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1. INTRODUCTION

General Circulation Models (GCMs) suggest that ris-
ing concentrations of greenhouse gases will have sig-
nificant consequences for global climate. What is less
certain is the extent to which local, surface variables
such as daily precipitation or temperature will be
affected. This uncertainty arises due to the fact that the
spatial resolution of GCMs (typically on the order of
50 000 km2) is too coarse to resolve topographic and
sub-grid-scale processes such as clouds, and because
GCM output (particularly for precipitation) is poorly
resolved at the scale of individual grid points. How-
ever, for many climate change impact analyses it is

precisely the sub-grid-scale processes and hetero-
geneity, at daily or shorter time intervals, that is
required (Hostetler 1994). So-called ‘downscaling’
techniques have emerged as a means of bridging the
divide between what climatologists can currently pro-
vide and what the impacts community currently
require.

The theory and practice of downscaling is well
described in the literature (e.g. Kim et al. 1984, Karl et
al. 1990, Wigley et al. 1990, Giorgi & Mearns 1991, von
Storch et al. 1993, Wilby & Wigley 1997). In essence,
all downscaling methods relate observed mesoscale,
free-atmosphere, predictor variables (such as mean-
sea-level pressure patterns) to observed sub-grid-
scale, or even station-scale, surface predictands (such
as precipitation). However, the techniques differ in the
means by which these empirical or physically based
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predictor-predictand relationships are established.
Recent examples of the main approaches include:
regression-based methods (e.g. Crane & Hewitson
1998); resampling methods based on circulation classi-
fications or airflow indices (e.g. Conway et al. 1996);
stochastic Weather Generator (WGEN) approaches
(Semenov & Barrow 1997); and physically based Lim-
ited Area Modelling (e.g. Christensen et al. 1997). All

such techniques are dependent upon the
veracity of GCM output over the downscal-
ing region of interest, on the stationarity of
predictor-predictand relationships under
future climate conditions, and on the selec-
tion of forcing variables relevant to the pre-
dictand of interest.

The issue of non-stationarity, in particular,
may seriously undermine the realism of
future climate downscaling (Wilby 1997).
Unfortunately, a growing number of studies
have indicated considerable variability in
the relationship(s) within or between atmos-
pheric circulation patterns and surface cli-
mate. For example, Widmann & Schär (1997)
showed that observed trends in daily precip-
itation across Switzerland in the period
1961–1990 could not be attributed to ob-
served changes in the frequency of the 8
Schüepp (1979) weather classes. Rather, the
precipitation trend was related to highly sig-
nificant increases in the mean daily rainfall
amounts that fell within major rain-produc-
ing weather types. The changes were linked
to: higher low-level synoptic wind velocities
during rain-producing weather episodes
resulting in stronger uplift, particularly in
the mountainous terrain; and to higher
atmospheric temperatures and moisture
leading to an overall increase in precipita-
tion rates (Schär et al. 1996). Comparable
studies of daily precipitation in the UK have
attributed daily, intra-weather-class vari-
ability to changes in the dominant precipita-
tion mechanism (whether convective or
stratiform in origin) (Wilby et al. 1995), or to
changes in the intensity of rain-bearing cir-
culations and/or depression tracks (Swe-
eney & O’Hare 1992). Similarly, Osborn
(1997) demonstrated that the long-term
mean intensity of area-average and point
precipitation series can change by different
relative amounts if the spatial scale of the
precipitation events, and hence the fraction
of wetted area, changes (for instance, from
highly localised convective to more diffuse
frontal rainfall).

Thus, non-stationary predictor-predictand relation-
ships in statistical downscaling models may be attrib-
uted to 3 underlying factors: (1) an incomplete set of
predictor variables that excludes low-frequency cli-
mate behaviour; (2) an inadequate sampling or calibra-
tion period for the chosen predictor-predictand rela-
tionship(s); or (3) most seriously, situations in which the
climate system structure(s) changes through time.
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Fig. 1. Annual time-series of the spring (MAM) mean wet-day amount, µ,
conditional dry-day probability, p00, and conditional wet-day probability, 

p11, at Kempsford, UK, over the period 1881–1990
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Empirical methods are not well placed to resolve case
(3), whereas case (2) may be addressed using longer
data sets. For example, Fig. 1 shows the time-varying
behaviour of the 3 parameters (mean wet-day amount
or intensity, µ, conditional dry-day probability, p00, and
conditional wet-day probability, p11; see Table 1) that
typically underpin ‘chain-dependent’ stochastic rain-
fall models (Todorovic & Woolhiser 1975, Katz 1977).
Although there is considerable inter-annual variability
in the parameter values at this site, it is evident that a
precipitation model of this type, calibrated using daily
data for the period 1900–1920, would seriously under-
estimate the mean wet-day amount and overestimate
wet-spell lengths if the chosen validation period was
1940–1960. However, a model calibrated using just the
first half of the record, and validated using the second,
might give a reasonable approximation of the statisti-
cal properties of the validation period, but not neces-
sarily the time-series attributes.

The question is, therefore, raised as to what extent
such inter-decadal variability in model parameters
may be explained and reproduced by other forcing
factors (case [1]), whilst at the same time preserving
high-frequency variability. A number of options for
addressing low-frequency variability have been
explored, including: optimising the length of the cali-
bration period (e.g. Wilby 1997); the use of mixtures of
stochastic processes (e.g. Katz & Parlange 1996); and
the identification of candidate predictors using spectral
analyses (e.g. Plaut et al. 1995). For example, indices
such as the El Niño Southern Oscillation Index (SOI),
the Pacific North American (PNA) or the North Atlantic
Oscillation Index (NAOI) have been used extensively
to analyse global/regional variability in climate and
hydrological data sets (recent publications include:
Hurrell 1995, Shabbar & Khandekar 1996, Dai et al.
1997, Rodo et al. 1997, Simmonds & Hope 1997, Hart-
ley & Keables 1998, Rodriguez-Puebla et al. 1998). A
number of studies have specifically considered the
relationship(s) between global sea-surface tempera-
ture (SST) anomalies and/or teleconnection indices

