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1.  Introduction

The rapid development of computational facili-
ties has allowed the horizontal resolution of atmo-
spheric general circulation models to be sufficiently 
fine to resolve non-hydrostatic scale motions. In such 
high-resolution models, the discretization of a system 
of equations using grid-point methods on polyhe-
dral grids seems to be preferred because of its high 

computational performance on parallel computers. 
An icosahedral grid is such a choice (e.g., Williamson 
1968; Sadourny et al. 1968; Heikes and Randall 
1995). The Non-hydrostatic ICosahedral Atmospheric 
Model (NICAM) is an example of such a model that 
uses icosahedral grids, albeit with some modifica-
tions (Tomita et al. 2002). Detailed descriptions of the 
dynamical core and recent developments of NICAM 
are given by Tomita and Satoh (2004), Satoh et al. 
(2008), and Satoh et al. (2014). Recently, Miyakawa 
et al. (2014) showed that NICAM performed well 
in predicting Madden–Julian Oscillation (MJO) for 
nearly one month. The icosahedral grids have been 
perceived to be useful based on those demonstrations 
using high-resolution simulations.
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Abstract

Regionally enhanced meshes that have quasi-uniformly fine circular region is proposed using a new transforma-
tion method with icosahedral grids to obtain a cost-effective simulation for waves, transports, and mixing processes, 
the behaviors of which depend strongly on the horizontal resolution. The target region, which is designed to be 
composed of a finer mesh, is connected to a coarser mesh region, which is generated with the Schmidt transforma-
tion to maintain an isotropy of grid shapes. To realize these requirements, the spring dynamics method can be used 
and the characteristic length of the spring connecting grid nodes should be determined through three parameters: 
(i) the number of grid points placed in the target region, (ii) the area of the target region, and (iii) a parameter of 
the Schmidt transformation. By introducing a set of mathematical formulae, the minimum grid interval in the target 
region can be uniquely determined as a function of the area of the target region only. It is confirmed that fine and 
quasi-homogeneous meshes in the target region are generated using the grid transformation proposed in this study. 
Numerical simulations under realistic atmospheric conditions are performed using a non-hydrostatic model with 
the grid system proposed in this study and in a previous study. As the new grid system has a more homogenous 
resolution in the target region compared with that of the previous study, the estimation of the momentum fluxes 
of gravity waves are less affected by their dependence of the grid resolution.
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If computational resources are limited, however, we 
cannot use fine and uniform horizontal meshes over 
the globe and generating finer meshes about a targeted 
region may be a better choice. In such a case, regional 
or nesting models are commonly chosen to reduce 
computational burden. However, regional or nesting 
models can suffer from serious issues due to the 
existence of artificial boundaries. Because boundary 
conditions are inevitably needed in these models, 
some technical treatments are required regarding 
the boundary to reduce numerical errors or to damp 
artificial reflections of waves. These problems can 
be avoided using the stretched grid transformation 
developed by Tomita (2008). He constituted a trans-
formation function based on the Schmidt transforma-
tion function and applied it to the icosahedral grids. 
His transformation allows us to gather grid points 
into a local region of interest and realize higher reso-
lution near the point. Because the resolution changes 
smoothly away from the central point of the local 
region of interest, no lateral boundary condition is 
required in its grid transformation. This is an obvious 
advantage of this approach. This type of smooth tran-
sition is useful, especially for case studies that require 
high resolution in a limited region for a sufficiently 
short period. For example, the stretched grid is used 
to examine the prediction skill of MJO during the 
CINDY2011/DYNAMO observation period (Nasuno 
et al. 2013) and to simulate the dynamics of multiple 
tropopause events and inertia–gravity waves in the 
Antarctic (Shibuya et al. 2015).

