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1.  Introduction

During nighttime, and if certain several conditions 
are met, for example, relatively flat terrain, moder-
ately strong and steady horizontal pressure gradient, 
and clear sky conducive to strong radiative cooling, 
supergeostrophic winds blow in the atmospheric 

boundary layer. This is called the nocturnal low level 
jet (LLJ). Although the LLJ is a phenomenon in the 
atmospheric boundary layer, it has an influence on 
weather. For example, usually the LLJ, if it occurs, is 
southerly, and hence, it advects warm and moist air. 
This may be a factor to generate and maintain convec-
tive systems resulting in heavy rain.

Blackadar (1957) explained the LLJ as a result 
of an inertial oscillation (see Fig.1). At sunset, the 
daytime wind velocity is assumed to be in equilibrium 
such that the Coriolis, pressure gradient, and turbu-
lent frictional forces are balanced. After sunset (and 
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before the following sunrise), the frictional force is 
assumed to vanish above the nocturnal inversion. The 
force imbalance causes the inertial oscillation of wind 
velocity starting from the daytime equilibrium wind 
velocity. Because of the oscillation around the geos-
trophic wind velocity, the nighttime wind becomes 
supergeostrophic some time between the sunset and 
the following sunrise. Although other factors such 
as blocking and terrain effects (e.g., Wexler 1961; 
Holton 1967; Jiang et al. 2007; Du and Rotunno 
2014) may be at work, Blackadar’s (1957) mechanism 
is believed to be one of the main factors for the LLJ.

Shapiro and Fedorovich (2010) analytically solved 
the LLJ problem under the following assumptions. 
The turbulent friction is expressed as diffusion. 
The diffusion coefficient in the nighttime, which is 
assumed to be constant, is smaller than that in the 
daytime. By the method of Laplace transform, they 
obtained the analytical solution for the nighttime wind 
velocity. The solution shows a damped inertial oscil-
lation around the nighttime equilibrium wind velocity, 
starting from the daytime equilibrium wind velocity. 
The solution shows several characteristic features 
of LLJs. For example, the height of maximum wind 
speed deceases with time. 

The daytime equilibrium wind velocity in Shapiro 
and Fedorovich (2010) is the Ekman solution. As is 
well-known, the angle between the Ekman solution 
and the geostrophic wind velocity at the ground is 
45°, which is rather large compared with that in some 
observations and numerical simulations (e.g., Griso-
gono 2011; Holtslag et al. 2013). In addition, usually 
the daytime equilibrium wind profile is vertically 
more uniform than the Ekman solution (e.g., Baas 
et al. 2012). Not only Shapiro and Fedorovich (2010) 
but also several other analytical studies on LLJs 
usually assume the diffusion for the turbulent friction 
(e.g., Sheih 1972). However, as long as diffusion is 
assumed, even if the vertical dependence of the diffu-
sion coefficient is considered, the vertical uniformity 
of the daytime equilibrium wind velocity cannot be 
represented (see Section 2).

Van de Wiel et al. (2010) presented a semi-analyt-
ical solution of the LLJ, which is extremely simple 
in comparison to the rather complicated solution of 
Shapiro and Fedorovich (2010). Van de Wiel et al. 
(2010) replaced the nighttime turbulent friction in 
the momentum equation with the equilibrium coun-
terpart, for the nighttime momentum equation to be 
easily solved to give a simple solution. Although the 
solution shows the temporal evolution of nighttime 
wind velocity compatible with observations, the initial 

value (i.e., the daytime equilibrium wind velocity) 
is taken from the observations, and not derived in 
the model. In addition, by the replacement of the 
turbulent friction with the equilibrium counterpart, 
the temporal evolution of nighttime wind velocity 
becomes an undamped inertial oscillation, instead of 
a damped inertial oscillation, which may be regarded 
as a usual case. For example, the numerical simulation 
based on composite data in Baas et al. (2012) shows 
a damped inertial oscillation. The damping of oscil-
lation becomes conspicuous as the level decreases, 
although therein the rapid damping at the lowermost 
level is explained to be caused by the evening transi-
tion. 