and frequencies of atmospheric circulation patterns
across specific regions such as the Mediterranean
(Laita & Grimalt 1997), Europe (Fraedrich & Muller
1992), and the British Isles (Wilby et al. 1997). Other
studies have employed SST anomalies for real-time
statistical forecasting of seasonal temperatures and
precipitation (e.g. Colman 1997, Carson 1998), or have
explicitly incorporated teleconnection indices within
downscaling schemes. For example, Cavazos (1997)
modelled monthly rainfall totals in N.E. Mexico using
PNA, SOI and 1000–500 hPa thickness scores. Simi-
lary, Woodhouse (1997) used a set of 6 teleconnection
indices (SOI, SST from the equatorial Pacific, PNA,
cyclone frequencies, a southwestern trough index, and
a Pacific-high southwestern-low index) to model win-
ter rain days and average maximum temperatures at
40 to 50 climate stations across California, Arizona and
New Mexico.

In the present study, both high-frequency (daily) and
low-frequency (seasonal) predictor variables are
employed to downscale daily precipitation at selected
sites in the UK. Three daily precipitation models are
compared. These are based on: (1) daily vorticity only,
i.e. no low-frequency forcing; (2) daily vorticity and a
seasonal index of zonal airflows, the NAOI; and
(3) daily vorticity and a seasonal index of SST anom-
alies. In comparing the model validation results, partic-
ular attention is paid to the relative skill of each model
at reproducing monthly rainfall variability. The con-
cluding section assesses the potential gains from incor-
porating teleconnection indices into statistical down-
scaling schemes and the further research required to
do this.

2. DATA

Four principal data sets were employed during the
calibration and validation of the daily precipitation
models. Firstly, daily rainfall data for 2 UK stations
(Durham, northeast England and Kempsford, central
southern England) were selected for the period
1881–1990 on the basis of their length and reliability
(see Joyce et al. [1998] for a critique of the Durham
record). Both of these sites have been employed in pre-
vious downscaling studies (e.g. Conway et al. 1996,
Wilby 1997) and are used herein for further model
development. Additionally, daily precipitation data for
a set of 5 secondary sites (Cambridge 1901–1990,
Derby 1911–1990, Norwich 1908–1990, Sandringham
1904–1990, and Wall Grange 1900–1990), which
broadly represent conditions in central and eastern
England, were used to investigate relationships be-
tween site rainfall and regional airflow or teleconnec-
tion indices. For the purpose of both the precipitation
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µ Mean wet-day amount (mm)

p00 Conditional probability of a dry-day following a 
dry-day

p01 Conditional probability of a wet-day following a 
dry-day

p11 Conditional probability of a wet-day following a 
wet-day

πw Unconditional wet-day probability

L90d 90th percentile dry-spell duration (d)

L90w 90th percentile wet-spell duration (d)

Table 1. Definition of daily precipitation terms
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analyses and modelling a wet-day was defined as a
day with a non-zero precipitation total. Note that this
reduces the overall number and mean duration of dry
spells because days with trace amounts (<0.2 mm d–1)
are treated as wet-days.

Secondly, one of the 3 airflow indices used by Jones
et al. (1993) to objectively reproduce the subjective
British Isles weather classification system devised by
Lamb (1972) was used herein as a predictor of daily
precipitation parameters (renewal and intensity pro-
cesses). The chosen index was the total shear vorticity
(Z), a measure of the degree of cyclonicity (with posi-
tive values representing cyclonic conditions and nega-
tive values anticyclonicity). The vorticity units are
geostrophic and expressed as hPa per 10° latitude at
55° N. The daily vorticity was calculated for 1881–1990
using daily grid-point sea-level pressure data mea-
sured at 5° latitude by 10° longitude intervals across
the British Isles. 

Thirdly, seasonal SST anomalies for the North
Atlantic region (40° to 60° N, 35° to 5° E) were obtained
from the corrected GISST (Global Sea Ice and Sea Sur-
face Temperature) data set for the period 1901–1990
(Folland & Parker 1995). Finally, the NAOI was derived
for each climatological season (i.e. DJF, MAM, JJA and
SON) using monthly mean-sea-level pressure data for
Lisbon (Portugal) and Stykkisholmur (Iceland) for the
period 1881–1990 (Hurrell 1995).

At this point it is uncertain as to how complete the
chosen set of predictors is in terms of forcing precipita-
tion at different temporal scales. The intention was to
include continuous predictor variables that have been
previously employed for downscaling precipitation in
the British Isles (see below). The fact that these predic-
tors do not explain all the variability in precipitation
suggests that additional variables are required. How-
ever, the ultimate choice of predictors is constrained by
data availability, a significant consideration when
interdecadal time scales are to be considered. Under
ideal circumstances a parsimonious set of predictors
would be objectively selected from a comprehensive
array of downscaling variables that describe the mois-
ture content, stability, and horizontal and vertical
motion of the atmosphere over the target region (Wilby
& Wigley unpubl.).

3. RELATIONSHIP BETWEEN DAILY
PRECIPITATION AND REGIONAL FORCING

Previous studies have capitalised upon the strong
positive correlations between daily vorticity and daily
precipitation renewal/intensity processes (e.g. Con-
way et al. 1996, Pilling et al. 1998, Wilby et al. 1998).
Figs. 2 & 3 demonstrate respectively that the probabil-
ity of a wet-day following a wet-day, or a wet-day fol-
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Fig. 2. Relationship between daily vorticity (Z) and probability of a wet-day following a wet-day (p11) at Durham (s) and Kemps-
ford (D) in (a) DJF, (b) MAM, (c) JJA and (d) SON, 1881–1935
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lowing a dry-day are non-linearly related to the daily
vorticity. Not surprisingly, higher vorticities (or cy-
clonicity) are associated with a higher incidence of
precipitation occurrence. Although the precise shape
of the curve varies between the seasons, the relation-
ship is approximated by second-order polynomial
expressions, and is remarkably similar for the 2 sites
given that they are separated by a distance of 400 km.
Indeed, Conway et al. (1996) demonstrated that the
relationship between the percentage of wet-days and
vorticity is qualitatively similar for all 9 coherent pre-
cipitation regions of the British Isles.

