climates that will
determine the consequences for agricultural, ecologi-
cal, hydrological, and other life-sustaining systems.

Accordingly, a variety of approaches to the ‘down-
scaling’ of grid-scale (hundreds of km) GCM informa-
tion to local-scale surface climate have been devised
(e.g. reviews by Giorgi & Mearns 1991, Wilby & Wigley
1997). These range from quite simple to extremely
elaborate. A very simple but widely used approach
(e.g. Cohen 1990) is direct adjustment of instrumental
weather records at a location according to an assumed
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climate change. For example, all measured tempera-
tures might be increased by 2°C, and all observed pre-
cipitation amounts multiplied by 1.10. Other investiga-
tors have devised more elaborate schemes based on
statistical relationships between large-scale atmos-
pheric circulation patterns and local surface weather
variables (e.g. Wigley et al. 1990, Bardossy & Plate
1992, von Storch et al. 1993, Burger 1996, Lettenmaier
1995). At the extreme of complexity and computational
demands are mesoscale models nested within (i.e. pro-
vided with boundary conditions by) a GCM (Giorgi
1990, Mearns et al. 1995).

A fairly simple but flexible and computationally eco-
nomical approach to producing local climate-change
‘scenarios’ is through the use of stochastic weather
models, or ‘weather generators’ (Wilks 1992, Woo
1992, Semenov & Barrow 1997). These are statistical
models for daily weather data at a single location (e.g.
Richardson 1981), which can be regarded alternatively
as statistical characterizations of the local climate, or as
elaborate random number generators whose output
resembles real weather data. Their use in climate-
change studies involves perturbing the stochastic
model parameters to reflect a changed climate, and
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then generating synthetic weather series consistent
with this new climate for use with impact (e.g. agricul-
tural or hydrological) models.

Differences in climate statistics between local and
area-averaged (presumably corresponding to GCM
grid cell) series are quite large, especially for precipi-
tation. In particular, the probability of precipitation in
area-averaged series is necessarily larger than the cor-
responding probabilities at any of the constituent sta-
tions, while the average precipitation amounts are
smaller (e.g. Osborn & Hulme 1997). While procedures
for adjusting the stochastic model parameters to yield
desired altered climates have been published previ-
ously (Wilks 1992, Katz 1996), the change of spatial
scale between the GCM grid and the local stations has
not yet been considered explicitly in this context. In the
following, the method of Wilks (1992) for construction
of climate-change scenarios with stochastic weather
models is extended to accommodate the differences in
local and area-averaged weather statistics, and then
validated using observed interannual climatic variabil-

ity as an analog for climate change. While the em-
phasis is on precipitation modeling and precipitation
statistics, the procedure could be applied also to tem-
perature and other surface-weather variables.

2. METHODS

2.1. Study areas and stations. Daily precipitation
data from 30 U.S. stations, listed in Table 1, are used in
the following. Table 1 shows that these stations are
grouped into 6 areas, denoted OR (stations in the state
of Oregon), CA/NV (stations primarily in California
and Nevada), MN (stations in Minnesota), OK (stations
primarily in Oklahoma), MS (stations primarily in Mis-
sissippi), and CNE (stations primarily on or near the
coast of the northeastern U.S.). As indicated by the
average seasonal precipitation values in Table 1, the
stations span a wide range of precipitation climates.
These stations and areas have been chosen as part of a
larger project (Wilby et al. 1996, 1998, Wilby & Wigley

Table 1. Time period, location, and precipitation data for the 30 stations (6 areas) used in this study. OR: Oregon; CA/NV: pri-
marily California and Nevada; MN: Minnesota; OK: primarily Oklahoma; MS: primarily Mississippi; CNE: primarily on or near
coast of northeastern U.S.