Schröter et al. (2013) considered a mixed layer 
model of the daytime atmospheric boundary layer. 
They investigated the relation between the surface 
friction and the mean wind velocity. In the convec-
tive limit, the surface stress is linearly dependent 
on the mean wind velocity. The linearity represents 
the convective contribution to friction. While in the 
neutral limit, the dependence becomes quadratic. This 
is because the shear velocity feedback must be consid-
ered. The quadraticity represents the shear-induced 
contribution to friction. Schröter et al. (2013) showed 
that the stress velocity relation can be well approxi-
mated by a simple linear combination of the above 
two limits.

In this study, we present an analytical solution of 
the LLJ. Taking a hint from Schröter et al. (2013), we 
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Fig. 1. Schematic of the inertial oscillation of 
the nighttime wind velocity uN(z, t). z and t are 
height and temporal coordinates, respectively. 
uG is the geostrophic wind velocity, k is the unit 
vector pointing vertically upwards. u DE(z) is the 
daytime equilibrium wind velocity.
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introduce a term representing convective mixing in 
addition to a mixing with a constant diffusion coeffi-
cient in the momentum equation. Due to the convec-
tive mixing, the daytime equilibrium wind velocity 
is vertically more uniform than the Ekman solution. 
Assuming the absence of convective mixing, we 
analytically solve the nighttime momentum equation. 
The obtained solution of nighttime wind velocity 
shows a damped inertial oscillation around the night-
time equilibrium wind velocity, starting from the 
daytime equilibrium wind velocity. The nighttime 
equilibrium wind velocity is the Ekman solution 
with a reduced diffusion coefficient. By appropri-
ately selecting the values of the parameters, the solu-
tion can represent several characteristic features of 
the LLJ, for example, backward inertial oscillations 
in addition to the well-known forward inertial oscil-
lations (e.g., Baas et al. 2012). Approximately, the 
solution of forward inertial oscillation evolves toward 
the geostrophic wind velocity. On the other hand, the 
solution of backward inertial oscillation evolves in the 
opposite direction. 

This paper is organized as follows. In Section 
2, a term of convective mixing is introduced in the 
momentum equation. In Section 3, the daytime and 
nighttime equilibrium wind velocities are derived. 
In Section 4, the nighttime momentum equation is 
solved, and the analytical expression of nighttime 
wind velocity is derived. In Section 5, by appropri-
ately selecting the values of parameters in the solu-
tion, some of the previously published results are 
qualitatively reproduced. In Section 6, concluding 
remarks are given.

2.  Momentum equation

The usual horizontal momentum equation in the 
atmospheric boundary layer is as follows:

∂
∂

∂
∂

∂
∂

u k u u
t p f z K z=− − × + ( )1

ρ
∇ , (1)

Where u = u(z, t) is the horizontally uniform hori-
zontal wind velocity, z and t are the vertical and 
temporal coordinates, respectively, ρ is the density, 
p is the pressure, and k is the unit vector pointing 
vertically upwards. The Coriolis parameter f is 
assumed to be constant. The pressure gradient force  
 − 1
ρ
∇p is assumed to be equal to that in the free 

atmosphere, which is in geostrohic balance, that is,  
 − 1
ρ
∇p = f k × uG. The geostrophic wind velocity uG  

is assumed to be constant. The momentum Eq. (1) can 
be written in the complex form as

∂
∂

∂
∂

∂
∂

U
t ifU ifU z K

U
z

G= − + ( ), (2)

Where i is the imaginary unit, U = u + iv, and u and 
v are the eastward and northward components of u, 
respectively.

The equilibrium wind velocity is the steady solu-
tion of (2) under the boundary conditions U (0) = 0  
 and lim ( )

z
GU z U

→∞
= . In the case of constant K, this is 

the Ekman solution U Ekm = U Ekm(z),

U z i f
K z UEkm G( ) exp ( ) .= − − +









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

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1 1 2 (3)

The Ekman solution U Ekm in (3) depends on z only  
 in the form of f

K z2
. Consequently, the form of 

hodograph of U Ekm, which is the Ekman spiral, does 
not change for any K, except that U Ekm shifts toward 
the geostrophic wind velocity U G as K increases.

