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1. INTRODUCTION

Assessments of the temporal variability of air tem-
perature provide fundamental information on how the
climate system responds to a variety of forcings. In
evaluating the temporal variability of air temperature,
it also is useful to compare the magnitude of temporal
changes to unresolved spatial variability. One reason
for comparing spatial and temporal variability is funda-

mental to evaluating climatic change: if the spatial
variability of air temperature cannot be resolved ade-
quately, then evaluating whether temporal changes
are spatially extensive will be problematic. Observed
temporal variability in air temperature at a particular
location, for instance, might be the result of unresolved
(i.e. aliased) changes in spatial patterns that are not the
result of a spatially uniform climatic change, but of
local-scale climatic variability (e.g. Fig. 1). In practice,
most studies of climatic change utilize air temperature
anomalies (i.e. deviations from a mean value, calcu-
lated at the station location; e.g. Jones et al. 1986,
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Hansen & Lebedeff 1987) to reduce spatial variability
of air temperature. As a result, air temperature anom-
alies have much lower spatial variability than actual air
temperatures and, therefore, are easier to analyze spa-
tially. For applications such as comparisons with global
climate model output and environmental modeling,
however, the spatial variability of actual air tempera-
ture is of fundamental interest and must be estimated.

Another reason for comparing spatial and temporal
variability is more practical and is related to the compi-
lation of climatological means or ‘normals’ of air tem-
perature. Within such climatologies, station data usu-
ally are analyzed only within a standard base period
(e.g. 1961 to 1990) and station records that do not con-
tain sufficient data during the base period are removed
(e.g. Hulme et al. 1995). If between-station variability is
of interest (e.g. a map or gridded field of climatological
mean air temperature is needed), then removing such
stations assumes that spatial interpolation between sta-
tions is more reliable than using a temporal mean from
a shorter or different averaging period. Using a tem-
poral mean from a different base period (e.g. using the
1941–1970 average as an estimate of the 1961–1990
average) is a process that we call ‘temporal substitution’.

In developing a global climatology of air tempera-
ture, Legates & Willmott (1990) included all stations
that had monthly averages available for at least a 10-yr

period. By including stations from
many different time periods, Legates
& Willmott implicitly assumed that
resolving more spatial variability was
preferable to having a fixed base
period (i.e. that spatial interpolation
was less reliable than temporal sub-
stitution). Since the Legates & Will-
mott climatology is perhaps the most
widely used representation of global-
scale air temperature, it is useful to
evaluate this assumption. In an analy-
sis of 10-, 20-, and 30-yr averages of
annual total precipitation for the USA,
Willmott et al. (1996) demonstrated
that spatial interpolation introduces
much larger errors than does using
data from different base periods (i.e.
temporal substitution). Hulme & New
(1997), however, in comparing precip-
itation averages from 1931–1960 and
1961–1990, found large relative differ-
ences between these time periods in
tropical North Africa (where precipi-
tation is inherently low and varies
considerably on decadal scales) but
not in Europe. Since air temperature
typically is less spatially variable than

precipitation, it might be assumed that increased spa-
tial resolution of air temperature would not be prefer-
able to maintaining a standard base period. Legates &
Willmott, however, assumed the opposite and included
many stations with air temperature averages derived
from different base periods. As a result, this research
seeks to compare spatial and temporal variability of
multiyear averages of monthly and annual average air
temperature to assess these assumptions. Both tradi-
tional spatial interpolation and a method that utilizes
elevation data and standard atmospheric lapse rates
are used to evaluate unresolved spatial variability.