Fig. 4 indicates that the polynomial transfer function
is also valid for mean wet-day precipitation amounts
which exhibit a non-linear increase with increasing
vorticity. In this case, however, there is greater spatial
heterogeneity in the shape of the curves, most notably
in winter and summer. This reflects the fact that daily
vorticity, calculated for a domain that covers the entire
British Isles, will capture only the mesoscale forcing of
daily precipitation amounts, overlooking local factors
which might be of greater significance, particularly for
convective precipitation events. Furthermore, the het-
eroscedacity of the data at the highest vorticities is
attributed to the comparitively small samples used to
estimate the mean wet-day amounts.

Table 2 shows the means and standard deviations of
the 3 predictor variables (Z, NAOI and SST) by season,
comparing 1881–1935 with 1936–1990. It is evident

that the largest changes in the mean daily vorticity and
seasonal NAOI were in winter, and for the SST anom-
alies in spring. These changes are reflected by in-
creases in the mean daily wet-day amounts at Kemps-
ford (and to a lesser extent at Durham). With the
exception of Durham in summer, all seasons show an
overall increase in the mean wet-day amounts, accom-
panied by a general increase in the standard deviation
of wet-day amounts.  The SST anomaly was the only
predictor to show a uni-directional change in the sea-
sonal means (albeit only a slight increase) between the
2 periods. However, a Student t-test revealed that
none of the differences in the predictor means
between 1881–1935 and 1936–1990 were statistically
significant (p < 0.10).

As Table 3a and b indicate, the annual series of the
seasonal mean wet-day amounts (µ), conditional wet-
day (p11) and conditional dry-day (p00) occurrences are
significantly (p < 0.05) correlated with certain annual
series of the seasonal NAOI and SSTs respectively.
Although the NAOI is negatively correlated with all 3
precipitation processes, there are no common sets of
agreement between the 2 sites or between any 2 pairs
of seasons. However, the negative correlations be-
tween precipitation and the NAOI are consistent with
previous analyses of surface climate variability at indi-
vidual sites in northwest Europe (Hurrell 1995) and for
regional averages across the British Isles (Wilby et al.
1997). Both these studies confirm the existence of neg-
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Fig. 3. Relationship between daily vorticity (Z) and probability of a wet-day following a dry-day (p01) at Durham (s) and Kemps-
ford (D) in (a) DJF, (b) MAM, (c) JJA and (d) SON, 1881–1935
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ative correlations between seasonal or monthly precip-
itation totals and the seasonal NAOI, which is most
pronounced for locations south of Scotland and during
winter (DJF). But, with the exception of Wall Grange, it
is evident for the secondary sites that significant corre-
lations between the seasonal NAOI and mean daily
wet-day amounts occur most frequently in MAM; sig-
nificant correlations for conditional dry-day probabili-
ties occur most frequently in JJA (Table 3c).

In the case of the SST anomalies, only MAM condi-
tional wet- and dry-day probabilities are significantly
correlated in the same way at both key sites. However,
as Fig. 5 shows for Kempsford, whilst the correlations
are significant for both parameters of the renewal pro-
cess in MAM, the correlation is weak and there is con-
siderable inter-annual variability. Nonetheless, the
results for Durham and Kempsford are replicated by
those of the secondary sites (Table 3c). As before, the
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Fig. 4. Relationship between daily vorticity (Z) and mean wet-day amount (µ) at Durham (s) and Kempsford (D) in (a) DJF, 
(b) MAM, (c) JJA and (d) SON, 1881–1935

Variable DJF MAM JJA SON
1881–1935 1936–1990 1881–1935 1936–1990 1881–1935 1936–1990 1881–1935 1936–1990

Z Mean –4.38– –2.10– –1.46– –2.62– –0.18– –0.64– –2.32– –1.79–
SD 29.530 30.470 24.960 25.720 20.450 20.720 26.680 27.290

NAOI Mean 0.29 –0.43– –0.02– 0.07 –0.16– 0.15 0.16 0.30
SD 1.80 1.88 1.88 1.57 1.60 1.25 1.62 1.70

SSTa Mean –0.13– 0.04 –0.16– 0.04 –0.11– 0.07 –0.07– 0.07
SD 0.25 0.31 0.25 0.31 0.40 0.36 0.32 0.36

Durham Mean 2.70 3.00 2.83 2.91 3.97 3.93 3.45 3.53
SD 3.44 4.05 3.97 4.19 5.83 5.72 5.19 5.27

Kempsford Mean 3.69 4.17 3.41 3.85 4.41 4.78 4.21 4.74
SD 4.35 4.44 4.20 4.19 5.74 6.50 5.15 5.44

a1901–1935 was used instead of 1881–1935

Table 2. Means and standard deviations of the predictor variables daily vorticity (Z), seasonal North Atlantic Oscillation Index
(NAOI) and North Atlantic sea-surface temperature (SST) anomalies, comparing 1881–1935 with 1936–1990. Means and 

standard deviations of daily wet-day amounts (mm) at Durham and Kempsford are also provided
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renewal processes, p11 and p00, are significantly corre-
lated at all sites with the SST anomalies in MAM. Sim-
ilarly, p00 is positively correlated with the SST anom-
alies at all sites except Durham and Sandringham in
JJA. These findings are consistent with the positive
correlations found between summer SSTs and summer
Central England Temperatures (Colman 1997), given
that longer summer dry spells generally herald higher
summer temperatures. 

