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Molecular Machinery Mediating Vesicle Budding, Docking and Fusion
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ABSTRACT. A general machinery buds and fuses transport vesicles which connect intracellular compart-
ments with each other and allow communication with the extracellular environment. Cytoplasmic coat proteins
deform membranes to bud vesicles and interact directly or indirectly with cargo molecules. Compartment-spe-
cific SNARE:s on vesicles and target membranes dock vesicles and provide a scaffolding for the general fusion

machinery to initiate lipid bilayer fusion.

Each compartment in eukaryotic cells is character-
ized by a set of specific proteins and a distinct lipid com-
position, which together define its unique functional
properties. The compartments along the major trans-
port routes termed secretion, endocytosis and transcyto-
sis exchange components with others by means of trans-
port vesicles (43). Each route is composed of a series of
sequential vesicular transport steps. At each step trans-
port vesicles form at a donor compartment and fuse
with a specific acceptor compartment. To maintain the
identity of the individual organelles, cargo has to be se-
lected during vesicle budding and has to be specifically
delivered to its correct destination. Recent data have
provided insight into the underlying mechanisms of
these processes, thereby expanding our understanding
of how cells maintain and control their temporal and
spatial organization and how they communicate with
their environment. The core machinery mediating these
processes will be outlined in the following sections.

Vesicle budding

Shuttling of cargo between organelles requires its
packaging into distinct transport containers defined by
their distinct size and, to a certain degree, specialized
protein and lipid composition. In every instance, the
generation of defined transport units is a prerequisite to
control and balance import in and export from a dis-
tinct organelle. To ensure the generation of such trans-
port units, coat proteins derived from the cytoplasm as-
semble at budding sites on the donor membrane. This
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process is triggered by nucleotide exchange on a class of
small soluble GTP binding proteins, their membrane re-
cruitment and the subsequent binding of coat proteins.
The assembly of coat proteins deforms the membrane
resulting in the generation of coated buds which finally
pinch off to release coated vesicles. Following their un-
coating the vesicles dock to and fuse with the target
membrane.

In case of the Golgi, the vesicular protein coat is
termed COPI (coat protein) and assembles from the
cytoplasmic coatomer complexes (coat protomer) con-
sisting of seven subunits (53, 64). The binding of coato-
mer to the donor membrane and the subsequent assem-
bly process occur after ADP-ribosylation factor (ARF)
in its GTP-bound form interacts with the membrane
(52). A GDP/GTP exchange factor and an ARF recep-
tor mediating this processes have been postulated, but
still await purification. Recent data also suggest the in-
volvement of polyphosphoinositides and phosphatidic
acid in the budding step (10, 13, 18). These lipids seem
to facilitate nucleotide exchange on ARF and might en-
hance the interaction of coatomer with the membrane.
The vesicle fission step has been shown to require an ad-
ditional lipophilic component, fatty acyl — coenzyme
A (41). Neither the target nor the exact function of the
fatty acyl requirement are known. After the vesicle has
pinched off, ARF hydrolyzes its bound GTP (60), the
coat disassembles and dissociates from the vesicle mem-
brane, an uncoated vesicle is generated which goes on to
dock and fuse with the target membrane. GTP hydroly-
sis seems to be regulated by ARF-GAP (GTPase acti-
vating protein) a cytosolic protein which is recruited
to Golgi membranes and activated by a still unknown
mechanism (16). Again, polyphosphoinositides have
been implicated to function at this step (35).

Vesicle formation may require proper cargo selec-



tion, or, in some cases, cargo could be transported by
default at its bulk concentration in a process termed
bulk flow (67). Cargo selection is accomplished by a pro-
tein’s (or lipid’s) enrichment in or exclusion from trans-
port vesicles which requires that cargo molecules carry
transport signals or that resident components contain re-
tention signals (45). For example, the amino acid motifs
KKXX and XXRR at the carboxy- and amino-termini,
respectively, of integral membrane proteins act as trans-
port signals for retrieval of resident proteins which have
escaped from the endoplasmic reticulum (ER) (29, 38,
51). KKXX or related peptides have been shown to in-
teract with COPI coats, illustrating how a signal con-
tained in a cargo molecule can be coupled to the trans-
port machinery and thus ensure cargo packaging (14,
32). However, since COPI-coated vesicles also carry car-
go in the anterograde direction, coatomer should not in-
teract with the KKXX motif at the ER membrane. Possi-
ble mechanisms could be that COPI coats exist in differ-
ent conformational states, binding cargo either for an-
terograde or retrograde transport, or that posttransla-
tional modifications or interactions with additional com-
ponents alter the binding properties of coatomer for
KKXX (48).