The daytime equilibrium wind velocity U DE = 
U DE(z) is not adequately described in terms of the 
Ekman solution U Ekm because U DE is usually verti-
cally more uniform than U Ekm, as mentioned in 
Section 1. We examine whether the vertical unifor-
mity can be represented considering the vertical 
dependence of the diffusion coefficient K. For a 
general K = K(z), we cannot analytically obtain the 
equilibrium wind velocity U E = U E(z), which is the 
steady solution of (2). However, the WKB approxi-
mate solution exists for a slowly varying K (see, e.g., 
Grisogono 2011),

U z
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
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(4)

The typical diffusion coefficient K(z) first monotoni-
cally increases near the ground and thereafter mono-
tonically decreases (e.g., Grisogono 2011). From  
 the factor 1

K ( )ξ
 in (4), we may expect that the 

approximate solution U E in (4) shifts toward the geos-
trophic wind velocity U G in the region where K(z) 
monotonically decreases, compared with the Ekman 
solution U Ekm with a constant diffusion coefficient 
K, which is some average of K(z). This is indeed 
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the case (see Fig. 2). In Fig. 2, an analytically trac-
table K z a z z bm( ) { ( ) }= − + −2 2 is assumed because 
the specific form of K(z) for seeing how the Ekman 
solution with a constant K is qualitatively modified 
by the slowly varying K(z) does not matter. Here,  
 a

K K z z
b

K zm m m
= −








 =1

0
1 1 1

2( ) ( )
,

( )
, and zm is 

the level at which K(z) is maximum.
Hence, if U E becomes nearly uniform, the uniform 

wind velocity is expected to be equal to the geos-
trophic wind velocity U G. This is incompatible with 
observations. This is the case not only for a slowly 
varying K = K(z) but also for a general K = K(z), as is 
easily seen from (2). Indeed, from (2) the equilibrium 
wind velocity U E satisfies

0= − +ifU ifU z K z U
z

G E E∂
∂

∂
∂

( ) . (5)

If U E is nearly uniform in some region z1 < z < z2,  
 then the diffusion term ∂

∂
∂
∂z K z U
z
E

( )  in (5) is small 

there. This implies that U UE G≈  there. Therefore, we 
can conclude that as long as diffusion for the turbulent 
friction is assumed, the vertical uniformity of daytime 
equilibrium wind velocity cannot be represented.

To derive a daytime equilibrium wind velocity 
U DE = U DE(z) which is vertically more uniform than 
the Ekman solution, getting a hint from Schröter et al. 
(2013), we introduce a term representing convective 
mixing in the momentum Eq. (2) with K being 
assumed to be constant,

∂
∂

∂
∂

U
t ifU ifU K U

z
f U UG= − + − −( )

2

2 α . (6)

The last term on the right hand side of (6) is the 
convective mixing term. The convective mixing 
coefficient α is nondimensionalized by the Coriolis 
parameter f, and U  is the vertical average of U, i.e.,  

U H dzU
H

= ∫1 0
, where H is the depth of the atmo-

sphric boundary layer that is assumed to be constant. 
The term implies that the wind velocity U is forced to 
approach the vertical average U .

The daytime equilibrium wind velocity U DE = U DE(z) 
is the steady solution of (6) under the boundary condi-
tions U DE(0) = 0 and U DE(H) = U G ,

0
2

2= − + − −( )ifU ifU K U
z

f U UG DE DE DE DE∂
∂

α .

(7)
Taking the vertical average of (7) gives

0

1
0

= − +

( ) −( ){ }
= =

ifU ifU

K H
U
z

U
z

G DE

DE

z H

DE

z

∂
∂

∂
∂

.
(8)

If the depth H is infinite, then the last term on the 
right hand side of (8) vanishes, and UDE  becomes 
equal to U G. The vertical average of observed daytime 
winds is different from that of the geostrophic wind. 
In general, the magnitude of observed daytime winds 
is much smaller than that of the geostrophic wind. 
Hence, to obtain UDE  with | | | |,U UDE G<  we assume 
that the depth H is finite.