High correlation scores from empirical predictor-
predictand relationships can often result either from a
trend in the data or from the persistence of anomalies
in the independent variable. Significant (p < 0.05)
trends in mean SSTs were detected in 4 series: JFM,
FMA, NDJ and DJF. This suggests that amongst all the
SST correlation results reported in Table 3b, c, only

those for DJF may have been biased by the trend in
SSTs. The seasonal SST series were also investigated
for persistence by deriving correlation coefficients
between the current and preceeding 4 seasons. For
example, Table 4 reveals that SSTs in MAM are highly
correlated (r = +0.78) with SSTs in the preceeding DJF.
The results indicate that the significant correlations
between precipitation parameters and SSTs in MAM
(Table 3b, c) could be partly explained by the persis-
tence of the SST anomalies between winter and spring.
This outcome is also consistent with Colman’s (1997)
assertion that a very persistent wavetrain-like SST
anomaly pattern exists in the North Atlantic between
January-February and April-May.

From these preliminary analyses, it is reasonable to ex-
pect that the inclusion of the NAOI or SST anomalies as
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Precipitation Durham Kempsford
statistic DJF MAM JJA SON DJF MAM JJA SON

(a) Daily precipitation versus NAOI, 1881–1995
µ –0.23
p11 –0.22 –0.23
p00 –0.25 –0.25

(b) Daily precipitation versus SST, 1900–1995
µ +0.30
p11 –0.29 –0.40 –0.33 –0.25
p00 +0.24 +0.44 +0.32

Precipitation NAOI SST
statistic DJF MAM JJA SON DJF MAM JJA SON

(c) Daily precipitation versus NAOI and SST, 1900–1990
Cambridge
µ –0.32 +0.18
p11 –0.21 –0.33 –0.24
p00 –0.20 +0.24 +0.48 +0.23

Derby
µ –0.24 –0.23 –0.26
p11 –0.43 –0.34
p00 –0.20 –0.34 +0.19 +0.43 +0.35

Norwich
µ –0.27
p11 –0.33
p00 –0.21 +0.33 +0.26

Sandringham
µ –0.20
p11 –0.22
p00 –0.21 +0.33

Wall Grange
µ
p11 +0.22 –0.24 –0.37 –0.24 –0.20
p00 –0.34 –0.31 –0.25 +0.35 +0.35

Table 3. Significant correlations (<0.05) for the renewal (p11, p00) and intensity (µ) processes of daily precipitation (a) at Durham
and Kempsford versus the North Atlantic Oscillation Index (NAOI), 1881–1995; (b) at Durham and Kempsford versus the North
Atlantic sea-surface temperature (SST) anomalies (40° to 60° N, 35° W to 5° E), 1900–1995; and (c) at selected sites in Central Eng-

land versus the NAOI and North Atlantic SST anomalies (40° to 60° N, 35° W to 5° E), 1900–1990
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predictors in the vorticity-based downscaling should
yield modest improvements in monthly precipitation
statistics on a relatively limited number of occasions:
most notably in MAM when either the NAOI or SSTs are
employed. The following sections describe the calibra-
tion and validation of 3 statistical downscaling models
used to quantify the relative contribution of Z, NAOI and
SSTs to downscaled monthly precipitation variability.

4. DAILY PRECIPITATION MODELS

This section presents 3 alternative models for statis-
tically downscaling daily precipitation series using
combinations of airflow and teleconnection indices. In
each case, the models were calibrated using regional
predictors (Z, NAOI, SSTs) and station precipitation
data at Kempsford and Durham for each climatological
season (i.e. DJF, MAM, JJA, SON) in the period
1881–1935. For the validation period 1936–1990, the
models were forced using the regional predictors only,
and the downscaled daily precipitation at each site was
compared with observed data, again on a seasonal
basis. Although standard climatological seasons were

employed throughout, it is acknowledged that down-
scaling results can be sensitive to season definitions
(Winkler et al. 1997). Nonetheless, the inter-season
variations in mean wet-day amounts shown in Table 2,
as well as the subtle differences in the polynomial
curves (shown in Figs. 2 to 4) suggest that the chosen
seasons are legitimate. However, it is conceded that
season may be acting as a hidden variable and that
more parsimonious models could be developed.

In Models 2 and 3, the low-frequency variability is
treated additively due to the assumed linear relation-
ships between NAOI or SSTs and each precipitation
parameter (see Fig. 5). The alternative approach to
modelling low-frequency variability (as described by
Katz & Parlange 1996) was not employed because of
the arbitrary choices involved in stratifying the para-
meters by the conditioning variable.

4.1. Model 1: vorticity only

Variants of the vorticity-only model have been previ-
ously described by Conway et al. (1996), Pilling et al.
(1998), and by Wilby et al. (1998). As shown in Figs. 2
to 4, the renewal (p01 and  p11) and intensity (µ) pro-
cesses for a given season may be modelled using sec-
ond-order polynomial expressions

p01 =  a0 + a1Z + a2Z 2 (1)

p11 =  b0 + b1Z + b2Z2 (2)

µ =  c0 + c1Z + c2Z 2 (3)

Daily vorticity values (whether observed or derived
from GCM output) are used to determine the probabil-
ity of precipitation using Eq. (1) if the previous day was
dry and Eq. (2) if the previous day was wet. Precipita-
tion occurs on the current day if r1 ≤ p11 (or p01 if the
previous day was dry) where r1 is a uniformly distrib-
uted random number (0 ≤ r1 ≤ 1). If it is determined that
precipitation occurs, the mean intensity (µ) for a given
vorticity is calculated using Eq. (3). The actual daily
precipitation amount (R) for any given day is modelled
stochastically using
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Previous Current season
season DJF MAM JJA SON

DJF +0.58 +0.78 +0.53 +0.56
MAM +0.64 +0.60 +0.68 +0.68
JJA +0.57 +0.62 +0.41 +0.72
SON +0.75 +0.60 +0.40 +0.50

Table 4. Correlations between current North Atlantic SSTs
and SSTs for the previous 4 seasons, 1901–1990. All correla-

tions are significant (p < 0.05)

Fig. 5. Relationship (a) between the conditional dry-day prob-
ability (p00) at Kempsford and the North Atlantic Oscillation
Index (NAOI) in MAM, 1881–1990; and (b) between the
conditional wet-day probability (p11) at Kempsford and North
Atlantic sea-surface temperature (NA SST) anomalies in 

MAM, 1901–1990
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R  =  –Øµln(r2) (4)

where r2 is a second uniformly distributed random
number (0 < r2 ≤ 1) and Ø is a random scaling factor
used to inflate the variance of R to accord better with
observations (as in Hay et al. 1991). If the mean of Ø
is 1, the equality of µ and R is preserved. Without this
term the variance of observed daily precipitation
amounts modelled using the exponential distribution is
significantly underestimated.