2. MONTHLY AIR TEMPERATURE IN THE
CONTIGUOUS UNITED STATES

2.1. Data: preprocessing and resulting network

To properly compare spatial and temporal vari-
ability, a surface station network that is both spatially
dense and temporally extensive is needed. A high-
quality data set that fulfills these requirements is the
United States Historical Climatology Network (HCN;
Easterling et al. 1996). The HCN contains 1221 stations
with at least 80 yr of monthly mean surface air tem-
perature records (Fig. 2a). The resolution of the HCN is
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Fig. 1. Hypothetical examples of aliasing in spatial cross-sections in both (a) a
traditional regular sampling context and (b) an irregular sampling context.
Aliasing is typically discussed in a temporal framework, but similar transfer of
small-scale information (dashed line) to larger-scale ‘information’ (solid line)
occurs when analyzing spatial data. Sparse climatological networks are particu-

larly susceptible to problems associated with aliasing
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relatively high throughout much of the contiguous
USA except for parts of the west. The HCN data pack-
age contains, in addition to original monthly averages,
adjustments for time-of-observation bias, station moves,
instrument changes and various other inhomogeneities
(e.g. Karl et al. 1986, Karl & Williams 1987). Many
of these adjustments, with the exception of time-of-
observation bias, may contain interstation dependen-
cies (i.e. corrections based on spatial relationships be-
tween stations) that may not allow for a fair comparison
of spatial and temporal variability; therefore, data with
only time-of-observation bias adjustments will be
used. While data-quality issues are critical and rele-
vant to this research (since they influence both spatial
and temporal variability), our focus on multiyear air
temperature averages helps to reduce the impacts of
data problems [in addition, many of the differences
that we show (Section 4) are sufficiently large that
data-quality issues would not alter them].

The length of the study was constrained to the period
1921 to 1994 such that the network was spatially dense
while minimizing the potential for missing values. No
station was included in our study unless, for all months,
at least 80% of the data from every 10-yr period be-

tween 1921 and 1994 were available. The 80% data-
available criterion was chosen as a tradeoff between
temporal fidelity and spatial resolution. Using only
those stations with no missing values would limit spa-
tial resolution to less than 100 stations. Using a 90%
data-available criterion would result in approximately
400 stations while going to an 80% criterion resulted in
a network that contains 720 stations with an average
distance to nearest neighbor of 59 km and a network
density of 91 stations per 106 km2. Further examination
of missing values shows that on any given month from
1921 to 1994, the 80% criterion produces a network
that rarely has 10 stations missing and never more
than 27, indicating that the issue of estimating a 10-yr
average from 8 or 9 yr of data is not a widespread
problem. The resulting 720-station network (Fig. 2b) is
fairly well-distributed throughout much of the eastern
and midwestern USA, but is more sparse and uneven
in the west, particularly in the southwest. The lower
station density in the southwest does not hinder our
analyses in general, yet may make conclusions drawn
about this region less definitive.

2.2. Spatial variability of annual, January, and July
air temperature

Since the results of our analyses will primarily be
represented by error maps and spatially averaged
statistics, it is necessary to briefly discuss the inherent
spatial variability of mean air temperature fields at
their highest spatial resolution. From the 1221 station
HCN (Fig. 2a), 1961–1990 average annual, January,
and July air temperature were interpolated to the
nodes of a 0.25° × 0.25° latitude-longitude grid using
the spherical spatial interpolation method of Willmott
et al. (1985). Across the contiguous USA, maps of mean
air temperature are dominated by well-known rela-
tionships with latitude, elevation, and proximity to
coasts (Fig. 3). Spatial gradients of air temperature are
generally more coherent (and larger) for annual and
January averages than for July averages, but moun-
tainous areas have relatively high spatial variability
regardless of season. July average air temperature
varies spatially by less than 10°C throughout much of
the east while values in the west vary by over 25°C
(although the network density certainly causes under-
estimation of spatial variability in the west). Greater
spatial variability in the west is due mostly to variations
in elevation, which force temperature both directly (via
lapse rates) and indirectly (via cloud cover, humidity,
etc.). Since variations in both elevation and network
density have important implications for estimating the
spatial variability of air temperature, both will be
addressed explicitly in our analyses.
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Fig. 2. Spatial distribution of air temperature stations in (a) the
Historical Climate Network (1221 stations) and in (b) a sub-
network of 720 HCN stations that have at least 80% data 

available in all 10-yr periods from 1921 to 1994
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3. METHODS FOR ESTIMATING SPATIAL AND
TEMPORAL VARIABILITY

To compare the relative magnitudes of spatial and
temporal variability, 2 distinct approaches are used:
spatial interpolation and temporal substitution (Fig. 4).
Below, the 2 approaches are outlined and contrasted.