Multiplying (6) by U* and taking the real part 
affords

∂
∂

∂
∂

∂
∂

∂
∂

t
U f U U K U

z f U U

K z U U

G| |
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2 2 2
2







=−   − − −

+

Im α

zz f U U U( )− − αRe *( ) ,
(9)

where the asterisk * denotes the complex conjugate, 
and Im and Re denote the imaginary and real parts, 
respectively. Vertically integrating (9), and noticing  
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Fig. 2. Example of the hodograph of the equilib-
rium wind velocity uE(z) with a slowly varying 
K(z). uG is the geostrophic wind velocity, k 
is the unit vector pointing vertically upwards. 
u Ekm(z) is the Ekman solution. A profile K(z) 
= {a(z − zm)2 + b}–2 is assumed, where a =  
 
 1

0
1 1 1

2K K z z
b

K zm m m( ) ( )
,

( )
,−









 =  K(0) = 50 

m2 s–1, K(zm) = 60 m2 s–1 and zm = 150 m.
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U(0) = 0 and dz U U
H

( )−∫0  = 0, we obtain the 

following energy equation:

d
dt dz U

f dz U U K U U
z

K dz U
z

H

H G

z H

H

0

2

0

0

2∫

∫

∫

=−   + ( )
−

=

| |

| | | |*Im ∂
∂

∂
∂

22

0

2− −∫f dz U U
H

α .

(10)

The first term on the right hand side of (10) represents 
the work done by the external force. The second term 
represents the transport of energy from above. The 
third and fourth terms, which are negative definite, 
represent the turbulent dissipation of energy. The 
negativity implies that the convective mixing term 
introduced in (6) indeed represents the energy dissipa-
tion as required for friction.

3.  Equilibrium wind

The daytime equilibrium wind velocity U DE = 
U DE(z) is the solution of (7) under the boundary 
conditions UDE(0) = 0 and UDE(H) = UG. First, we 
rewrite (7) as

∂
∂

2

2
U
z

i f
K U if

K U
f
K U

DE DE G DE− + =− −( )α α (11)

and solve (11) for U DE(z) in terms of UDE  and U G to 
give

U z
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U
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−
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−−
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+
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α

α α
α

α
α
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H

G H DE H z

G DE

U
i ie U

i e e

i
iU iU

1

,

(12)

 Where β α= +( )i f
K

. Second, taking the vertical 

average of (12) and neglecting e H−β  compared with 
1 (| |e H−β �1 for realistic values of f, K, H) gives the 
vertical average of U DE(z),

U i i H
i H UDE G= − +
+

α β
α β2 . (13)

Finally, substituting (13) into (12) and neglecting 

e H−β  compared with 1 gives the daytime equilibrium 
wind velocity U DE,

U z e U

i H e e U

DE z G

z H z G

( )

.( )

= −( )

− +( ) − −{ }

−

−
− − −

1

2 1
1

β

β ββ
α

(14)

In the limit of α→ 0, the daytime equilibrium wind 
velocity in (14) becomes essentially the Ekman solu-
tion although the depth H is finite instead of infinite,

lim ( ) ,
α

β
→

−= −( )
0

1 0U z e UDE z G (15)

 Where β0 =
if
K . While in the limit of α→∞, the 

daytime equilibrium wind velocity in (14) becomes 
vertically uniform except that U DE(0) = 0 and U DE(H) = 
U G,

lim ( ) .
α→∞

= < <U z U z HDE G1
2 0for (16)

Of course, the limiting case (α→∞ ) is never real-
ized, an idealized case. 

The hodograph of U DE(z) in (14) is depicted for f = 
1 × 10–4 s–1, K = 1 m2 s–1, H = 500 m, and for several 
values of α in Fig. 3 (the component representation 

α=0

α=3

α=15

α=25

k uG

uG

Fig. 3. The hodograph of the daytime equilibrium 
wind velocity in (14). f = 1 × 10–4 s–1, K = 1  
 
m2 s–1, H = 500 m. Crosses (×) indicate z = nH10  

(n = 1, 3, 5, 7, 9). For α = 15 and α = 25, the 
three crosses (n = 3, 5, 7) overlap because of the 
vertical uniformity.
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of wind velocity is given in Appendix). The greater α 
is, the more uniform U DE(z) is in the vertical and the 
smaller the ageostrophic angle at the ground, although 
the discontinuity in tangent of the hodograph is unre-
alistic.

Since the convective mixing is suppressed after the 
sunset (and before the following sunrise), the convec-
tive mixing coefficient α is assumed to vanish in the 
nighttime. Then, the nighttime equilibrium wind 
velocity U NE = U NE(z) is given by (15) but with a 
reduced nighttime diffusion coefficient �K K( )< , 

U z e UNE z G( ) ,= −( )−1 0�β (17)

 Where � �β0 =
if
K . 