However, one should be cautious when the 
stretched grid made by Tomita (2008) is applied 
to analyze phenomena whose expressions strongly 
depend on the horizontal resolution. This is due to 
the fact that the stretched grid does not maintain a 
constant cell interval in the high-resolution region 
where we want to focus (hereafter, we refer to this 
region as “the target region”). This feature becomes 
apparent when the stretching parameter, the defi-
nition of which will be given below, is large. Such 
a non-negligible resolution change over the target 
region likely causes problem associated with the 
spatial dependence of the simulation results. For 
example, Plougonven et al. (2013) compared two 
simulations with different resolutions and reported 
that when the horizontal resolution is doubled, the 
amplitudes of inertia–gravity waves become almost 
twice as large, although the phase structures of the 
waves do not greatly differ in either resolution. 
Aghedo et al. (2010) shows that the passive tracer 
transports in the ECHAM5 general circulation model 

strongly depend on the horizontal and vertical reso-
lutions. Because the horizontal resolution inherently 
determines the finest scale of the filament around 
the barrier regions, such as the tropopause and edge 
of the polar vortex, the mixing processes resolved 
in the numerical model have a strong dependence 
on the grid resolution. Therefore, to examine phys-
ical processes such as waves, transports, and mixing 
processes with limited computational resources, 
quasi-uniform and regionally finer meshes around the 
targeted region are desirable.

Iga (2015) proposed a smooth and seamless grid 
system with several topologies based on a conformal 
mapping technique. This grid system has a fine and 
uniform resolution inside the target region and is 
applicable to both the equatorial and polar regions. 
However, this new method is implemented with the 
polyhedral grids, which is different from an icosahe-
dral one. In the current study, we intended to maintain 
the icosahedral grid structure and to develop another 
approach to configure a grid system with fine and 
quasi-homogeneous resolution in the target region. 
The finer mesh region is connected to the coarser 
mesh region transformed by the Schmidt transfor-
mation. The grid system is modified by the spring 
dynamics method (Tomita et al. 2002), but we modify 
the characteristic length of the spring connecting grid 
nodes depending on the location of the spring. More-
over, we formulate a constraint between the horizontal 
resolutions, an area of the target region, and the total 
number of points in the mesh; the finest possible reso-
lution inside the target region can be specified by an 
analytical function of an area of the target region.

The structure of this article is as follows. A method 
of a standard grid generation in NICAM is reviewed 
in Section 2, since we apply the basic grid generation 
method in NICAM to a new grid formation proposed 
in this study. In Section 3, we derive a mathematical 
constraint of the characteristic spring length in the 
variable-resolution grid system regarding the connec-
tion with the Schmidt transformation. The results of 
the new transformation are compared with those of 
the method by Tomita (2008) in Section 4. The spatial 
structures of grid properties, such as the isotropy and 
the smoothness, are also analyzed. Section 5 summa-
rizes the results and gives concluding remarks. 

2.  A standard grid generation method in NICAM

2.1  Icosahedral grid on a sphere
Icosahedral grids over the sphere are generated 

by recursively dividing the original icosahedron. In 
NICAM, the grid resolution generated by the n-th 
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dividing operation is conventionally referred to as 
the “glevel-n” (grid division level n) grid (Tomita 
et al. 2002). Glevel-0 is the original icosahedron. 
By dividing each triangle into four small triangles, 
a higher-level mesh is obtained. The total number of 
node points is N = 10 · 4n + 2 for glevel-n. The effec-
tive resolution is estimated by the square root of the  
 averaged control volume area, R N4 2π E / , where RE 

is the Earth’s radius. Throughout the rest of the paper, 
the unit sphere is assumed. It should be noted that the 
grid can simply be scaled to whatever radius sphere is 
needed by the model.

2.2  Spring dynamics
In NICAM, grid intervals are regularized by the 

spring dynamics method and are re-modified by 
the gravitational-centered relocation (Tomita et al. 
2002), which guarantees the second-order accuracy of 
numerical differential operators in NICAM (Tomita 
et al. 2001). It is assumed that each grid point has 
its own mass M and that neighboring grid points 
are connected by a spring with the spring coeffi-
cient k and the characteristic length f. A damping 
force proportional to the velocity of the grid motion 
is also added to ensure that the system calms down 
to a quasi-steady state after a sufficient number of 
iterations. The equation of the grid point motion is 
described as

i i= −( )M dw
dt k d f e αw

dr
dt w

i
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where di is the distance between the point P0 and Pi, 
where Pi is one of grid points surrounding P0, ei

��
 is the 

unit vector in the direction from P0 to Pi projected on 
the tangential plane at P0, w0

� ��
 is the velocity vector at 

P0, r0
��

 is the position vector of P0, n is the number of 
mass points surrounding P0, and α is a damping coef-
ficient. When the grid system reaches the equilibrium 
state, the following relation is satisfied:
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/dt = 0 and w0
� ��

 = 0. 
An initial location of grid points before the iter-

ations of the spring dynamics should be carefully 
prepared to avoid the collapse of grid shapes. One of 
the technical ways to prepare the initial grid location 

is as follows: First, the grid transformation with a low 
g-level (2 or 3) is conducted with the initial condition 
of the original icosahedron. The grid configuration in 
higher g-level can be sequentially generated with the 
initial grid location of the same grid configuration 
with the lower g-level by making a new grid point at 
the midpoint of the grid point in the lower-glevel.