3.1. Spatial interpolation

Since one of the goals of this research is to evaluate
whether it is necessary to remove stations that do not
have complete records during a specific base period
(e.g. 1961 to 1990), the spatial interpolation approach
used here emulates the process of removing stations
from a climatology. To generate errors that result from
spatially interpolating to unsampled locations (i.e.
culled stations), a station is removed and surrounding
stations are used to estimate the station’s annual and
monthly mean air temperature (Fig. 4a). This ‘cross-
validation’ process (Efron & Gong 1983) is repeated for
each station in the network, producing a set of errors
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Fig. 3. (a) Annual, (b) January, and (c) July air temperature
(°C) for the period 1961 to 1990. Note that different color 

scales are used on each map

Fig. 4. Schematic depiction of the research methods used to
estimate unresolved spatial and temporal variability. For un-
resolved spatial variability, spatial interpolation and cross
validation, depicted in (a), are used such that a station is re-
moved (e.g. the central station with the open circle, in this
case) and its air temperature is estimated via spatial inter-
polation from data at surrounding locations. This interpola-
tion/cross-validation process is repeated for all averaging
periods from 1920 to 1994, allowing error statistics to be cal-
culated at each station. To estimate temporal variability, tem-
poral substitution, depicted in (b), uses values from all other
averaging periods to estimate the value of a given base period
[in this case, the ‘observed’ value is the 1961 to 1970 air tem-
perature average at the same station as in (a)]. Each specific
averaging period that is used as an ‘observed’ value has error
statistics (such as mean absolute error, MAE) associated with
it. The error statistics themselves then can be averaged (over
all averaging periods used as ‘estimates’) to produce a single
error statistic (at each station) that is directly comparable to 

that produced by spatial interpolation/cross-validation

(a)

(b)

(c)
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(derived from all possible m-year time periods from
1921 to 1994) at each station. Cross validation is inde-
pendent of any particular interpolation method and
therefore provides a general technique for evaluating
spatial variability and spatial interpolation errors
(Isaaks & Srivastava 1989, Robeson 1994), although
some care should be taken not to overinterpret cross-
validation errors (Davis 1987). In general, overinter-
pretation of cross-validation errors occurs when com-
paring small differences between competing methods.

A large number of spatial interpolation methods are
available (Lam 1983, Bennett et al. 1984, Thiébaux &
Pedder 1987, Robeson 1997), all of which estimate val-
ues at unsampled locations using some or all of the
data available. For this research, an accurate and com-
putationally efficient method is advantageous. When
performing the large number of interpolations that
cross validation requires, a local procedure (i.e. one
that utilizes a ‘local’ subset of the data to estimate
values at unsampled locations) is most efficient. In
addition, the procedure should incorporate spherical
geometry in order to minimize errors resulting from
inaccurate distance calculations (Robeson 1997). One
method that has these properties is the spherical ver-
sion of Shepard’s (1968) algorithm implemented by
Willmott et al. (1985). The spherical implementation
of Shepard’s method is fundamentally a version of
inverse-distance weighting; however, it does incorpo-
rate separate weighting functions that account for clus-
tering of data points and allow for extrapolation. The
algorithm of Willmott et al. (1985) has been used ex-
tensively to interpolate climatological data (e.g. Le-
gates & Willmott 1990, Willmott et al. 1994, Huffman et
al. 1995, Robeson 1995). It also has been shown to be
fast and accurate (Bussières & Hogg 1989, Robeson
1994), especially for nonsmooth data (Robeson 1997).