4.  Nocturnal wind

We assume that the daytime wind velocity becomes 
the equilibrium wind velocity U DE(z) by sunset (t = 
0). Because of the absence of the convective mixing 
α = 0, the nighttime wind velocity U N = U N(z, t) is the 
solution of

∂
∂

∂
∂

U
t ifU ifU K U

z
N G N N
= − + �

2

2 (18)

under the boundary conditions U N(0, t) = 0 and U N(H, 
t) = U G, and the initial condition U N(z, 0) = U DE(z), 
which is derived in Section 3 by the introduction of 
the convective mixing α > 0 and is vertically more 
uniform than the Ekman solution. While, the night-
time equilibrium wind velocity U NE = U NE(z) is the 
solution of 

0
2

2= − +ifU ifU K U
z

G NE NE� ∂
∂

(19)

under the boundary conditions U NE(0) = 0 and 
U NE(H) = U G. In the absence of the convective 
mixing α = 0, the nighttime equilibrium wind velocity 
U N = U NE(z) is essentially the same as the Ekman 
solution. We define U I(z, t) as 

U z t U z e U z tN NE ift I( , ) ( ) ( , ).= + − (20)

Then, from (18), (19), and (20), U I(z, t) is the solution 
of

∂
∂

∂
∂

U
t K U

z
I I
= �

2

2 (21)

under the boundary and initial conditions,

U t U H t

U z U z U z

I I

I DE NE

( , ) , ( , ) ,

( , ) ( ) ( ).

0 0 0

0

= =

= −
(22)

Although U I(z, t) is defined only in the region 
0≤ ≤z H , we regard U I(z, t) as an antisymmetric 
function with respect to z in the region − ≤ ≤H z H , 

U z t U z t H zI I( , ) ( , ) ,=− − − ≤ ≤for 0

and further as a periodic function with respect to z 
with a period 2H in the region −∞< <∞z .

U z H t U z tI I( , ) ( , ).+ =2

Then, we can expand U I(z, t) in terms of trigono-
metric functions as

U z t S t m z
H

I
m

m
( , ) ( )sin .=

=

∞

∑
1

π (23)

Because of the boundary conditions in (22), which 
imply that U I(z, t) is continuous up to the first  
 derivative at z = 0, H, the infinite sum 

m=

∞

∑
1

 in (23)  
 
can be well approximated by a finite sum 

m

M

=
∑

1
 (we 

take M = 100 in Section 5).
By the substitution of (23) into (21), the temporal 

dependence of Sm(t) is determined,

S t S K m
H tm m( ) ( )exp .= − ( )






0

2
� π (24)

By the integration of (23) with respect to z at t = 0, the 
functional dependence of Sm(0) on U I(z, 0) is deter-
mined,

S H dzU z m z
Hm

H I( ) ( , )sin .0 2 0
0

= ∫ π (25)

From the initial condition in (22), U I(z, 0) = 
U DE(z) – U NE(z). Substituting (14) and (17) into 
U I(z, 0), performing the integration in (25), and 
neglecting e H−β  and e H− �β0  compared with 1 affords  
 S H Im m( )0 2= , where

I

i H

m

m

=

+
−

+

− − −{ } +( ) −
+


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


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α µ
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2
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2 2 2

1

2 21 1 2 1

�
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







U
G ,

(26)
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and µ π= mH . From (20), (23), and (24), we obtain the 
nighttime wind velocity U N(z,t),

U z t U z

e H I e m z
H

N NE

ift
m

m

K m
H t

( , ) ( )

sin ,

=

+ −

=

∞ − ( )∑2
1

2
� ππ (27)

where Im is given by (26). As is evident in (27), the 
nighttime wind velocity U N(z, t) shows a damped 
inertial oscillation around the nighttime equilibrium 
wind velocity U NE(z).

5.  Examples

To assess the validity of the solution in (27), we 
try to reproduce some of the previously published 
results by appropriately selecting the values of the  
parameters.

Shapiro and Fedrovich (2010) analytically obtained 
the nighttime wind velocity under the assumptions 
that both the daytime and nighttime equilibrium wind 
velocities are the Ekman solutions with the night-
time diffusion coefficient smaller than that with the 
daytime. To reproduce their results, we take f = 1 × 
10–4 s–1, K = 10 m2 s–1, �K  = 1 m2 s–1 α = 0, and H = 
2000 m in the solution (27), and show the temporal 
evolution of the vertical profile of the nighttime wind 
velocity U N(z, t) in Fig. 4. On the left panel of Fig. 