4.2. Model 2: vorticity and North Atlantic 
Oscillation Index

Model 2 is identical to Model 1 in all respects except
that Eqs. (1) to (3) become

p01 =  a0 + a1Z + a2Z2 + a3 NAOI (5)

p11 =  b0 + b1Z + b2Z2 + b3 NAOI (6)

µ =  c0 + c1Z + c2Z2 + c3 NAOI (7)

where NAOI is the seasonal North Atlantic Oscillation
Index (Hurrell 1995). The revised equations thereby
assume the same long-term means for the renewal and
intensity processes (i.e. a0, b0 and c0) but add low-fre-
quency variability associated with the NAOI to the
daily variability due to vorticity.

4.3. Model 3: vorticity and North Atlantic sea-surface
temperature anomalies

Model 3 is identical to Model 1 in all respects except
that Eqs. (1) to (3) become

p01 =  a0 + a1Z + a2Z2 + a3 SST (8)

p11 =  b0 + b1Z + b2Z2 + b3 SST (9)

µ =  c0 + c1Z + c2Z2 + c3 SST (10)

where SST is the seasonal North Atlantic sea-surface
temperature anomalies (for the region 40° to 60° N, 35°
to 5° E) from the corrected GISST data set (Folland &
Parker 1995). The revised equations thereby assume
the same long-term means for the renewal and amount
processes (i.e. a0, b0 and c0) but add low-frequency
variability associated with SST anomalies to the daily
variability due to vorticity.

The structures of Models 2 and 3 assume that sea-
sonal time series of vorticity were uncorrelated with
the NAOI and SST anomalies. Whilst annual means of
the NAOI and Z were insignificantly correlated (r =
–0.01), there was a weak negative correlation between
annual mean SST anomalies and Z (r = –0.33). This will

slightly inflate the variance of p11 and p01, and reduce
the variance of µ in Model 3.

5. MODEL RESULTS

Table 5 presents the validation results of the precip-
itation downscaling using observed predictor variables
(Z, NAOI and SST) for the period 1936–1990 and the 3
models of daily precipitation at Durham and Kemps-
ford. Note that the downscaled precipitation statistics
shown in Table 5 are mean results obtained from one-
hundred, 55 yr stochastic simulations of the 3 models.
For each precipitation statistic the best model result is
highlighted in bold.

Overall, Model 3 yields the most accurate precipita-
tion statistics on 56% of occasions for Kempsford and
54% for Durham. The corresponding figures for
Model 2 are 24 and 16% respectively, and for Model 1
20 and 30% respectively. Although Model 3 produced
superior results compared with Models 1 and 2, on the
majority of occasions, the improvements were modest,
generally less than a 10% gain when compared with
the observed statistics. However, there were a few
notable exceptions, namely, the improved downscal-
ing by Model 3 of the standard deviations of dry-spell
lengths and the standard deviation of the monthly fre-
quency of wet-days at Kempsford. For all seasons, with
the possible exception of SON (Table 5d), Model 3 sig-
nificantly improved the downscaling of these precipi-
tation statistics. 

Although Models 2 and 3 yielded only marginal
gains in the simulation of most precipitation statistics
listed in Table 5, it is pertinent that these 2 models pro-
duced superior results to Model 1 on 24 out of 32 occa-
sions for the low-frequency (i.e. monthly) diagnostics.
Therefore, it is possible to conclude that the inclusion
of low-frequency predictors does slightly enhance sim-
ulations of low-frequency precipitation variability at
the 2 sites. Overall, the greater improvement in low-
frequency diagnostics occurred at Kempsford, reflect-
ing the greater number and strength of significant cor-
relations between daily precipitation processes and
the seasonal NAOI or SSTs at this site (Table 3a, b).
Both predictors are significantly correlated with para-
meters which govern the renewal process (i.e. p11 and
p00), a connection that is manifested in the results in
Table 5.

From Table 5 it is also evident that Models 2 and 3
produce similar results to Model 1 in terms of the daily
precipitation statistics. With the exception of Durham
in DJF and JJA, all 3 downscaling models underesti-
mate the mean wet-day amounts. This is a conse-
quence of the relative dryness of the calibration period
compared with the validation period (cf. Table 2), and
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of the fact that the assumed exponential distribution of
wet-day amounts tends to underestimate the magni-
tude of extreme events. Furthermore, the empirical
relationships in Eqs. (5) to (10) are assumed to be sta-
tionary when, in practice, the relationships between
teleconnection indices and surface climate variables

are known to vary through time (e.g. Nicholls et al.
1996). Such effects are not included in the present
models; therefore, any changes to downscaled precipi-
tation such as mean wet-day amounts or spell-lengths
are the result of differences in the mean Z, NAOI or
SSTs between 1881–1935 and 1936–1990 (Table 2).

172

Precipitation statistic Durham 1936–1990 Kempsford 1936–1990
Observed Model 1 Model 2 Model 3 Observed Model 1 Model 2 Model 3

(a) DJF
Wet-day (mm) Mean 3.00 3.00 2.98 3.01 4.17 3.83 3.90 3.89

SD 4.05 4.24 4.22 4.27 4.44 5.45 5.55 5.54

Wet spell (d) Mean 3.62 3.01 3.07 3.03 2.69 2.93 2.91 2.96
SD 3.50 2.56 2.66 2.62 2.56 2.59 2.60 2.71

Dry spell (d) Mean 2.41 2.21 2.22 2.26 3.17 2.54 2.57 2.65
SD 2.06 1.79 1.80 1.89 4.48 2.23 2.29 2.49