The grid structure in the equilibrium state depends 
only on a constant characteristic length f. In this 
study, we add a dependence on latitude to ϕ to f, that 
is, f (ϕ), to enable the variable-resolution system. This 
also means that we expect the spring dynamics to 
force the distance between two grid points to be close 
to the latitude-dependent characteristic length f (ϕ). 
The specific form of the function f (ϕ) is discussed in 
Section 3. 

3.  How to determine characteristic spring length 

3.1  A constraint on a cell area and a total grid 
number over the sphere

Let us generate a local region constituted of a 
quasi-homogeneous grid (i.e., a target region). In 
particular, we focus on the region around the North 
Pole and try to generate the target region with a fine 
and quasi-homogeneous grid. In this case, the perim-
eter of the target region is just along a latitude ϕ0. 
When an effective resolution is defined as the square 
root of a cell area, the effective resolution of a cell 
in the target region dxT is determined by the area 
of the target region and the number of cells n in the 
target region because the grids in the target region are 
designed to be quasi-uniform. Thus, dxT is given by

dx nT =
−2 1 0π φ( sin )

. (3)

Hereafter, we refer to this latitude ϕ0 as the edge lati-
tude. As discussed in Section 2.1, the unit sphere is 
assumed.

Outside the target region, the resolution is modi-
fied by determining a latitude-dependent length scale 
f (ϕ), that is used by the spring dynamics method as 
a characteristic length scale of the spring. Assuming 
a regular hexagon, the area of the cell is equal to 

3 /2(f (ϕ))2 (see Fig. 1 in Tomita et al. 2002). Here-
after we refer f (ϕ) as “the grid interval function.” 
Note that f (ϕ) is an arbitrary function that takes posi-
tive values for –π/2 ≤ ϕ ≤π/2. 

An obvious constraint on the cell areas over the 
sphere is that the integration of all cell areas must be 
equal to the area of the sphere. This constraint can be 
written as follows:
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where λ is longitude, ϕ is latitude, N is the number 
of grid points over the sphere, and A (ϕ) is a cell area 
around a grid point (λ, ϕ). 
If the number of cells, n is specified in the target 
region, the grid interval function, f (ϕ), which is 
outside the target region,must satisfy the following 
equation
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Additionally, to enforce a smooth connection 
between the target region (ϕ0 ≤ ϕ ≤ π/2) and the 
remaining outer region (–π/2 ≤ ϕ ≤ϕ0), the resolution 
at ϕ0 should be equal to dxT. These conditions are 
written as

2 1 3
2

0
0

π φ
φ

( sin )
( ).

−
=n f (4b)

Although f (ϕ) is an arbitrary function that satisfies 
Eqs. (4a) and (4b) at this point, it is obviously desir-
able if f (ϕ) is chosen so that the quasi-isotropy of a 
grid system can be realized. A form of such f (ϕ) will 
be given in the next section.

3.2  Connection with the Schmidt transformation
As verified by Tomita (2008), the transformation 

that can maintain the isotropy of the grid is identical 
to a Schmidt transformation. This isotropic transfor-
mation is introduced by

φ β
β

= + − −
+ − +
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

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−sin ( sin ) / ( sin )
( sin ) / ( sin ) ,1 1 1 1
1 1 1

Φ Φ
Φ Φ

(5)

where Φ is the latitude of the original point before 
the transformation, ϕ is the latitude after the transfor-
mation, and β is the stretching parameter that enables 
the smooth transition of the horizontal resolution. The 
latitudinal change of the latitude interval by the trans-
formation, dϕ/dΦ can be interpreted as the reduction 
factor of the grid interval, and the resolution after the 
transformation, G (Φ), is analytically derived as