Area Time period Stn  Location name Elevation Latitude Longitude Average precipitation (mm)
(molyr) (m) (°N) (°w) DJF MAM JJA SON

OR (9/48-2/98) 1 Eugene, OR 109 44.12 123.22 556 273 69 326
2 Portland, OR 6 45.60 122.60 396 222 85 262

3 Redmond, OR 933 44.27 121.15 72 53 43 51

4 Salem, OR 60 44.90 123.00 462 223 64 283

5 Astoria, OR 2 46.15 123.88 721 383 129 495

CA/NV (12/33-2/98) 1 Medford, OR 396 42.37 122.87 215 105 36 135
2 Winnemucca, NV 1310 40.90 117.80 66 65 34 49

3 Reno, NV 1342 39.50 119.78 80 46 23 38

4 Sacramento, CA 5 38.52 121.50 267 118 6 90

5 Red Bluff, CA 104 40.15 122.25 316 144 17 127

MN (3/48-11/97) 1 Alexandria, MN 432 45.87 95.38 56 165 277 140
2 Minneapolis, MN 254 44.88 93.22 69 182 297 158

3 Rochester, MN 395 44.00 92.45 65 204 306 172

4 St. Cloud, MN 313 45.58 94.18 57 174 306 156

5 Redwood Falls, MN 312 44.55 95.08 48 178 290 141

OK (3/48-11/97) 1 Oklahoma City, OK 392 35.40 97.60 101 273 250 217
2 Tulsa, OK 198 36.20 95.90 135 313 278 262

3 McAlester, OK 232 34.92 95.77 183 358 269 314

4 Hobart, OK 168 35.00 99.05 69 218 203 173

5 Wichita Falls, TX 303 33.98 98.52 95 231 195 187

MS (12/48-11/97) 1 Jackson, MS 87 32.32 90.08 387 423 302 292
2 Meridian, MS 88 32.33 88.75 401 412 323 266

3 Greenwood, MS 47 33.50 90.20 383 405 278 281

4 McComb, MS 126 31.25 90.47 442 438 381 299

5 Monroe, LA 24 32.52 92.05 369 388 279 272

CNE (6/48-11/97) 1 Williamsport, PA 160 41.25 76.92 216 263 290 263
2 New York City, NY 4 40.65 73.78 242 285 276 248

3 Baltimore, MD 45 39.18 76.67 247 280 294 254

4 Atlantic City, NJ 20 39.45 74.58 250 253 267 226

5 Philadelphia, PA 2 39.88 75.23 236 272 295 237
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Fig. 1. Locations of the 6 areas in Table 1 and their constituent stations superimposed on the 2.50° x 3.75° HadCM2 grid over a
portion of North America

1997), to correspond to 6 grid-boxes of the HadCM?2
coupled atmosphere-ocean GCM (Johns et al. 1997,
Mitchell & Johns 1997). Fig. 1 shows the 2.50° latitude
x 3.75° longitude grid boxes of the HadCM2 model
over a portion of North America, with the locations of
the 30 stations in Table 1 indicated as well. It is evident
from Fig. 1 that each of the 6 groups of 5 stations occu-
pies an area that is comparable in size to 1 HadCM2
grid box, and that the station groups are located within
or very near 1 of 6 particular grid boxes.

The geographic correspondence between the study
areas and the HadCM2 grid will be taken as only inci-
dental here. Rather, the focus below will be on the
relationships between precipitation statistics for the
individual daily station series and their counterparts
for the corresponding area averages, which represent
information on the spatial scale available from a
GCM. For simplicity it will be assumed that each of
the 6 area-averaged daily precipitation series is com-
prised of an unweighted average of the non-missing
daily precipitation amounts for its 5 constituent sta-
tions, although extension of the methods presented
below to weighted area averages would be straight-
forward. The analyses are stratified into the 4 stan-
dard climatological seasons, DJF, MAM, JJA and
SON. The periods of data availability for the 6 areas,

which are also indicated in Table 1, have been chosen
so that at least 4 of each set of 5 stations are active
throughout.