4, the component along the geostrophic wind velocity 
is depicted, and on the right panel, the compo-
nent perpendicular to it is depicted. The level of the 
maximum wind speed descends as time goes on. This 
is partly compatible with some observations (e.g., 
Bonner 1968; Mitchell et al. 1995). Their results are 
qualitatively well reproduced (see Fig. 2 in Shapiro 
and Fedorovich 2010).

Baas et al. (2012) presented the numerically simu-
lated hodographs of nighttime wind velocity based 
on their composite data. To reproduce their result, we 
take f = 1 × 10–4 s–1, K = 0.88 m2 s–1, �K  = 0.22 m2 s–1, 
α = 15, and H = 1000 m in the solution (27), and show 
the hodographs of the nigttime wind velocity U N(z, t) 
in Fig. 5. There exist backward inertial oscillations in 
the lower levels in addition to forward inertial oscil-
lations in the upper levels. The lowermost oscillation 
is damped rapidly. Their results are at least qualita-
tively well reproduced (see Fig. 4 in Baas et al. 2012) 
although they attributed the rapid damping to the 
evening transition.

Finally, we try to reproduce the observed hodo-
graphs in Van de Wiel et al. (2010), whose damping 
is weak. We take f = 1.15 × 10–4 s–1, K = 1 m2 s–1, 
�K  = 0.1 m2 s–1, α = 15, and H = 500 m in the solu-

tion (27), and show the hodographs of the nighttime 
wind velocity U N(z, t) in Fig. 6. Their results are, we  
think, at least qualitatively reproduced (see Fig. 8 in 
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Fig. 4. The temporal evolution of the vertical profile of the nighttime wind velocity in (27). f = 1 × 10–4 s–1, K = 10 
m2 s–1, �K = 1 m2 s–1, α = 0, H = 2000 m. The left and right panels depict the components parallel and perpendic-
ular to the geostrophic wind velocity, respectively.
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Van de Wiel et al. 2010).

6.  Concluding remarks

In the usual analytical studies on the atmospheric 
boundary layer, the turbulent friction is parameter-
ized as diffusion. In the case of a constant diffusion 
coefficient, the equilibrium wind velocity is given by 
the Ekman solution. The angle θ0 between the Ekman 
solution and the geostrophic wind velocity at the 
ground is 45°, which is rather large compared with 
some observations and/or numerical simulations. In 
addition, the vertical profile of daytime equilibrium 
wind velocity is usually more uniform in the vertical 
than the Ekman solution. Considering the vertical 
dependence of the diffusion coefficient, we can reduce 
the angle θ0 to a realistic value (e.g., Grisogono 2011). 
However, the vertical uniformity cannot result even if 
the vertical dependence of the diffusion coefficient is 
counted. 

Taking a hint from Shröter et al. (2013), we intro-
duced a term representing convective mixing in the 
horizontal momentum equation in the daytime atmo-
spheric boundary layer, so that the turbulent friction 
is represented as a linear combination of convective 
mixing and diffusion. Due to the convective mixing, 
the daytime equilibrium wind velocity becomes 
vertically more uniform than the Ekman solution. 
Assuming that the convective mixing is absent and 
that the diffusion coefficient is reduced in the night-

time, we analytically solved the momentum equation. 
The obtained solution of nighttime wind velocity 
shows a damped inertial oscillation around the 
nighttime equilibrium wind velocity, starting from 
a daytime equilibrium wind velocity. By appropri-
ately selecting the values of parameters in the solu-
tion, some previously published results are quali-
tatively reproduced, although the height H of the 
boundary layer is not derived in the model but is also 
a prescribed parameter, which is a limitation of the 
present model. The reproducibility implies that it has 
some validity to parameterize the turbulent friction 
by the linear combination of diffusion and convective 
mixing.

In this study, we assumed that the daytime wind 
velocity has become the equilibrium wind velocity by 
sunset. However, unless the turbulent friction is too 
strong, the daytime wind velocity may inertially oscil-
late (e.g., Thorpe and Guymer 1977). In midlatitudes 
near 30°N, the frequency f of the inertial oscillation 
is nearly equal to the angular frequency of the earth, 
that is, nearly equal to the frequency of the diurnal 
heating. Because of this, the resonance between the 
diurnal heating and the inertial oscillation may occur 
(e.g., Shibuya et al. 2014). If the resonance occurs, the 
daytime wind velocity keeps on inertially oscillating. 
Furthermore, the amplitude may grow rather than be 
damped to the equilibrium. 