G dx dd dx( ) ( ) ( )sin ,Φ
Φ Φ

= =
+ + −

φ β
β β

2
1 1

(6)

where dx is the grid interval before the transfor-
mation. It should be noted that Eq. (6) indicates the 
resolution as a function of the original latitude Φ. 
For example, G (Φ)|Φ=0 gives the resolution not at the 
equator, but at the latitude to which the equatorial line  
 is transformed, i.e., sin− −

+






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1 1
1

β
β

. The inverse of the 

Schmidt transform is given by

Φ= − + + −
− − +


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≡− −sin ( )sin ( )
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β φ β
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Thus, the resolution is derived as a function of the 
transformed latitude ϕ using Eq. (7), 

G S dx( ( )) ( ) ( )sin .− = + − −1 1 1
2

φ β β φ
β

(8)

It is easily verified by substituting ϕ = π/2 into Eq. 
(8) that the grid resolution is changed by a factor of 1/
β  at the center of the transformation. When β > 1, 

the refinement for ϕ > 0 in the northern hemisphere is 
obtained, while 0 < β < 1 makes the refinement for ϕ 
< 0 in the southern hemisphere. 

We use the Schmidt transformation as the grid 
interval function to obtain an isotropic grid structure 
outside of the target region. This Schmidt transfor-
mation has the same number of grid points outside 
the target region, N – n, as our new transformation. 
In the target region, however, this Schmidt transfor-
mation needs a larger number of grid points, n′, than 
the number of grid points used in our new transfor-

Fig. 1. The reduction ratio as a function of the 
edge latitude ϕ0. The cross-marks denote the 
points at which the reduction ratios are 0.5 
and 0.25. The circle denotes the point at ϕ0 = 
40°π/180°.
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mation, n. This is because the grid intervals obtained 
by the Schmidt transformation in the target region are 
smaller than the designed transformation Thus an original 
grid resolution used the Schmidt transformation, dX = 
4π / ( ( ))′+ −n N n , is different from the quasi-homo-

geneous grid interval, dx = 4π / ( ( ))n N n+ − . There-
fore, the grid interval function outside the target region is 
obtained as follows:

3
2

1 1
2

2 0

f dX( ) ( ) ( )sin ,

/ .

φ β β φ
β

π φ φ

= + − −

− ≤ ≤

(9)

Recall that at ϕ0, the resolution in the target region 
is equal to the resolution after the Schmidt trans-
form. We can, therefore, determine dX by combining 
Eqs. (4b) and (9) and arrive at the grid interval func-
tion that generates quasi-uniform grids in the target 
region and connected to the Schmidt transformation is 
obtained:
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Three parameters of the transformation, β, n, and  
ϕ0 in Eq. (10) are related through the constraint about 
the grid system over the sphere, Eq. (4a).

3.3  The mathematical constraints on ϕ0, n, and β
Using f (ϕ) as defined by Eqs. (10) and (4a), we 

obtain a single equation about three unknowns, ϕ0, n 
and β:

n

d
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Equation (11) relates three parameters of the trans-
formation, β, n, and ϕ0. Here, we can ask a following 
question: for a given value of ϕ0, what is the largest 
number of cells, n, that the transformation can place 
in the target region subject to the constraint that β be a 
positive, real value? We can transform Eq. (11) into a 
function of β and ϕ0 that gives the number of cells in 
the target region:
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For a fixed ϕ0, n(ϕ0, β) monotonically increases with 
increasing β. Using this fact, we can, therefore, place 
an upper bound on the number of cells in the target 
region by taking the limit as β → ∞: 

n n N
lim lim ( , ) sin .= =

+→∞β
φ β

φ0
0

2
3 (13)

Thus, nlim is an upper bound on n:

n N n<
+

=2
3 0sin .limφ

(14)

This condition also indicates that the minimal reso-
lution in the target region is also bounded by

dx n nT =
−

>
−2 1 2 10 0π φ π φ( sin ) ( sin )

.
lim

(15)

Substituting the definition of nlim from Eq. (14) into 
Eq. (15), we obtain

dx N dxT T>
− −

=4 3 2
4
0

2
0π φ φsin sin

.min
(16)

This inequality indicates that the minimal reso-
lution dxTmin is proportional to the original resolu-
tion  4π / N  multiplied by the reduction factor 
( sin sin ) /3 2 40

2
0− −φ φ . Figure 1 shows the reduc-

tion factor as a function of the edge latitude ϕ0. The 
reduction factor is one for ϕ0 = –π/2, corresponding to 
the original grid shape and is zero for ϕ0 = π/2, corre-
sponding to the case where all grid points are located 
at the pole. When we set ϕ0 as sin–1 (–1 + 3) approx-
imately 47°) or sin–1 (–1 + 15 4/ ) (approximately 
69.5°), the reduction factor becomes 0.5 or 0.25, 
respectively. This corresponds to the increase by one 
or two g-levels in the target region.