Lumenal proteins, which cannot possibly interact
with cytosolic coat proteins in a direct way, likely con-
tain other types of transport signals, which might be rec-
ognized by cargo receptors, integral membrane proteins
which function as adapters to mediate the interaction
with the vesicle coats. A family of integral membrane
proteins, major constituents of both COPI and COPII
coated vesicles, has been recently identified, whose
members fulfill the criteria for such cargo receptors.
P24 proteins have a variable amino-terminal domain,
which might interact with cargo, and a conserved car-
boxy-terminal domain, binding coat proteins (57) (un-
published observation). Deletion of individual family
members does not affect cell viability but does alter the
transport efficiency of some but not all cargo molecules
(50).

Vesicle docking and fusion

Transport from the donor compartment to the accep-
tor compartment is in some instances facilitated by vesi-
cle-associated motors interacting with the cytoskeleton
(62, 63), but this is not a prerequisite for transport and
hence cannot be critical for targeting transport vesicles
selectively to their destination. Thus, signals on the vesi-
cles must exist that are recognized by a receptor on the
intended target membrane. According to the SNARE
hypothesis, this process is mediated — at least in part —
by the unique pairing of SNAP receptors localized on
vesicles (v-SNARESs) with their cognate t-SNAREs on
target membranes (56). Most SNAREs are type Il mem-
brane proteins, with short lumenal or extra-cellular re-
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gions and comparably large cytosolic domains. The
cytoplasmic domains are predicted to form coiled coils
and to mediate the unique interactions between the dis-
tinct members of the v/t-SNARE families (11). The sys-
tem is best characterized in the yeast Saccharomyces cer-
evisiae. T-SNARES (which should provide a functional
definition of compartment borders) have been localized
to the endoplasmic reticulum (Ufel) (34), the cis Golgi
network (Sed5) (3), the vacuole (Pep12) (30), and the
plasma membrane (Ssol,2) (1). Physiological evidence
for the role of SNARE proteins is provided by the fact
that inactivation of t-SNARESs causes the accumulation
of transport vesicles, which are no longer able to dock
to the correct compartment. Massive overexpression of
t-SNARES has been shown to perturb cellular morphol-
ogy, presumably by altering the t-SNARE containing
compartment (25). A t-SNARESs localized to a compart-
ment in which vesicular transport routes from several di-
rections converge might serve several purposes in pro-
viding a docking site for vesicles originating from differ-
ent organelles. For example, coimmunoprecipitation ex-
periments with an antibody directed against Sed5, a t-
SNARE localized to the early Golgi, revealed the pre-
sence of several Sed5 interacting v-SNARESs, some of
them mediating the docking of ER-derived vesicles,
others presumably allowing the binding of vesicles de-
rived from downstream Golgi compartments and return-
ing to the early Golgi (2, 54). V-SNAREs implicated in
Golgi to plasma membrane transport were, however,
absent in the SNARE complexes containing Sed5 (54).
They form a distinct complex with the plasma mem-
brane t-SNARES, thereby illustrating the high specifici-
ty of v-SNARE-t-SNARE interactions (15, 47). Physio-
logical evidence for the role of v-SNAREsSs in yeast is
provided by the fact that some of them were originally
identified in secretion deficient mutants and that inac-
tivation of these proteins results in accumulation of
transport vesicles in vivo (17, 37, 39).