Monthly total (mm) Mean 54.4 52.6 52.6 52.4 57.6 62.6 63.1 62.5

SD 31.6 23.3 23.3 23.8 33.0 30.1 30.6 31.8

Monthly no. of wet-days Mean 18.07 17.54 17.68 17.43 13.81 16.15 16.02 15.91
SD 4.77 3.77 3.84 4.03 5.43 4.14 4.22 4.68

(b) MAM
Wet-day (mm) Mean 2.91 2.74 2.71 2.72 3.85 3.33 3.32 3.35

SD 4.19 3.85 3.80 3.82 4.19 4.51 4.49 4.52

Wet spell (d) Mean 3.17 2.95 2.94 2.95 2.75 2.67 2.69 2.71
SD 3.18 2.51 2.50 2.50 2.29 2.22 2.25 2.28

Dry spell (d) Mean 3.00 2.65 2.64 2.62 4.03 3.17 3.18 3.29
SD 3.10 2.30 2.27 2.25 5.70 2.96 2.99 3.39

Monthly total (mm) Mean 45.8 43.9 43.6 43.9 47.9 46.4 46.3 46.1
SD 26.9 21.1 20.9 21.3 28.0 24.1 23.7 23.9

Monthly no. of wet-days Mean 15.75 16.04 16.06 16.15 12.44 13.79 13.83 13.63
SD 5.35 4.13 4.08 4.04 5.29 4.29 4.36 4.73

(c) JJA
Wet-day (mm) Mean 3.93 3.94 3.93 3.95 4.78 4.33 4.34 4.32

SD 5.72 5.44 5.46 5.49 6.50 5.68 5.66 5.62

Wet spell (d) Mean 2.86 2.64 2.64 2.66 2.32 2.44 2.44 2.45
SD 2.54 2.20 2.19 2.20 1.82 2.00 2.01 2.00

Dry spell (d) Mean 3.07 2.61 2.61 2.68 3.93 3.04 3.02 3.14
SD 3.26 2.24 2.27 2.36 5.58 2.79 2.79 3.03

Monthly total (mm) Mean 58.1 60.3 60.3 59.9 54.4 58.7 59.0 57.7
SD 32.6 28.2 28.6 28.7 34.1 28.3 28.6 28.5

Monthly no. of wet-days Mean 14.80 15.32 15.33 15.17 11.37 13.44 13.47 13.21
SD 5.06 3.92 3.93 4.00 5.08 4.05 4.05 4.25

(d) SON
Wet-day (mm) Mean 3.53 3.44 3.44 3.41 4.74 4.12 4.12 4.16

SD 5.27 4.85 4.85 4.83 5.44 5.71 5.68 5.74

Wet spell (d) Mean 3.22 3.14 3.14 3.15 2.70 2.69 2.73 2.72
SD 3.02 2.65 2.65 2.66 2.47 2.28 2.34 2.30

Dry spell (d) Mean 2.63 2.18 2.17 2.19 3.52 2.54 2.54 2.60
SD 2.55 1.77 1.76 1.77 4.81 2.21 2.25 2.32

Monthly total (mm) Mean 58.9 62.0 61.9 61.4 62.4 64.7 65.1 65.0
SD 35.8 26.7 26.5 27.3 37.4 30.6 31.0 30.7

Monthly no. of wet-days Mean 16.70 17.98 18.02 18.01 13.16 15.53 15.65 15.45
SD 4.84 3.74 3.72 3.77 5.35 3.98 4.12 4.04

Table 5. Validation of models using daily and monthly precipitation statistics: (a) DJF; (b) MAM; (c) JJA; and (d) SON. For each 
precipitation statistic the best model result is given in bold
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The underestimation of the standard deviations of spell
lengths by Models 2 and 3 suggests that the modest
changes in the means of the low-frequency predictors
provide only a partial explanation for inter-decadal
variability in single-site precipitation diagnostics.

Of further interest, is the extent to which Models 2
and 3 are better able to reproduce the time-series
attributes of the daily precipitation at Durham and
Kempsford. By way of an example, Fig. 6 compares the
observed annual series of the unconditional wet-day
probabilities (πw) at Kempsford in MAM, with the
series produced by daily vorticity and seasonal SST
anomaly forcing (i.e. Model 3). Note that the down-
scaled time series is a single realisation produced by
the stochastic processes in Model 3. Note also that,
although the results are for the validation period
1936–1990, the comparison in Fig. 6 is probably an
optimal-case scenario given the strength of the corre-
lations between SST anomalies and precipitation para-
meters at Kempsford during the chosen season (cf.
Table 3b). Nonetheless, the regional forcing produces
an annual series for πw that is significantly (p = 0.0001)
correlated (r = +0.64) with observed data. In compari-
son, the correlations for the πw series produced by
Model 1 (r = +0.61) and Model 2 (r = +0.44) are mar-
ginally weaker, whereas the correlations between
observed and downscaled µ are statistically insignifi-
cant for all 3 models. Similar results were obtained for
the downscaled annual series of πw and µ for MAM at
Durham. At this site, observed µ-series were weakly
correlated (r = +0.33) with the downscaled series of
Model 2, but insignificantly correlated with the results
of Models 1 and 3. Once again, the observed πw series
were significantly correlated with the downscaled
series of all 3 models, but Model 3 was, in this case, by
far the most proficient (r = +0.54).

The results of the time-series analyses
of πw and µ suggest that the inclusion of
seasonal predictors in downscaling mod-
els can yield modest advances in the
description of inter-annual variability of
key precipitation parameters at individ-
ual sites relative to less sophisticated
vorticity-only models. However, these
gains are likely to be restricted to partic-
ular seasons and geographic locations
that are determined by the dominant
mode(s) of the regional forcing. In the
case of both the NAOI and SST anom-
alies, the optimal season is MAM (Table
3b, c), and the region central England.
However, further sites should be investi-
gated to assess the generality of these
results. Furthermore, stronger correla-
tions between observed and downscaled

time series would be expected for area-average, as
opposed to single-site, precipitation (as in Wilby et al.
1995).