For a given ϕ0, a sufficiently large value of β is 
needed so that the number of the grid points in the 
target region, n, approaches nlim (Eq. 13). However, a 
typical value of β at which dn/dβ is close to zero is 
dependent on the choice of ϕ0 (not shown). Thus, in 
practice, it is better to choose the largest integer less 
than 0.99 × nlim as n, which gives 1 0 99/ . (~1.005) 
dxTmin in the target region. Finally, after the dependent 
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parameter β is numerically solved through Eq. (11), 
we obtain an ideal variable-resolution grid system 
using Eq. (10).

Note again that the quasi-homogeneous grid system 
in the target region is obtained using only one param-
eter, ϕ0 through Eqs. (11) and (13). The meaning of 
the parameter ϕ0 is clear: it is the edge latitude of the 
target region. 

4.  Results: Grid properties

We use the grid interval function given by (10) as 
the characteristic length in the spring dynamics in 
Section 2.2. Hereafter, we select ϕ0 = 40°. In that case, 
n = 0.99 × nlim ~ 0.99 × 0.55N and β ~ 205.3. In this 
section, the g-level of the grid system is 7 (~ 4glevel × 
10 grid points). 

The stretched grid transformed by the original 
method of Tomita (2008) is also generated with the 
same number of grid points in the target region for 
the comparison. The stretching parameter β in Tomita 
(2008) is approximately β = 5.42. After relocating 
the grid points near the North Pole using both trans-
formation, we rotate all grids such that the center of 
the target region is located at the South Pole. This 
is because we present results of the simulations in 
Section 4.3, which focus on gravity waves around the 
Antarctic. It should be noted that, in Schmidt transfor-
mation, the transformation after the relocation to the 
South Pole just corresponds to the Schmidt transfor-
mation using β = 5.42–1. 

4.1  Resolution
Figure 2 shows a scatter plot of the normalized grid 

intervals, defined as d × 2glevel (d denotes the grid 
interval), at all grid cells as a function of the latitude. 
The result of our transformation (green cross marks) 
seems similar to the input characteristic length (Eq. 
9) (a black solid curve), although some discrepancies 
around pentagonal cells appears. This may be partly 
explained by the properties of the spring dynamics, 
which leads to smaller grid intervals around penta-
gons (as discussed in Tomita et al. 2002). 

Figure 3 shows the horizontal map of the ratio 
of the normalized grid intervals. The grid inter-
vals in Fig. 3 are averaged between the point P0 and 
surrounding points. Compared with the transforma-
tion in Tomita (2008), it is clear that the grid inter-
vals in the target region are more homogeneous and 
coarse in the non-target region. It should be noted that 
this feature is preferable to reduce the computational 
burden, since our transformation does not require the 
model to use a smaller time step due to the existence 

of a few small cells.

4.2  Smoothness and Isotropy
Next, we examine and compare the grid proper-

ties, such as area uniformity and isotropy, in both 
grid systems. The area uniformity is important to 
resolve some dynamical phenomena, such as waves 
and mixing processes, as discussed in Section 1. 
In this study, the area uniformity is locally defined 
by the variance of a grid area against areas of the 
surrounding grids as a measure of smoothness:

S
A A
N A

ii
N

s

s

0
0
2

1

0
2=
−

=∑ ( )
, (17)

where A0 is an area of a grid, Ai is that of a grid 
surrounding A0, and Ns is the number of grids 
surrounding A0. When the grid areas are completely 
smooth, the area uniformity S0 is zero. It should be 
noted that S0 is normalized by the square of its own 
grid area to ignore the effect of the g-level because the 
variance of the area ( )A Aii

Ns −
=∑ 0

2
1

 depends on the 
grid area itself in the same configuration.