While univariate spatial interpolation is commonly
used to generate gridded fields and to perform cross
validation, nearly all methods of spatial interpolation
can be improved if the relationships between the vari-
able of interest and other higher-resolution spatial
fields are incorporated. For air temperature, the most
appropriate higher-resolution field is a digital eleva-
tion model or DEM (Willmott & Matsuura 1995, Dodson
& Marks 1997). Using atmospheric lapse rates, station
air-temperature data from differing elevations can be
brought to a common elevation, interpolated to the
nodes of a DEM grid, and transformed to actual air
temperatures using the gridded digital elevation data.
This procedure has been shown to be more accurate
than univariate interpolation and has been referred
to as ‘DEM-aided interpolation’ (Willmott & Matsuura
1995) and the ‘linear lapse rate adjustment’ (Dodson
& Marks 1997). To parallel the term ‘climatologically
aided interpolation’ (CAI) introduced by Willmott &

Robeson (1995), however, we prefer the term ‘topo-
graphically aided interpolation’ (TAI). Cross validation
can be easily implemented within the TAI framework
by successively removing stations and using station
elevations to estimate station air temperatures from the
common-elevation interpolation.

CAI (Willmott & Robeson 1995), which is a method
that uses anomalies to ‘update’ a high-resolution
climatology [e.g. Legates & Willmott (1990), or one
derived from a specific base period], will not be used
here since it is a hybrid approach (incorporating ele-
ments of temporal substitution with traditional spatial
interpolation) that combines the 2 separate errors that
we are trying to estimate. We do know, however, from
the work of Willmott & Matsuura (1995) that TAI per-
forms as well as or better than CAI for annual average
air temperature in the USA. In implementing CAI,
overall error can be thought of as having 3 somewhat
distinct components: (1) error from using averages
from varying time periods in the high-resolution clima-
tology, (2) errors in interpolating the climatology, and
(3) errors in interpolating the anomalies that are used
to update the climatology. The research presented
here addresses the first 2 errors while Robeson (1994)
addressed the third.

3.2. Temporal substitution

To estimate temporal variability, 5-, 10-, and 30-yr
averages from the same time periods used in the spa-
tial interpolation analysis are compared. If 10-yr base
periods are being examined, for example, then the air
temperature average over a particular 10-yr period
(e.g. 1961 to 1970) is treated as the ‘observed’ value.
All other 10-yr periods from 1921 to 1994 are used
as estimated values which are compared with the
‘observed’ value to generate an error distribution at
each station (Fig. 4b). We refer to this process as ‘tem-
poral substitution’ because it emulates the errors
generated in substituting climatic averages from non-
standard base periods for those of standard base
periods (as opposed to the more-accepted approach of
excluding stations and interpolating to that location).

4. SPATIAL VERSUS TEMPORAL VARIABILITY

At each station used in our analysis (Fig. 2b), ‘ob-
served’ and ‘estimated’ values can be generated using
the spatial interpolation and temporal substitution pro-
cedures outlined above (Section 3). In the case of the
spatial interpolation methods, cross validation (Fig. 4a)
then is used to generate an estimated value at each
station for all possible m-year base periods (where m is
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5, 10, or 30), producing a mean absolute error (sMAEj,
where s denotes ‘spatial’) at each station j:

(1)

where nm is the number of different base periods for an
m-year average (70 for 5-yr averages, 65 for 10-yr
averages, and 45 for 30-yr averages), ^Tj,k is the cross-
validation estimated air temperature for station j and
base period k, and Tj,k is the observed air temperature.
In this way, an MAE can be generated for both the tra-
ditional interpolation method and TAI.

When using temporal substitution, the same Tj,k

serves as the observed value, but all other nm – 1 base
periods are used as the estimated values. For example,
if the 1961 to 1970 period is selected as the ‘observed’
period under the spatial interpolation procedure, then
all 64 other 10-yr periods are used as the ‘estimated’
value. As a result, each time period k (at each station j )
has an associated MAE (denoted as MAEj,k in Eq. 2).
The MAEj,k are averaged at the station to produce an
MAEj for temporal substitution:

(2)

where tMAEj is the temporal substitution MAE for
station j. So, although the procedure for producing an
MAE at each station j is slightly different for spatial
interpolation and temporal substitution, the 2 errors
are directly comparable since the ‘observed’ variable
is the same in both cases (Tj,k).