2.2. Stochastic models. The basic model for daily
precipitation employed here is the well-known and
widely used ‘chain-dependent process’ (Todorovic &
Woolhiser 1975, Katz 1977). In this model, daily precip-
itation occurrence is governed by a 2-state (either pre-
cipitation occurs or it does not), first-order (the proba-
bility of precipitation depends only on whether or not
precipitation occurred on the previous day) Markov
chain. This process can be characterized by the 2 con-
ditional probabilities

po1 = Pr {precipitation on day t | no precipitation on

day t -1} (1a)
and
pi1. = Pr {precipitation on day t | precipitation on
day t -1} (1b)

which are known as transition probabilities. Because
only 2 precipitation occurrence states are defined, the
complementary probabilities for dry-day occurrences
are given by poo = 1 — po; and pig = 1 — py1. The transi-
tion probabilities are very convenient for stochastic
simulation (see Appendix 1). For the purpose of statis-
tically characterizing a given precipitation climate it is
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often more convenient to define the Markov chain
using the 2 parameters

m=_—Po (2a)
1+po1—Pu

and
r = pPi1—-Po (2b)

which are the unconditional probability (i.e. climato-
logical relative frequency) of daily precipitation oc-
currence and the lag-1 autocorrelation of the daily
precipitation occurrence series, respectively. The 2
parameter sets {po:, P11} and {m r} clearly embody
equivalent information, as one set can be computed
from the other using Eq. (2) (see Eq. Al). Typically one
finds positive serial dependence in daily precipitation
occurrence data (wet and dry days tend to occur in
runs or ‘clumps’), so that r > 0 and pg; < TT< pPy3.

The remainder of the chain-dependent process con-
sists of a statistical model for the nonzero precipitation
amounts. Most commonly the gamma distribution is
chosen for this purpose (e.g. Katz 1977, Richardson &
Wright 1984, Wilks 1989, 1992, Gregory et al. 1993),
although some investigators have found that the mixed
exponential distribution provides a much better fit to
daily nonzero precipitation amounts (Woolhiser &
Roldan 1982, Foufoula-Georgiou & Lettenmaier 1987,
Wilks 1998a). Use of these 2 distributions for both
downscaling and stochastic simulation is detailed in
Appendix 1. For now, however, the choice of a particu-
lar probability model for the precipitation amounts can
remain implicit, since in the following it will be neces-
sary to know only the mean daily nonzero precipitation
amount, p, and the corresponding variance, 2.

The climatological statistics of seasonal-total precip-
itation depend on the statistics of the daily precipita-
tion amounts that comprise the seasonal total. Simi-
larly, the seasonal statistics of synthetic precipitation
generated by a daily stochastic model depend on the
parameters governing the daily precipitation occur-
rences and amounts. Let S(T) be the sum of T daily
precipitation amounts. Since seasonal precipitation is
considered here, T = 90. The average seasonal precip-
itation, E[S(T)], and its variance, Var[S(T)] (which
characterizes the interannual variability of seasonal
precipitation), can be expressed as (e.g. Gregory et al.
1993, Katz & Parlange 1998)

E[S(M)] = EIN(MI M (3a)
and
Var[S(T)] = E[N(T)] 6? + Var[N(T)] u>  (3b)

As noted above p and o? are the mean and variance of
the nonzero precipitation amounts, regardless of the
particular distribution chosen to represent them. The
quantity E[N(T)] is the average number of days with
nonzero precipitation in a period of T consecutive days

and Var[N(T)] is the interannual variance of the num-
ber of wet days. For first-order Markov dependence,
these latter 2 quantities can be expressed as

E[N(T)] = Tmt (4a)
and
Tl -m@A+r)

VarN(T)] = =

(4b)
Eq. (4b) is an approximation to the true variance,
although for monthly and longer totals this approxima-
tion is found to be very close (Gabriel & Neumann
1962, Gregory et al. 1993).

2.3. Downscaling. As conventionally understood, the
process of ‘downscaling’ GCM information to produce
scenarios of climate change at local scales is actually a
combination of 2 operations. First, because of approxi-
mations necessarily made in the formulation of any
GCM, the ‘control’ GCM climate is to a greater or
lesser degree different from the observed climate,
even when it is compared to area-averaged observa-
tions at a comparable scale. Accordingly, results from
changed-climate GCM integrations are not down-
scaled directly, but rather some adjustment is made to
the climatological observations or to the statistics of the
observations which reflects relative changes between
the control and changed-climate GCM integrations.
The result, either tacitly or explicitly, is the specifica-
tion of a changed climate for an area average at the
scale of the GCM. Recognizing that this first step does
not actually involve a change of spatial scale, it might
better be referred to as ‘extrapolation’ (Wilks 1988,
Wilby et al. 1998).