Fig. 2. The scater plots of the normalized grid 
interval defined as d × 2glevel (d denotes the grid 
interval) as a function of the latitude in the result 
of our transformation (green cross marks), the 
Schmidt transformation with β = 5.42 (black 
cross marks), the input characteristic length (black 
solid line), and the theoretical grid interval of the 
transformation by Tomita (2008) (black dashed 
curve). The g-level is 7 (~ 4glevel × 10 grid 
points). The black circle and dot-and-dashed line 
at ϕ0 = 40° denote the connection point to the 
Schmidt transformation. 
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Figure 4a shows the area uniformity S0 in the trans-
formation by Tomita (2008) and the present transfor-
mation. It is clear that the distribution of the grid areas 
is smoother in the target region in our transformation 
than Tomita (2008) although the smoothness of our 
transformation is larger outside the target region. The 
local maxima at the pentagonal grids exist in both 
transformations. 

The isotropy is also an important component for 
grid configuration because the break of the isotropy 
causes the dependence of minimal resolvable scales 
on axis directions (Miura and Kimoto 2005). Miura 
and Kimoto (2005) defined the isotropy of the icosa-
hedral grid as

I
l l
N l

l
l

N

ii
N

s

ii
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s

s

s
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0
2

1

0
2

0
1

=
−

=

=

=

∑

∑

( )
,

,

(18)

where li is one edge length of a cell and l0 is the 
mean edge length of a cell. When the grid shapes are 
completely isotropic, the isotropy I0 is zero. 

Since the transformation by Tomita (2008) is based 
on the Schmidt transformation, which is one of theo-
retical isotropic transformations, we will regard the 
isotropy of the meshes by Tomita (2008) as the refer-
ence of an isotropic transformation. 

Figure 4b shows a scatter plot of the isotropy I0 
of the grid shapes in the transformation by Tomita 

Fig. 3. The stretched icosahedral grid by (a) the transformation with β ~ 5.42 in Tomita (2008) and (b) the present 
transformation. The horizontal map of the normalized grid interval (c) with the same grid as (a), and (d) with 
the same grid as (b). The g-level is 7 in (c) and (d), while it is degraded from g-level 7 to 4 in (a) and (b) for 
simplicity.
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(2008) and the present transformation. The isotropy 
in our transformation has large maxima around the 
edge latitude ϕ0 = –40°, compared with that in Tomita 
(2008). The distortion of the grid shape around the 
edge latitude can be also found in Fig. 3b. In Fig. 
4b, such disfftorted cells are located inside the target 
region with the width of about 15° from the edge 
latitude. This fact may suggest that the target region 
should be designed broader than the region on which 
we want to focus on. At other latitudes, the value 
of I0 in our transformation is approximately 3.0 × 
10–3, while the value of I0 in Tomita (2008) is about 
1.5 × 10–3. Because I0  means a ratio of a stan-
dard deviation of edge lengths of a cell to the mean 

edge length, a cell with I0 = 3.0 × 10–3 (1.5 × 10–3) 
has surrounding edge lengths with the standard devi-
ation of approximately 5.5 % (3.9 %) of the mean 
edge length. Thus, by our transformations, the meshes 
show almost isotropic grid shapes, except the edge 
latitude.

4.3  Numerical simulation
In this subsection, pairs of simulations are 

conducted for a realistic atmospheric condition using 
NICAM with two grid systems. One is generated by 
our transformation and the others by the transforma-
tion of Tomita (2008), as shown in Figs. 3a and 3b, 
respectively. The initial condition and model config-
uration, except the horizontal grid, are the same as 
Shibuya et al. (2015); the model top is 53 km and the 
number of the vertical level is 243 (Δz = 150 m up  
to 20 km). Simulations were performed for the time 
period from 0000 UTC 7 April to 0000 UTC 9 April 
2013. As discussed in Shibuya et al. (2015), packets 
of gravity waves were distributed both over the 
Antarctic continent and the Southern Ocean in this 
period, which is consistent with the observation. 