4.1. Error maps

The mean absolute errors at each station (MAEj) for
traditional spatial interpolation, TAI, and temporal
substitution are gridded (on a 0.25° × 0.25° latitude-
longitude grid), mapped, and compared for annual and
monthly air temperatures. Five-, 10-, and 30-yr base
periods are used; however, maps are only shown for
annual, January, and July 10-yr periods (see Figs. 5 to
7) since 10-yr periods tend to show more interesting
spatial patterns than 30-yr periods (which have sub-
stitution errors that are low everywhere) and are more
commonly used than 5-yr periods in large-scale clima-
tologies.

Overall, MAEs for 10-yr averages of annual air tem-
perature using the substitution method are much lower
than for either of the interpolation methods (Fig. 5). No
part of the USA has large substitution errors for 10-yr
periods, while large areas in the western USA and
isolated parts of the east have very large interpolation

errors (over 2°C). The maximum MAE for 10-yr aver-
ages of annual air temperature at any grid point for
interpolation is 8.44°C, while for substitution, the
maximum MAE at any grid point is less than 1°C (see
Table 1). TAI reduces interpolation error, but, overall,
substitution errors are still lower (compare Fig. 5b
and c). Since 10-yr averages of annual mean air tem-
perature have much lower substitution errors than
interpolation errors, it is implied that unresolved
spatial variability of 10-yr averages of annual mean
air temperature across the USA is much larger than
temporal variability of 10-yr averages. While much of
the unresolved spatial variability is concentrated in
the western USA, TAI only resolves part of the spatial
variability, indicating that more than the elevation/
lapse-rate relationship is responsible for the unre-
solved spatial variability of annual mean air tempera-
ture (e.g. cloud cover, advection, sparser network).
Since further smoothing of the temporal variability,
such as going from 10-yr averages to 30-yr averages,
will inevitably reduce substitution error, 30-yr aver-
ages of annual air temperature also show that temporal
substitution generally performs much better than
spatial interpolation (Table 1). Maps of 5-yr averages
of annual air temperature (not shown) also have sub-
stitution errors that are lower than either interpolation
method.

When monthly data are used to generate error maps
for 10-yr averages, substitution performs less impres-
sively, particularly during January (see Fig. 6). Both
spatial interpolation methods (Fig. 6a, b) produce
January MAE patterns and magnitudes that are similar
to those for annual air temperature. The temporal
substitution process, however, produces much larger
errors for January than for annual data (compare Fig. 5c
to Fig. 6c; also, see Table 1). Mean absolute error maps
for January using substitution (Fig. 6c) show large
errors in the northern Great Plains and throughout
much of the eastern portion of the country (excluding
northern New England, northern Michigan, and south-
ern Florida). The Great Plains and the eastern USA
clearly have larger temporal variability of air tempera-
ture than other areas of the country during January
(due to intermittent intrusions of both arctic and sub-
tropical air). Temporal substitution, therefore, per-
forms poorly in regions (and at times of year) where
there is large interannual variability in synoptic-scale
systems (i.e. the forcing mechanism with the largest
interannual variability). Areas such as northern New
England, northern Michigan, and southern Florida,
however, have the moderating influence of water
(albeit very different water bodies) to reduce interan-
nual temporal variability. On maps of substitution error
for 5-yr averages of January air temperature (not
shown), extensive areas of large error in the north-
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central and eastern USA demonstrate that temporal
substitution should not be used during winter months
with short averaging periods.

During summer months, temporal substitution once
again performs much better than either spatial inter-
polation method for 10-yr averages (Fig. 7). Temporal-
substitution errors are low throughout the USA, with
only an isolated station or two in the northern plains
indicating errors of 1°C or larger (Fig. 7c). Much of the
western USA, however, has large interpolation errors
(many areas with MAEs larger than 2°C; Fig. 7a, b).
Once again, TAI reduces interpolation error in the
Appalachians and parts of the western USA, but still
produces larger errors than temporal substitution. On
maps of substitution error for 5-yr averages of July air
temperature (not shown), only the north-central USA
has extensive areas with errors greater than 1°C. In
general, though, spatial patterns of error for temporal
substitution are much more homogeneous than those
for spatial interpolation. Spatial interpolation errors
tend to be much more localized, presumably due to
large variations in local relief (and lapse rates).