6. DISCUSSION AND CONCLUSIONS

Non-stationary predictor-predictand relationships
are a major obstacle confounding the application of
statistical downscaling models to future climates
(Wilby 1997). However, such non-stationarity may, in
fact, be an artefact of the failure of many downscaling
models to incorporate appropriate low-frequency pre-
dictor variables. The present study has explored the
possibility of using variables that characterise both the
daily and monthly variability of daily precipitation at
selected sites in the British Isles.

Accordingly, 3 statistical downscaling models were
calibrated by regressing parameters describing the
daily precipitation at the sites of Durham and Kemps-
ford, UK, against regional climate predictors. Model 1
employed only 1 predictor, the daily vorticity obtained
from daily grid-point mean-sea-level pressure over the
British Isles. Model 2 employed both daily vorticity and
seasonal NAOI as predictors. Finally, Model 3
employed daily vorticity and seasonal North Atlantic
SST anomalies as predictors. All 3 models were vali-
dated using daily and monthly precipitation statistics
at the same stations for the period 1936–1990.
Although Models 2 and 3 yielded improvements in the
downscaling of the low-frequency precipitation diag-
nostics, the enhancements were modest relative to
Model 1 (the vorticity-only model).

This result might have been expected a priori given
the relatively weak correlations of the daily precipita-
tion renewal and intensity processes with the low-
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Fig. 6. A comparison of the observed annual series of the unconditional 
wet-day probability (πw) at Kempsford in MAM with the series produced by
statistically downscaling daily vorticity and seasonal SST anomalies using 

Model 3, 1936–1990
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frequency predictors (NAOI and SST). However, from
the preceding results it is clear that SSTs had margin-
ally more explanatory power than the NAOI, a not
unsurprising outcome given the dependency of the
NAOI on SSTs (Hurrell 1995). Furthermore, Colman
(1997) demonstrated a significant correlation between
North Atlantic SST anomalies in winter (January-
February) and the subsequent summer (July-August)
Central England Temperatures but the correlation
with the NAOI was much lower. The same study also
revealed that the correlation skill of SSTs for rainfall in
England and Wales was insignificant at the p < 0.05
level. 

Although the present study did not include lagged-
SST predictors in the downscaling, stronger correla-
tions may be found between certain precipitation para-
meters (µ, p11, p00) and antecedent SSTs. For example,
Fig. 7 shows that the MAM p11 parameter at Kemps-
ford was most strongly (negatively) correlated with the
preceeding NDJ mean SSTs. Similarly, Fig. 8 reveals
that significant negative correlations existed between
p00 (SON) at Durham and preceding FMA SST anom-
alies, and between p00 (JJA) and preceding ASO SSTs.
In the latter case, there was a marked shift from nega-
tive correlations between p00 and lagged SSTs to a pos-
itive correlation with concurrent SST anomalies. Com-
paring Figs. 7 & 8 it is evident that the results obtained

from the 2 sites are broadly consistent, with the notable
exceptions of MAM µ, JJA p11 and SON p00. Overall,
however, the majority of the lagged correlations at
both Durham and Kempsford were insignificant at the
p < 0.05 level such that, in most cases, the non-lagged
(i.e. concurrent) seasonal SSTs provide a reasonable
approximation of the maximum significant correla-
tions. Clearly, further research is required to deter-
mine the extent of the spatial dependency in the tele-
connections, and to define the optimum lag-interval for
the precipitation parameters of a given site and season. 

Nonetheless, the interim model results suggest that
there may be some merit in using the North Atlantic SST
series as a downscaling predictor variable for sites in the
UK. To date, however, there has been an almost exclu-
sive use of atmospheric circulation indices or weather
classification systems for precipitation downscaling. Ad-
ditional research is required to determine which, if any,
other low-frequency predictor variables should be in-
corporated in statistical downscaling models for Europe.
For example, there is tentative evidence to suggest that
luni-solar forcing may modulate inter-decadal variations
in extreme hourly rainfalls in the UK (e.g. May & Hitch
1989) or signals in North Atlantic tropical cyclone oc-
currence (e.g. Currie 1996). Alternatively, the Southern
Oscillation Index (SOI) has also been shown to correlate
weakly with winter rainfall totals over the British Isles
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Fig. 7. Correlations between the mean wet-day amount (µ), conditional wet-day probability (p11) and the conditional dry-day
probability (p00) at Kempsford versus North Atlantic SST anomalies, 1901–1990. For each climatological season the annual time
series of the precipitation parameters were correlated with antecedent values of the 3 mo mean SSTs. For example, the MAM p11

parameter is most strongly (negatively) correlated with the preceeding NDJ mean SSTs. Thin dashed lines denote correlations 
significant at the p < 0.05 level
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(Wilby 1993). Clearly, there is also a need to establish the
optimum form of the mathematical transfer functions (i.e.
whether linear, non-linear, multi-variate, etc.), as well as
the most parsimonious combination of (uncorrelated)
predictor variables.

Ideally, physically explainable variables such as
atmospheric humidity should be used in preference to
correlated teleconnection indices as a means of down-
scaling low-frequency precipitation variations (Hewit-
son pers. comm.). Ideally, the downscaling should
employ variables representing the primary forcing on
the predictand, at the appropriate temporal and spatial
resolution of the processes involved. Unfortunately,
most instrumental records are simply too short to ade-
quately sample inter-decadal climate variability, and
therefore there is a need to make recourse to proxy
variables such as SSTs or the NAOI for which longer
(≥100 yr) records are available. Until variables repre-
senting primary atmospheric dynamics become avail-
able there is always a danger that the use of telecon-
nection indices will introduce additional forms of
non-stationarity into the downscaling (see below). In
the meantime, links between teleconnection indices
and European climate, expressed in terms of changes
in the frequency of key circulation patterns (e.g.
Fraedrich & Muller 1992, Wilby 1993), provide a plau-
sible basis for downscaling.