The focus of this paper is on the second part of this
process, in which the area-averaged (extrapolated)
climates or climate statistics are downscaled, i.e.
disaggregated to the individual station level. It will
therefore be assumed that the extrapolated area-
average stochastic model parameter set {Tly, Fex, Hexs
02} for the changed climate is available. There are a
number of ways that these extrapolated parameters
might be arrived at. One possibility (Wilby et al.
1998) is related mathematically and conceptually to
the downscaling procedure outlined below. Alter-
natively, one could imagine that changes in the 4
quantities E[S(T)], Var[S(T)], E[N(T)] and Var[N(T)]
might be computed from many months or seasons of
GCM output, with the corresponding extrapolated
{Txs Tex» Hexs 0%} then calculated through Egs. (3) &
(4). It might also be possible to base the extrapolation
of these parameters on changes in atmospheric circu-
lation statistics, following approaches similar to
Wigley et al. (1990) or von Storch et al. (1993). Any of
these procedures place great reliance on particular
GCM results, however, and for some purposes it
could be desirable instead to extrapolate more gener-
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alized climate-change scenarios (Wilks 1992, Hulme
et al. 1995).

The basic downscaling problem, then, is the follow-
ing. One has from observations the parameter sets
{T[station: F'stations Mstations O-gtation} fit to each of the (fOF the
present data, 5) observed station-level daily precipi-
tation series within an area, and the set {Tyea, larear
Mareas O2reat fit to the corresponding time series of
area-averaged daily precipitation amounts. One also
has an extrapolated changed precipitation climate, at
the same spatial scale as the area-averaged time
series, characterized by the parameter set {Ty, rex
Uex, 023. The task of the downscaling procedure is to
disaggregate the extrapolated changed climate to
produce the (again, 5) downscaled parameter sets
{Thown» Tdowns Hdown: Odown}. Of course this process is
not uniquely defined, and the procedure presented
below is but one of very many alternatives that could
be imagined.

Fundamental to good statistical representation of a
precipitation climate is the accurate portrayal of the cli-
matological wet-day probability, 1t since this parameter
governs the average number of wet days in a month or
season (Eq. 4a), and through this also strongly affects
the average monthly or seasonal precipitation (Eq. 3a).
Theoretical relationships between Ti,e; and Tigeation have
been developed (Epstein 1966, Osborn & Hulme 1997),
but their application here is problematic because of the
extremely varied precipitation climates within some of
the present study areas. In Area OR for example, there
are 3 rather different precipitation climates represented
by the 5 stations which result from 2 north-south topo-
graphic barriers interacting with the prevailing west-
erly atmospheric flow. Astoria (Stn 5) is a very wet loca-
tion on the Pacific coast of Oregon. The 3 stations
Eugene (Stn 1), Portland (Stn 2) and Salem (Stn 4) are
located in the somewhat drier Willamette Valley, which
is separated from the ocean by the Coast Range moun-
tains (typical elevations about 750 m). The semidesert
station Redmond (Stn 3) is located still further east, in
the rain shadow of the Cascade Range mountains (typ-
ical elevations about 2000 m).

The climatological wet-day probability is down-
scaled here by adjusting each of the observed Tiation
values according to differences between the observed
Tlarea @Nd the imposed T,. Direct additive or propor-
tional adjustments have the potential to yield mislead-
ing or even nonsense results (€.9. TMyown < 0), particu-
larly for stations like Redmond, for which Tiation < Tarea-
This problem is avoided by first transforming to the
log-odds scale, which is defined by

- pa ™ C
L = Ing——¢ ®)
The downscaled climatological probability is then com-
puted by adjusting the log-odds transformed Tiggion bY

the difference of the log-odds transforms of 1., and

T[area,

Thown = L_l [L(T[station )] [L(T[station) + L(T[ex) - L(T[area)] (6&)
exp [L(T[station) + L(Trex) - L(T[area )] (6b)
1+ exp[L(T[station) + L(Trex) - L(T[area)]

Since Eq. (5) transforms the probabilities 1 from the
unit interval to the real line, Eq. (6) necessarily pro-
duces a properly bounded result (0 < Tigown < 1).