4.2. Spatially averaged MAEs

To summarize interpolation and substitution errors
across the contiguous USA, it is useful to spatially aver-
age or integrate the gridded MAEs. To account for the
differential area associated with each latitude-longi-
tude grid point, a spatially weighted mean is used:

(3)

where MAE is the spatially averaged
mean absolute error, MAEi is the
gridded error at grid point i, φi is the
latitude of grid point i, and ng is the
number of grid points.

Spatially averaged interpolation
errors, in general, do not vary greatly
from month to month, although inter-
polation errors typically are lowest in
spring and fall (Fig. 8). Spatially aver-
aged temporal-substitution errors are
more closely related to time of year,
with winter months producing much
larger errors, particularly for 5- and
10-yr averages (Fig. 8a, b). For 30-yr
averages, temporal substitution pro-
duces lower overall errors than either
spatial interpolation method at all
times of year (Fig. 8c). For 10-yr aver-
ages, TAI reduces interpolation errors
to a level where TAI would be pre-

ferred (over temporal substitution) during January,
February, and March. In addition, TAI of 5-yr averages
produces lower spatial interpolation errors than tem-
poral substitution for nearly all months, again with
greatest differences occurring in winter. It appears,
therefore, that the ‘cutoff’ averaging length, where
temporal variability exceeds spatial variability, is
somewhere between 5 and 10 yr. Narrowing this cutoff
further, however, would overemphasize spatially aver-
aged errors, which we clearly should not do, since the
spatial patterns of error for the various methods clearly
are different (Figs. 5 to 7). In addition, (1) overempha-
sizing relatively small cross-validation differences is
not recommended and (2) our results are network-
dependent (see Section 4.3).

To summarize, when developing a climatology
that is used to depict the spatial variability of
monthly air temperature in the USA, including a
climatological mean from all stations with 10 or
more years of data appears to be preferable to
removing stations that do not have sufficient data
during a specific base period, except during winter
months. If high-quality climate stations have 30 or
more years of data, their data should nearly always
be included in the climatology. If only a short record
(<10 yr) is available at a given station, that station
should (in general) not be used in the climatology.
These generalizations clearly are dependent on the
local relief around the station (i.e. high relief would
favor using temporal substitution; low relief would
favor spatial interpolation) and geographic position
(e.g. air temperature regimes in the north-central
and eastern USA tend to favor spatial interpolation;
see Figs. 5 to 7).  
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Table 1. Minimum, mean, and maximum values of mean absolute error (MAE,
°C) for annual, January, and July mean air temperature calculated over the
gridded fields. MAEs are shown for interpolation, TAI, and temporal substitu-
tion of 5-, 10-yr and 30-yr base periods. Note: The statistics shown refer to
min(MAEi), mean(MAEi), and max(MAEi), where MAEi is the mean absolute 

error at grid point i

5-yr 10-yr 30-yr
Min. Mean Max. Min. Mean Max. Min. Mean Max.

Annual
Interpolation 0.11 1.05 8.42 0.09 1.03 8.44 0.04 1.00 8.46
TAI 0.14 0.73 3.27 0.11 0.71 3.25 0.05 0.67 3.32
Substitution 0.04 0.54 0.71 0.15 0.42 0.96 0.22 0.22 1.01

January
Interpolation 0.13 1.18 8.05 0.08 1.15 8.05 0.00 1.10 8.00
TAI 0.17 0.97 4.99 0.12 0.93 4.95 0.05 0.88 4.91
Substitution 0.59 1.58 3.21 0.33 1.14 2.20 0.13 0.60 1.39

July
Interpolation 0.15 1.21 9.73 0.12 1.18 9.74 0.05 1.15 9.72
TAI 0.15 0.87 9.65 0.10 0.84 9.66 0.05 0.79 9.81
Substitution 0.25 0.77 1.67 0.17 0.58 1.41 0.04 0.28 0.76
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4.3. Analysis of different network densities