Further explanations for the rather limited gains in
the downscaling of the low-frequency precipitation sta-
tistics using the present set of predictors may be that
daily station data are of too high spatial and temporal
resolution to capture this regional-scale forcing. In
other words, changes in local-forcing factors may be of
greater significance to the inter-decadal variability of
daily precipitation renewal and intensity processes at
Durham and Kempsford. Hence, spatial averaging of
multiple station data could reduce the noise component
and increase the signal in the precipitation time series.
Alternatively, the geographic location of the 2 primary
sites relative to the dominant centres of airflow forcing
may predispose weak correlations. For example,
Wigley & Jones (1987) demonstrated that the strongest
correlations between westerly airflows and monthly
precipitation are in NW England. Similarly, analyses of
the North Atlantic Oscillation, and its affect on regional
rainfall variability across the British Isles, indicate that
the strongest correlations between seasonal rainfall to-
tals and the NAOI occur in northern Scotland (positive
correlation) and central England (negative correlation)
(Wilby et al. 1997). These findings are endorsed, to a
certain extent, by the correlation results obtained for
the secondary sites in central and eastern England
(Table 3c). Therefore, low-frequency variations in pre-
cipitation renewal and intensity processes due to air-
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Fig. 8. Correlations between the mean wet-day amount (µ), conditional wet-day probability (p11) and the conditional dry-day
probability (p00) at Durham versus North Atlantic SST anomalies, 1901–1990. For each climatological season the annual time
series of the precipitation parameters were correlated with antecedent values of the 3 mo mean SSTs. Thin dashed lines denote 

correlations significant at the p < 0.05 level
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flow and/or teleconnection forcing(s) are expected to
have a greater impact on downscaled daily precipita-
tion at stations located in these regions.

Although the NAOI and SST indices have been used
as a means of inflating the downscaled monthly pre-
cipitation variability, in doing so, the empirical rela-

tionships between these indices and the
seasonal precipitation parameters (µ,
p11, p00) are assumed to be stationary.
Identical assumptions were made con-
cerning the relationship between daily
precipitation renewal/intensity pro-
cesses and daily vorticity (cf. Wilby
1997). By way of an example, Fig. 9
shows the MAM best-fit, linear regres-
sion relationships between the SST
anomalies and each of the precipitation
parameters at Kempsford for the model
calibration (1901–1935) and validation
(1936–1990) periods. From Fig. 9a, c it
is evident that the assumption of sta-
tionarity is valid in the case of the mean
wet-day amounts, µ, and the condi-
tional dry-day probabilities, p00: the
regression lines based on the 1936–
1990 data lie within the 95% confi-
dence bands for the earlier period.
However, the corresponding regression
line for the conditional wet-day proba-
bilities, p11, does lie outside the confi-
dence bands for the 1901–1935 regres-
sion line (Fig. 9b). This suggests that,
for this site and season at least, the cor-
relation between the precipitation
renewal processes, p11, and the SST
anomaly forcing is not stationary. This
effect may be a consequence of differ-
ences in the spatial distribution of North
Atlantic SST anomalies between the
calibration and validation periods,
implying that simple teleconnection
indices (based on a limited number of
nodes or spatial domain) do not capture
all aspects of the inter-decadal variabil-
ity. In this respect, empirical orthogonal
functions (EOFs) of hemispheric atmos-
pheric circulation or SSTs may yield
more stable predictors.

An alternative approach to the down-
scaling of low-frequency climate vari-
ability involves the use of mixtures of
stochastic processes. Rather than deriv-
ing the time-varying renewal and
intensity parameters from regression
equations, this approach resamples ob-
served precipitation parameters from
categories defined by the low-fre-
quency predictor(s). For example, Katz
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Fig. 9. Relationships between (a) the mean wet-day amount (µ), (b) the condi-
tional wet-day probability (p11), and (c) the conditional dry-day probability
(p00) at Kemspford and the North Atlantic SST anomalies in MAM. Thick
solid line is the linear regression calculated from the 1901–1935 (model cali-
bration period) data. Thin solid lines indicate the 95% confidence band for this
regression. Dashed line is the regression line calculated from the 1936–1990
(model validation period) data. (s) Years after 1935. All regression gradients
are significant at the p < 0.1 level, with the exception of the 1901–1935 p11

relationship
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& Parlange (1996) found that the best precipitation
model was obtained when the probability of a wet-day,
the intensity mean and the intensity standard devia-
tion (but interestingly not the persistence parameter)
were conditioned by an index of monthly mean-sea-
level pressure anomalies. When compared with an
unconditional precipitation model, the additional com-
plexity of the conditional model in the occurrence pro-
cess was found to eliminate the overdispersion of total
precipitation in January at Chico, California. This
study also highlights the merit of using relatively sim-
ple indices of low-frequency forcing, indices that
should be resolved more realistically in present-day
and future climate simulations of GCMs.

Thus, teleconnection indices have clear explanatory
power for certain surface variables, in certain regions
and seasons, and for the present global climate, but it
remains unclear as to what extent the same indices
may be used to downscale future climates. This is
because the capability of GCMs to represent telecon-
nection processes (such as ENSO or NAO) is still in its
infancy (e.g. Knutson et al. 1997) and because the sig-
nificance of global warming to such processes is uncer-
tain (e.g. Trenberth & Hoar 1997). Under climate
change conditions regional patterns of SSTs may
emerge that have no historical precedent, with serious
implications for the validity of empirically based down-
scaling scenarios. 

Ensemble runs of the Hadley Centre AGCM (Atmos-
pheric General Circulation Model) (HADAM1) suggest
that GCMs can correctly reproduce dominant modes of
interannual variability in mean-sea-level pressure and
500 hPa height patterns over the North Atlantic, as well
as reasonable approximations of the seasonal cycle and
interannual variance of the NAO (Davies et al. 1997).
However, the significance of NAO or ENSO to future re-
gional climates will depend to a large extent on the mag-
nitude of the predicted temperature increases in the
North Atlantic and tropical Pacific respectively (Meehl &
Washington 1996, Smith & Ropelewski 1997, Smith et al.
1997). Clearly, further research is required to determine
whether or not the inclusion of teleconnection indices in
downscaling schemes can help explain interdecadal
variations in model parameters, and lead to better rep-
resentations of low-frequency variability in both present
and future climates at regional scales.
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