Similarly, the parameter r is a correlation and must
be bounded by -1 < r < 1. Adjustments to this parame-
ter can be made on the scale of the Fischer Z-transform
(i.e. the inverse hyperbolic tangent),

_1,.d+rp
Zn = ZIng—q )
which transforms correlations from the interval [-1, 1]
to the real line. Following the same idea as for the wet-
day probability, the correlation r can be downscaled by
making an additive adjustment on this transformed
scale, using

Fagown = Z " [Z(Fstation) + Z(Fex) = Z (Farea)] (8a)
- eXp{Z[Z (rstation) + Z(rex) - Z(rarea)]} -1 (Bb)
exp{2[Z (rstation) + Z(rex) - Z(rarea)]} +1
which will necessarily yield -1 < rgoun < 1.

It remains to downscale the 2 parameters controlling
nonzero precipitation amounts, p and 2. While there
are potentially many ways to approach this task, it
seems clear that any reasonable procedure should pre-
serve consistent relationships between the statistics of
local and area-averaged seasonal precipitation, S(T).
The (time) average of each area-averaged precipita-
tion series is just the average (time) mean over each of
the n stations comprising the area average,

ESMaead = = 5 ESMharon]  (O)

station =1

Similarly, for the variances,

n
VarlSMe 0 = 3Var(SMaion]  (9b)
station =1

holds (Kagan 1966, Jones et al. 1997). The constant of
proportionality in Eq. (9b) depends on the average in-
terstation correlation, ¢, among the n stations compris-
ing the area average, and is equal to [1 + (n — 1)Cc]/n.
The extent to which this correlation structure might
change in a changing climate would not be known on
the basis of a GCM integration, which could not resolve
it, although changes in the interstation precipitation
correlations would influence the interannual variance
of the area-averaged series (Osborn 1997). While re-
sults from a mesoscale model nested in the GCM could
suggest changes in this correlation structure, their exis-
tence might also obviate the need for statistical down-
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scaling. In the following it will be assumed that the pro-
portionality in Eg. (9b) remains unchanged in a
changed climate, although a different proportionality
could also be assumed.

There are many ways in which the n station means
and variances on the right-hand sides of Eg. (9) might
change to vyield particular extrapolated values
E[S(T)ex] and Var[S(T)ex]. As before, these would not
be known from GCM output, and results from a nested
mesoscale model suggesting a particular set of
changes might also render statistical downscaling un-
necessary. Here it will be assumed that changes in the
station-series means and variances will be propor-
tional to the changes in the respective area-averaged
moments, yielding

E[S(TM)ex]

E [S(T )down] = E [S(T )station] E [S(T ) ] (10a)
and
Var[ST gown] = var[sa)station]\% (10b)

Using Egs. (3) & (4), together with the downscaled
occurrence parameters from Egs. (6) & (8), yields

E[S
Hgown = [ (T)down] (1la)
T T[dOWn
and
ogown - Var [S(T )down] _ (1 — T[down)(1+ rdown) Héown (11b)
T Tdown (1 - rdown)

for the downscaled precipitation-amount parameters.

3. RESULTS AND VALIDATION

The downscaling procedure just described relies on
a number of somewhat arbitrary choices and assump-
tions. It is natural, therefore, that one would like to val-
idate the scheme in a setting where the correct results
are known and can be compared to the downscaled
values. Validation exercises of this kind have appar-
ently not been previously applied to climate-change
downscaling procedures, presumably because the
future local-scale climates to which they pertain are
not known, and downscaling of any kind would be
moot if they were known.

However, it is possible to validate a downscaling
procedure, at least in a limited way, by using observed
interannual climatic variability as an analog for climate
change. Analog methods have certain limitations for
climate-change studies (e.g. Giorgi & Mearns 1991),
and in the present context require the assumption that
relationships between local and area-averaged statis-
tics will remain stable, even though future changes in
the climatic statistics may be driven by physical pro-
cesses different from those responsible for the climate

variations in the instrumental record. Here climate-
change analogs have been constructed by stratifying
the data, separately for each of the 4 seasons and each
of the 6 areas, according to the total area-averaged
seasonal precipitation. Data from years comprising the
driest 40% of each of the 4 seasons (20 yr for all areas
except Area CA/NV; 25 yr for Area CA/NV) were
defined to constitute the dry climates, and data from
the wettest 40% constituted the wet climates. The
remaining 20% of the data were not used. These per-
centages are subjective choices meant to balance clear
separation between the wet and dry climates, with the
need for adequate sample size.