All spatial analyses of surface climatic data are de-
pendent upon the network of stations that are available.
In the results presented so far, a subnetwork of 720 HCN
stations (with a network density of 91 stations per
106 km2) has been used. To evaluate the representative-
ness of our results and to generalize to other network

configurations, it is useful to estimate interpolation errors
over a variety of network densities, especially for 30-yr
averages since they are commonly used in the construc-
tion of large-scale climatologies. Using the entire 1221
HCN station network (network density of 155 stations
per 106 km2) and 1961 to 1990 monthly and annual air
temperatures averages, spatially averaged interpolation
errors were estimated for 50 randomly sampled sub-
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Fig. 5. Mean absolute error for 10-yr averages of annual
air temperature (°C) for (a) traditional spatial interpolation,
(b) topographically aided interpolation, and (c) temporal 

substitution

Fig. 6. Mean absolute error for 10-yr averages of January
air temperature (°C) for (a) traditional spatial interpolation,
(b) topographically aided interpolation, and (c) temporal 

substitution

(a) (a)

(b)(b)

(c) (c)
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networks for each of a number of network densities from
10 to 150 stations per 106 km2. As expected, errors for
both traditional interpolation and TAI decrease with
increasing station density (Fig. 9a). For all network den-
sities, however, temporal substitution performs better
than either traditional interpolation or TAI, even when
using the complete HCN (Fig. 9a; the median spatially
averaged MAE from the 50 random samples is shown). 
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Fig. 7. Mean absolute error for 10-yr averages of July air tem-
perature (°C) for (a) traditional spatial interpolation, (b) topo-
graphically aided interpolation, and (c) temporal substitution

Fig. 8. Spatially averaged mean absolute errors of monthly air
temperature (°C) for traditional spatial interpolation, topo-
graphically aided interpolation, and temporal substitution by
month for (a) 5-yr, (b) 10-yr, and (c) 30-yr averaging periods.
Note that the same scale is used for MAE on all 3 graphs

(a)

(b)

(c)
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MAEs for traditional spatial interpolation and TAI
are similar when using January air temperature aver-
ages, whereas TAI produces much greater reduction in
interpolation error for July and annual averages, par-
ticularly for sparser networks (Fig. 9). The seasonal dif-
ferences in interpolation errors are demonstrating that
a larger proportion of the resolved spatial variability of
July and annual air temperature is related to topo-
graphy than is the case for January (where large air
temperature gradients that are largely independent of
topography can be present). Additional analyses of the
seasonal and spatial variability of lapse rates are
needed to identify the sources of the TAI errors, espe-
cially for January (and other winter months). Interest-
ingly, January, July, and annual average air tempera-
tures display somewhat different error patterns over
different network densities. The decrease in interpo-
lation error as a function of station density is greatest

for January, with July showing only modest reductions
in MAE as station networks become more dense (com-
pare Fig. 9b and c). Thirty-year averages of air temper-
ature are more spatially coherent during winter than
summer; however, moderately dense station networks
still are needed to resolve wintertime spatial variability
(e.g. not until station networks reach approximately 90
stations per 106 km2 does January interpolation error
drop to approximately 1°C, although TAI produces
lower errors for any given network density).

Some generalizations about spatially averaged inter-
polation error (over the USA) for 30-yr averages of
monthly and annual air temperature, then, can be
made. Traditional spatial interpolation will generally
lead to spatially averaged interpolation errors greater
than 1°C when estimating 30-yr average July air tem-
perature. Thirty-year averages of January and annual
air temperature produce spatial interpolation errors
below 1°C only when network densities exceed ap-
proximately 90 stations per 106 km2. TAI, however, can
produce interpolation errors less than 1°C for fairly
sparse station networks (less than 30 stations per
106 km2), especially for annual and July air tempera-
ture averages. Small increases in network density for
sparse networks can substantially reduce interpolation
errors; while for already dense networks (greater than
90 stations per 106 km2), interpolation error decreases
only minimally with increased station density. Im-
proved methods of spatial interpolation, however,
clearly are needed to improve upon these generaliza-
tions.