In this study, both the convective mixing coeffi-
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Fig. 5. The hodographs of the nighttime wind 
velocity in (27). f = 1 × 10–4 s–1, K = 0.88 m2 
s–1, �K = 0.22 m2 s–1, α = 15, H = 1000 m. Trian-
gles (�) mark the daytime equilibrium wind  
velocity.
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Fig. 6. The hodographs of the nighttime wind 
velocity in (27). f = 1.15 × 10–4 s–1, K = 1 m2 s–1, 
�K = 0.1 m2 s–1, α = 15, H = 500 m. Triangles (�
) mark the daytime equilibrium wind velocity.
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cient α and diffusion coefficient K are assumed to be 
temporally piecewise constant. That is, both α and K 
are positive constants in the daytime, and α vanishes 
and K is reduced in the nighttime. To consider the 
above mentioned resonance effect, we must consider 
diurnally varying α and K. Although Sheih (1972) 
analytically studied the case with a diurnal varying 
diffusion coefficient, he did not consider the reso-
nance. Recently, Shibuya et al. (2014) numerically 
investigated the resonant inertial oscillation and 
proposed the mechanism of the resonance. However, 
the analytical study is still to be conducted.

Analytical investigation of the resonant inertial 
oscillation with diurnally (and vertically if possible) 
varying frictional coefficients will be conducted in our 
future studies. Our model has many difficulties (e.g., 
constant H, small e H−β , etc) that need to be overcome 
to represent the developing convective boundary 
layer.
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Appendix

1. Component representation of U DE(z)
For the presentation simplicity, we set the coordi-

nates axes so that u vG G G= =| |,u 0. In this case the 
complex geostrophic wind velocity becomes U G = uG 
+ ivG = uG, and the daytime equilibrium wind velocity 
in (3.4) becomes 

U z e u

i H e e u

DE z G

z H z G
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We rewrite the parameter β in (A.1) as

β α γ
τ

τ= + = +

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K i1 (A2)

 Where γ = f
K2 , τ θ= tan 2 , and θ α

= −tan 1 1 . Sub- 
stituting (A.2) into (A.1) and after some manipula-
tion, we obtain the components of U DE(z) = u DE(z) + 
iv DE(z), 
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2. Component representation of UNE(z) 
The nighttime equilibrium wind velocity in (17) 

becomes

U z e uNE z G( ) .= −( )−1 0�β (A3)

We rewrite the parameter �β0  in (A.3) as

�
� �β γ0 1= = +if
K

i( ), (A4)

 Where � �γ = f
K2

. Substituting (A.4) into (A.3), we 

obtain the components of U NE(z) = u NE(z) + iv NE(z),
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3. Component representation of U N(z, t) 
The coefficients Im in (26) of the nighttime wind 

velocity U N(z, t) in (27) becomes
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 where µ π= mH , β γ
τ
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Substituting (A.3), (A.5) and (A.6) into (27) and after 
some manipulation, we obtain the components of 
U N(z,t) = u N(z,t) + iv N(z,t),

u z t u e z

H I ft I ft

N G z

m
m m

( , ) cos

[ ]cos [ ]sin( )

= −( )

+ +

−

=

∞

∑

1

2
1

� �γ γ

Re Im ee z

v z t u e zn

H I ft

tK

N G z

m
m

−

−

=

∞

=

+ −∑

�

� �

µ

γ

µ

γ

2

1

2

sin ,

( , ) sin

[ ]cos(Im Ree[ ]sin sin ,)I ft e zm
tK− �µ µ2

where

Re Im[ ]= +
− +

+ +
















−

µ µ
µ γ

µ αγ
µ αγ γ

2

4 4

2 2

2 2 2 44
2

2 4� ( )

11 1 1 2
2 4

2

2 2

2 2 2 4− −{ } − +
+ +











−

( ) ( )
( )

(

m

H

µ
µ µ αγ

µ αγ γ

α α γ ττ

α γ τ γ
τ
µγ

µ αγ γ

α γ
τ

α γ τ

)

( )