Separate parameter sets {m, r, 4, 6’} were computed
for the dry years and the wet years, for both the station
and area-averaged series. The downscaling procedure
described in Section 2.3 was then applied twice for
each area and for each of the 4 seasons. In the first
application, the wet years were considered to be the
base, or present, climate. The dry years then play the
role of the changed future climate, so that the parame-
ters for the dry area-averaged series correspond to the
extrapolated climate at the area-average scale. The
parameter set {Town, M'down: Hdown: Odown} Produced by
the downscaling procedure should then correspond to,
and can be compared with, the observed station-level
parameters from the dry years. In the second applica-
tion of the downscaling procedure the roles of the wet
and dry years are reversed, so that the dry years are
considered to represent the base climate, the wet years
are the changed climate, and the correct values of the
downscaled parameters are the observed station para-
meters in the wet years. This procedure is a fairly
severe test of the downscaling algorithm, but is an
appropriate simulation of its potential applications.

Figs. 2 & 3 illustrate the results for winter in the OR
Area and summer in Area CNE, respectively. As noted
previously, the topographic variations in OR area
might be expected to challenge the disaggregation
procedure. Summer precipitation in Area CNE pro-
vides an example of the performance of the scheme for
typically small-scale convective precipitation. The
panels (a) to (d) in these figures show results for , r, ,
and o (not a2, for ease of dimensional comparison),
respectively. Both the wet to dry, and dry to wet, cli-
mate changes for each parameter are shown on the
same panel. The arrows point from the base-climate
station parameter value to the downscaled parameter
value, with the horizontal plotting positions of the
arrows indicating the true station-level parameters
toward which the downscaling is targeted. Thus, the
magnitudes of the downscaled climate changes are
proportional to the lengths of the arrows, and perfect
downscaling is indicated by the tips of the arrows
touching the 1:1 lines exactly. The horizontal separa-
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Fig. 2. Downscaling results for the 5 stations of Area OR during the winter (DJF) season, for (a) climatological wet-day probabil-

ities, (b) daily precipitation occurrence autocorrelations, (c) average wet-day precipitation amounts, and (d) standard deviation of

wet-day precipitation amounts. Arrows point from the original station parameter to the downscaled station parameter, with the

horizontal plotting positions indicating the true station parameters toward which the downscaling is targeted. Letters indicate sta-

tion names (cf. Table 1). Parameter values in the panel corners indicate original and changed-climate (‘extrapolated’) parameters
for the area-averaged series

tions between pairs of arrows pertaining to the same
station indicate the differences in station parameters
between the dry and wet years. Parameters in the cor-
ners of each panel indicate the wet and dry values for
the area-averaged series. In both figures, all 4 of the
parameters are larger in the wet years and smaller in
the dry years, both at the station and area-average
scales. For example, in Fig. 2a, T,e, = 0.82 for the wet
winters and 0.72 for the dry winters. The 5 downward

pointing arrows show the downscaling results for the
wet base to the dry changed climate at each of the sta-
tions, and the 5 upward arrows indicate the downscal-
ing for the dry base to the wet changed climate.

Fig. 2 shows very good results for the downscaling of
all 4 parameters, particularly considering the ex-
tremely varied precipitation climates within Area OR.
There are large changes in both tand p, and moderate
changes in g, all of which are well represented. Even
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Fig. 3. Downscaling results for the 5 stations of Area CNE during the summer (JJA) season, for (a) climatological wet-day proba-

bilities, (b) daily precipitation occurrence autocorrelations, (c) average wet-day precipitation amounts, and (d) standard deviation

of wet-day precipitation amounts. Arrows point from the original station parameter to the downscaled station parameter, with the

horizontal plotting positions indicating the true station parameters toward which the downscaling is targeted. Letters indicate sta-

tion names (cf. Table 1). Parameter values in the panel corners indicate original and changed-climate (‘extrapolated’) parameters
for the area-averaged series

the very small differences in p and o for Redmond are
captured by the downscaling, despite the fact that the
differences between the corresponding area-average
parameters are very substantial. The occurrence auto-
correlations change very little at either the station or
area-averaged scales.