5. SUMMARY AND CONCLUSIONS

While there are many ways to estimate spatial and
temporal variability in climatological data (e.g. Mad-
den & Shea 1978, Diaz & Quayle 1980, Brinkmann
1983, Vining & Griffiths 1985), the approaches used
here were directed towards evaluating the ways
that climatological means of air temperature are con-
structed. Comparing temporal and unresolved spatial
variability, however, also provides fundamental in-
formation that shows the limits of our (current) abilities
to evaluate climatic change and variability using
historical observations from surface climate stations,
particularly when actual air temperatures (and not air
temperature anomalies) are needed.

Two approaches were compared in detail: temporal
substitution and spatial interpolation. Temporal substi-
tution involves comparing climatic averages from a
variety of base periods (e.g. 1941–1970, 1942–1971,
etc.) with an average from another base period (e.g.
1961–1990). That is, it emulates the errors encountered
when ‘substituting’ the climatic average of a non-
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Fig. 9. Spatially averaged mean absolute errors (MAEs) of
(a) annual, (b) January, and (c) July average air temperatures
(°C) for 1961 to 1990 using traditional spatial interpolation
(solid line) and TAI (long dashed line) over a variety of net-
work densities. The median value of 50 random samples at
each network density is shown. The spatially averaged MAE
for temporal substitution using the original 720-station net-
work is shown for reference (short dashed line), as are the
interpolation (+) and TAI (S) MAEs using the 720 station 

network
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standard base period for that of a standard base period.
When compiling climatological means of air tempera-
ture, most climatologists use data only from standard
base periods; however, the most widely used air-tem-
perature climatology (Legates & Willmott 1990) utilizes
data from many different base periods in order to
maximize spatial coverage. The spatial interpolation
methods used here emulate the errors that one en-
counters when ‘culling’ stations that do not have data
within the standard base period. Removing stations
with data from nonstandard base periods (e.g. not
using a station with 1941–1970 data when constructing
a 1961–1990 climatology) assumes that spatial inter-
polation to the excluded location is more accurate than
using the nonstandard-period data.

Overall, it appears that, when averaging over 10 or
more years, unresolved spatial variability (as mea-
sured by spatially averaged interpolation errors) is
larger than temporal variability over the contiguous
USA. Both a traditional spatial interpolation method
(based on inverse-distance weighting) and a ‘smart’
interpolation method that incorporates digital eleva-
tion data produce larger errors than the temporal sub-
stitution process for 30-yr averages. For 10-yr averag-
ing periods, only during January, February, and March
does the ‘smart’ interpolation procedure produce
smaller average errors than temporal substitution.
During these months, temporal substitution errors
are large (>1°C) over extensive sections of the north-
central and eastern USA. During most months, tem-
poral substitution errors are low throughout the con-
tiguous USA, while spatial interpolation errors are
largest in areas with large elevation differences,
despite using an interpolation procedure that incorpo-
rates standard lapse rates and elevation data (TAI). TAI
of 5-yr averages of monthly air temperature produces
lower errors than temporal substitution for nearly all
months (but not for annual averages), suggesting that,
in general, multiyear monthly air temperature aver-
ages shorter than 10 yr in length should not be ‘sub-
stituted’ into a long-term climatology. It is important to
emphasize, however, that these results (1) apply only
to the contiguous USA and (2) only refer to spatially
averaged errors (i.e. not errors at any given location).

Further implications of this research include: (1) areas
of high relief need to have extensive station networks
even when using interpolation methods that include
elevation data and (2) methods that better resolve the
spatial variability of air temperature are needed. While
‘smart’ interpolation methods (e.g. Hutchinson 1995,
Willmott & Matsuura 1995, Dodson & Marks 1997) such
as TAI are being used increasingly, there still is a need
for improved spatial interpolation methods. One possi-
bility is to make better use of satellite-observed data, in
order to derive high-resolution fields that are closely

related to surface fields. In addition to signaling the
need for better spatial representations of air tempera-
ture, this research (and the work of Hulme & New
1997) suggests that comparisons of temporal and un-
resolved variability are needed in many different
climatic regimes. Regions of the world with large (or
small) interannual variability or low (or high) relief will
have fundamentally different relationships between
spatial and temporal variability. Comparisons of spatial
interpolation and temporal substitution in high- and
low-latitude areas should provide additional insight
into the fundamental variability of air temperature.
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