While, studies in yeast can establish the basic mecha-
nisms of vesicular targeting and fusion, studies in high-
er eukaryotes reveal an additional level of complexity.
This is due to the complex organization of multicellular
organisms with specialized cell types, organized in differ-
ent tissues, each fulfilling specific tasks, and the estab-
lishment of elaborate intercellular communication sys-
tems. For example, in the rat four different t-SNAREs
localized to the plasma membrane (syntaxins 1-4) have
been identified, some of them showing tissue specificity
(7). Another example is the neuronal synapse, which is
specialized in neurotransmitter release and used as a
model system to study regulated secretion. Regulated
secretion involves additional proteins that temporarily
lock the fusion machinery in place until an appropriate
signal releases the constraint (19, 22, 23, 58). Recent
data indicate that the synaptic vesicle protein, synapto-
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Fig. 1. The molecular machinery mediating vesicle budding and fusion. A) Transport vesicle formation. i) Vesicle budding is initiated when
GDP on ARF is exchanged against GTP. The resulting ARF [GTP] binds to the membrane and recruits coat proteins. The assembly of coat pro-
teins on the membrane incrementally deforms the corresponding area of the lipid bilayer, resulting in a bud. ii) The bud pinches off in a reaction
requiring fatty acyl coenzyme A. iii) GTP hydrolyses results in dissociating of ARF yielding presumably a still coated vesicle (vi), whose coat then
dissembles and dissociates from the membrane (v). B) Targeting of vesicles. Uncoated vesicles interact via their address signal, termed v-SNARE
with their cognate receptor on the target membrane, termed t-SNARE. C) Initiation of vesicle fusion. SNAPs bind to assembled SNARE com-
plexes at the attachment site of the vesicles to the target membrane thereby allowing the subsequent binding of NSF. ATP hydrolysis by NSF dis-
rupts the SNARE complex and initiates membrane fusion. It is not know whether additional components are required for the lipid bilayer fusion.
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tagmin plays a dual role as a specialized v-SNARE (49)
on the one hand and as a calcium sensor, on the other,
and thereby links the signal for neurotransmitter release
to the vesicle fusion machinery. The presence of two v-
SNARESs on synaptic vesicles (VAMP and synaptotag-
min) and a cognate t-SNARE pair on the presynaptic
plasma membrane (syntaxin and SNAP-25) provides a
multivalent vesicle binding site, explaining why neither
the proteolytic cleavage of VAMP by tetanus toxin and
certain serotypes of botulinum toxins nor the deletion
of syntaxin prevents the accumulation of synaptic vesi-
cles in the active zone (4, 6, 9, 28, 42, 59, 61).
Additional proteins regulating SNARE activity have
been identified, and are likely to ensure that SNAREs
are only active in their proper intracellular localization.
Members of the Sec 1 protein family have been shown
to interact with t-SNAREs and control their exposure
to the cognate v-SNARE (26, 46). Rab proteins, small
GTP-binding proteins are required for the assembly of
SNARE complexes (54). Both rab proteins and Sec 1
family members are cytoplasmic proteins which are
recruited to the membrane and exhibit a certain organ-
elle specificity, indicating that these proteins likely add
an additional layer of specificity to vesicular transport,
maybe by a proofreading mechanism. More specialized
interactions of distinct SNARESs with other components
have been demonstrated. For example VAMP has been
shown to interact with the synaptic vesicle protein syn-
aptophysin in a way that is mutually exclusive with the
binding to its t-SNAREs (21). The t-SNARE syntaxin 1
has been found to be associated with N-type calcium
channels — yet another instance of close coupling be-
tween the vesicle docking and fusion machinery and
that carrying the signal for exocytosis (6, 33, 69).
Assembled SNARE complexes provide a scaffolding
for binding of general fusion components such as the
N-ethylmaleimide-sensitive fusion protein (NSF) and
the soluble NSF attachment proteins (SNAPs) (8, 12,
36, 66). The general fusion proteins are cytoplasmic
proteins which function at many sites (5, 20, 24). In-
activation of NSF by NEM causes the accumulation
of docked uncoated vesicles (40), indicating that NSF
is required for consumption of vesicles docked via
SNARESs. Additional evidence for the physiological
role of NSF and for its general function in a variety of
vesicular transport processes was provided by NSF mu-
tants. The NSF mutant in Drosophila comatose causes
paralysis of the flies, clearly establishing NSF’s function
in neurotransmission (44). Similarly, the NSF mutant in
yeast, sec 18, causes an accumulation of transport vesi-
cles and assembled SNARE complexes (31, 54, 68).
SNAPs mediate the interaction of NSF with mem-
branes, as has been demonstrated using Golgi mem-
branes (12, 65). Three to six SNAP proteins bind to an
assembled v-SNARE-t-SNARE complex (27, 55). In the
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neuronal synapse, the brain specific form of SNAP (8-
SNAP), but not the ubiquitous SNAP (a-SNAP) in-
teracts with the specialized v-SNARE synaptotagmin
(49). ATP hydrolysis by NSF provides the energy to dis-
rupt the complex, likely by causing conformational
changes in SNAPs and one or several of the SNARE
proteins (55). The actual lipid bilayer fusion process is
not understood; it cannot be excluded that additional
components are necessary, but it seems likely that after
ATP hydrolysis by NSF one or several of the above men-
tioned components are in an activated state to initiate
fusion.

In summary, the rational scheme underlying trans-
port between intra-cellular compartments seems to be es-
tablished. But although the identification and isolation
of the core machinery mediating these processes has pro-
ceeded during the past years, we are far from having a
complete understanding of mechanistic details. On the
one hand, studying the machinery in its cellular back-
ground will help us to confirm its physiological func-
tions, and on the other reconstitution of the purified
components in vitro will provide the biophysical details
about the reaction mechanisms. The completion of the
yeast genome project will greatly facilitate the isolation
of additional components and should give us pointers
as to the minimal set of proteins required for vesicular
transport.
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