Fig. 3 shows quite good results for the modest
changes in 1tand large changes in p for summer pre-
cipitation in the northeastern U.S. The comparatively

large changes in r are downscaled less satisfactorily,
although the magnitudes of this parameter for summer
precipitation in this area are small. Fig. 3d shows that
the downscaling errors for r in Fig. 3b are propagated
into the downscaled precipitation amount variances,
which follows from Eqs. (10b) & (11b). The overall
results are nevertheless reasonably good.

Finally, Figs. 4 & 5 show boxplots sketching the full
distributions of the downscaling errors, with the
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errors for the 5 stations and all 4 seasons aggregated
within each of the 6 areas. Fig. 4 shows the errors for
mand P (which jointly determine the mean precipita-
tion, E[S(T)]), and Fig. 5 shows the errors for r and o
(which influence only the variance, Var[S(T)]). There
appears to be a slight bias in the downscaling of T, in
the sense that the downscaled values tend on aver-
age not to change the original Tig.ion by quite
enough. This results in a compensating small bias in
the opposite direction for the downscaled p (cf.
Eq. 11a). Overall, however, the magnitudes of the
errors are rather small in most cases, and these fig-
ures indicate that the scheme is quite workable over-
all.

4. SUMMARY AND CONCLUSIONS

This paper has detailed the construction and valida-
tion of a statistical downscaling procedure suitable for
use with information regarding changes in the clima-
tology of daily precipitation at the scale of a GCM grid
box. The procedure is based on characterization of the
precipitation climate in terms of a few parameters
defining a stochastic weather model, which is conve-

nient also for eventual stochastic simulation of the
changed climate and its impacts on agricultural, eco-
logical or hydrological processes.

An important aspect of this study is that the proce-
dure has been validated for 6 diverse regions across
the U.S., by using natural climatic variability as a proxy
for climate change. For this purpose the wettest 40%
and the driest 40% of years were alternately regarded
as baseline- and changed climates. This approach
might profitably be adopted in other downscaling
studies as well, regardless of whether they are statisti-
cally or physically based. In order to achieve statisti-
cally stable parameter estimates for the validation
comparisons, the daily precipitation data has been
stratified into the standard 3 mo seasons, DJF, MAM,
JJA and SON. However, noticeable variations of the
parameters within these periods do occur in some
instances, and in practice it might be better to consider
aggregation over 1 or 2 mo periods.

Of the basic downscaling equations proposed here,
only those for the precipitation amount parameters
(Eq. 11) have any theoretical basis (i.e. Eq. 9). Eqs. (6)
& (8) for downscaling the precipitation occurrence
parameters are ad hoc choices, although they satisfy
sensible mathematical constraints, and produce gener-
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ally good results in the validation comparisons. More
satisfying theoretically would be to downscale these
parameters using explicit information regarding the
physical climatic controls within each grid-box area,
such as topography, distance to water bodies, etc. For
the present data, attempts to downscale the wet-day
probabilities using statistical specifications for individ-
ual Tigation iN terms of Tige, and various geographical
predictor variables (Wilks 1998b) yielded validation
results comparable to those from Eq. (6) only for Area
OR (e.g. mean absolute error of 0.020 for the dry to wet
climate change; cf. Fig. 4), but decidedly biased and
inferior downscaling specifications for the remaining
areas (mean absolute errors of 0.036, 0.028, 0.036,
0.062, and 0.022, for the dry to wet change in Areas
CA/NV, MN, OK, MS, and CNE, respectively). As
noted previously, biased specification of 1 also leads,
through Eq. (11a), to biased downscaling of p.
Attention has been confined here to downscaling
stochastic model parameters for daily precipitation,
although in principle similar approaches could be
applied for temperature or solar radiation using well-

(0.96) (0.79) (0.68) (1.61) (1.52)(1.02)

errors are shown parenthetically
below each boxplot

known stochastic models for these quantities (e.g.
Richardson 1981). It is possible that this could be a sim-
pler process, since Egs. (9) & (10) alone might be suffi-
cient to downscale the critical parameters. Attempting
this in future work would probably be worthwhile.
However, it should be remembered that unexpected
results can be obtained when simultaneously altering
the parameters for the temperature and precipitation
processes in models of this kind (Katz 1996).