( )
( )

( )

2

1 1 2
2 4

2

2
2 2

2

2 2 2 4

− +

− − −{ }
+ +

−

H H

H

H

m

22
2 2

+











γ
τ
H

uG

and

Im Im[ ]= − +
−

+ +
















+ −

2
4 2 4

1

2

4 4

2

2 2 2 4µ γ
µ γ

γ
µ αγ γ

�
� ( )

(( ) ( )
( )

(

−{ } − +
+ +











−

1 1 2
2 4

2

2 2

2 2 2 4
m

H

µ
µ µ αγ

µ αγ γ

α γ
τ

α γHH H

H

H

m

τ γ
τ
µγ

µ αγ γ

α α γ τ

α γ τ

)

( )
( )

( )

( )

2
2 2

2

2 2 2 4

2

1 1 2
2 4

2

2

+

− − −{ }
+ +

−

− + γγ
τ
2 2H

uG










.

References

Baas, P., B. J. H. Van de Wiel, L. Van den Brink, and A. 
A. M. Holtslag, 2012: Composite hodographs and 
inertial oscillations in the nocturnal boundary layer. 
Quart. J. Roy. Meteor. Soc., 138, 528–535.

Blackadar, A. K., 1957: Boundary layer wind maxima and 
their significance for the growth of nocturnal inver-
sions. Bull. Amer. Meteor. Soc., 38, 283–290.

Bonner, W. D., 1968: Climatology of the low level jet. Mon. 
Wea. Rev., 96, 833–850.

Du, Y., and R. Rotunno, 2014: A simple analytical model of 
the nocturnal low-level jet over the Great plains of the 
United States. J. Atmos. Sci., 71, 3674–3683.

Grisogono, B., 2011: The angle of the near-surface wind-
turning in weakly stable boundary layers. Quart. J. 
Roy. Meteor. Soc., 137, 700–708.

Holton, J. R., 1967: The diurnal boundary layer wind oscil-
lation above sloping terrain. Tellus A, 19, 199–205.

Holtslag, A. A. M., G. Svensson, P. Baas, S.Basu, B. Beare, 
A. C. M. Beljaars, F. C. Bosveld, J. Cuxart, G. J. 
Steeneveld, M. Tjernstrom, and B. J. H. van de Wiel, 
2013: Stable atmospheric boundary layers and diurnal 
cycles. Bull. Amer. Meteor. Soc., 94, 1691–1706.

Jiang, X., N. C. Lau, I. M. Held, and J. J. Ploshay, 2007: 
Mechanism of the Great Plains low-level jet as simu-
lated in an AGCM. J. Atmos. Sci., 64, 532–547.

Mitchell, M. J., R. W. Arritt, and K. Labas, 1995: A clima-
tology of the warm season Great Plains low-level jet 
using wind profiler observations. Wea. Forcasting, 10, 
576–591.

Schröter, J. S., A. F. Moene, and A. A. M. Holtslag, 2013: 
Convective boundary layer wind dynamics and iner-
tial oscillations: the influence of surface stress. Quart. 
J. Roy. Meteor. Soc., 139, 1694–1711.

Shapiro, A., and E. Fedorovich, 2010: Analytical description 
of a nocturnal low-level jet. Quart. J. Roy. Meteor. 



S. HIRA and H. KANEHISAAugust 2015 487

Soc., 136, 1255–1262.
Sheih, C. M., 1972: A theoretical study of the diurnal wind 

variations in the planetary boundary layer. J. Atmos. 
Sci., 29, 995–998.

Shibuya, R., K. Sato, and M. Nakanishi, 2014: Diurnal 
wind cycles forcing inertial oscillations: A latitude-de-
pendent resonance phenomenon. J. Atmos. Sci., 71, 
767–781.

Thorpe, A. J., and T. H. Guymer, 1977: The nocturnal jet. 
Quart. J. Roy. Meteor. Soc., 103, 633–653.

Van de Wiel, B. J. H., A. F. Moene, G. J. Steeneveld, P. 
Baas, F. C. Bosveld, and A. A. M. Holtslag, 2010: A 
conceptual view on inertial oscillations and nocturnal 
low-level jets. J. Atmos. Sci., 67, 2679–2689.

Wexler, H., 1961: A boundary layer interpretation of the low 
level jet. Tellus, 13, 368–378.