Geophysical locations and phase structures of 
gravity waves are quite similar between the two simu-
lations (Supplement). Thus, we compare simulated 
momentum fluxes ′ ′u w  at the same geographical 
locations using these results in the period from 0000 
UTC 8 April to 0000 UTC 9 April 2013. The fluctu-
ations are extracted by a high-pass filter with a cutoff 
wavelength of 1000 km. Figure 5 shows a histo-
gram of the ratio of the simulated momentum fluxes 
using the grid system by our transformation, ′ ′u w , to 
those using the grid system by Tomita et al. (2008), 
′ ′u w Tomita, as a function of latitude. The scatter plot in 

Fig. 5 is the ratio of the grid intervals of Tomita et al. 
(2008), dTomita, to those of our transformation, d. In 
the high-latitude region (ϕ < –60°), the momentum 
fluxes using the grid system by Tomita et al. (2008) 
are larger than by our transformation, and vice versa 
in the mid-latitude region (ϕ > –60°). Their features 
are consistent with the inverse ratio of the grid inter-
vals (dTomita/d, as discussed in the previous studies 
(e.g., Plougonven et al., 2013). It should be noted that 
the center of the histogram of the ratio ′ ′u w / ′ ′u w Tomita 
approaches 1 at 60° S, where dTomita is just the same as 
d. Thus, the momentum flux simulated using the grid 
system by Tomita et al. (2008) seems to be numeri-
cally over-(under-)estimated in the high-(mid-)lati-
tude region, compared with using the grid system 
by our transformation. This fact suggests that our  
transformation is quite useful for the estimation of the 

Fig. 4. The scatter plots of the (a) smoothness and 
(b) isotropy at all grids as a function of the lati-
tude in the present transformation (green cross 
marks) and the transformation in Tomita (2008) 
(black cross marks). The g-level is 7 (~ 4glevel × 
10 grid points).
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momentum fluxes in the target region.
Interestingly, the dependence of the momentum 

flux on the grid interval is stronger in the high-lat-
itude region than in the mid-latitude region. The 
dependence at the high-latitude region roughly corre-
sponds to (dTomita/d)2, which is also stronger than that 
reported by the previous studies (e.g., Plougonven 
et al. 2013). Further studies are needed to examine 
such a quantitative dependence of the momentum flux 
on the grid interval.

5.  Summary and concluding remarks

We have proposed a new grid transformation with 
a finer and quasi-homogeneous grid in a target region 
using the spring dynamics. First, we formulated 
the constraint regarding the cell areas and the grid 
number in the variable-resolution system. We chose 
the Schmidt transformation as a latitudinal function 
of the resolution outside the target region to make 
the grid shapes as isotropic as possible. Second, a 
constraint regarding the area of the target region, the 
grid number in the target region, and the parameter of 
the Schmidt transformation was derived. As a result, it 
was shown that only one parameter that stands for the 
area of the target region is needed in our transforma-

tion, provided that the condition that the grid resolu-
tion in the target region is as fine as possible. 

Our proposed transformation generates quasi-ho-
mogeneous grids in the target region. We compared 
our grid systems with those from the transformation 
in Tomita (2008). Our transformation yields compa-
rable grid properties to that in Tomita (2008) in terms 
of the smoothness and the isotropy although the grid 
shapes are rather distorted near the edge latitude. 
Simulations using both transformations under a real-
istic atmospheric condition show the amplitudes of 
the momentum flux of gravity waves are strongly 
dependent on the grid intervals, suggesting that our 
transformation is quite useful for the estimation of the 
momentum fluxes.

It should be noted that this transformation can be 
applied to other grid systems using spring dynamics. 
These characteristics are important in terms of simu-
lations of waves and mixing processes, the behaviors 
of which strongly depend on the resolution of the 
numerical model. Moreover, unlike regional models, 
this stretched grid model does not have the problem 
of artificial wave reflection at the domain boundaries. 

Fig. 5. A histogram of the ratio of the simulated momentum fluxes using the grid system by our transformation to 
those using the grid system by Tomita et al. (2008) ( ′ ′u w / ′ ′u w Tomita) ( as a function of latitude. The scatter plot (black 
cross marks) shows the ratio of the grid intervals of Tomita et al. (2008) to of our transformation (dTomita/d), while 
the scatter plot (white cross marks) shows (dTomita/d)2.
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Supplements

Supplementary Fig. S1 shows snapshots of hori-
zontal maps of vertical gradient of vertical wind 
components at z = 15.0 km at (a) 1200 UTC 8 April 
2013 using the grid systems generated (a) by Tomita 
(2008) and (b) by our transformation.
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