One very attractive feature of using stochastic model
parameters for downscaling is that the results are
immediately in a convenient form for stochastic simu-
lation (‘weather generation’), in order to provide input
for various impacts models. Appendix 1 outlines proce-
dures for implementing these simulations for a location
once the parameters {Tyown: Tdown» Hdown Odown} have
been computed. It is also possible to extend these sim-
ulations to the generation of spatially coherent time
series at multiple locations within a grid-box-sized
area (Wilks 1998a), which could be particularly useful
for investigation of such issues as distributed hydro-
logic responses to changes in climate.
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Appendix 1. Stochastic simulation with the downscaled parameters

Once the model parameters {Tgown: Idown: Hdown Odown}
have been downscaled, their use in stochastic simulation
of the inferred changed precipitation climates at individ-
ual stations is straightforward. First, since use of the tran-
sition probabilities (Eq. 1) is the most convenient approach
to simulating daily precipitation occurrences, they need to
be recovered from Tiyown @and ryown, by inverting Eq. (2):

Por = T(1-1) (Ala)
and
pp = mHr(1-m (Alb)

The transition probabilities can then be used to simulate
sequences of wet and dry days, by generating a uniform
[0,1] variate, u (e.g. Press et al. 1986, Bratley et al. 1987), for
each day, and comparing it with the appropriate transition
probability. The current day is simulated to be wet when

o1, if the previous day was dry
u < (A2)

11, if the previous day was wet

and simulated to be dry otherwise.

When a wet day is simulated, a precipitation amount
must also be generated. Most commonly these are
assumed to follow a gamma distribution, the probability
density function for which is

(x/B)* ™" exp(-x/B)
Br(a)
Since the mean and variance of the gamma distribution

are ap and ap?, respectively, the 2 distribution parameters
can be simply obtained from pggwn and 0%gwn Using

fx) = (A3)

a = p%/o? (Ada)
B = o¥/u? (A4b)

and

The gamma distribution parameters can then be used with
readily available computer codes (e.g. Press et al. 1986, Brat-
ley et al. 1987) to simulate the nonzero precipitation amounts.

Alternatively, it has been found in at least some cases
(Woolhiser & Roldan 1982, Foufoula-Georgiou & Letten-
maier 1987, Wilks 1998a) that the distributions of daily
nonzero precipitation amounts are better represented by
the mixed exponential distribution. This is simply a proba-
bility mixture of 2 ordinary 1-parameter exponential distri-
butions, the probability density function of which is

a X[, 1-a X

f(x) = EexpB}S—lE+EexpE’E&—ZE (A5)
Using the mixed exponential distribution in the present
context is slightly more complicated, because only the
2 quantities W gown and 6 3o, are supplied by the downscal-
ing procedure, while the mixed exponential distribution
has 3 parameters. These are the mixing parameter, o, and
the means B, and B, of the 2 exponential distributions. The
most straightforward solution to this problem is to first de-
termine a value for the mixing probability, perhaps by as-
suming that it is unchanged from the base climate, or by
downscaling it using Eq. (6) (Wilks 1998b). Then, consistent
values for the 2 means can generally be obtained using

- 2 _ 12
R e (A6a)
and —ap
B, = %al (A6b)

Simulation of a mixed exponential variate is a simple 2-
step process. First, either (3, or B, is chosen by comparing a
new uniform [0,1] variate u to the mixing parameter, a. If
u < a then B, is chosen, and (3, is chosen otherwise. Finally,
a precipitation amount x is generated using

X = Xmin — B In(u) (A7)
where X, is the daily precipitation amount below which a

day is recorded as being dry, B is either (3, or 3, (determined
as just described), and u is a third uniform [0,1] variate.
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