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We use a front-tracking method to simulate solidi�cation with volume change of a droplet on a �xed cooling plate. The 
problem includes temporal evolution of three interfaces, i.e., solid–liquid, solid–air, and liquid–air, that are explicitly 
tracked under the assumption of axisymmetry. The solid–liquid interface is propagated with a normal velocity that is 
calculated from the normal temperature gradient across the front and the latent heat. The liquid–air front is advected 
by the velocity interpolated from nearest bulk �uid �ow velocities. Accordingly, the evolution of the solid–air front is 
simply the temporal imprint of the triple point at which simple and straightforward conditions are imposed. The govern-
ing Navier–Stokes equations are solved for the whole domain, setting the velocities in the solid phase to zero and with 
the non-slip condition on the solid–liquid interface. Computational results are compared with exact solutions for two-
dimensional Stefan problems and with corresponding experimental results, and show good agreement.

Introduction

A solidification problem in which there is the presence 
of solid, liquid and gas appears in many methods of grow-
ing crystals from melts such as Czochralski crystal growth 
(Porrini, 2001), float-zone processing (Markvart, 2000), 
laser welding (Booth, 2004) and spraying (Minemoto and 
Takakura, 2007). The three phases meet at the tri-junction, 
and the solid phase comes directly from the melt. The evolu-
tion of the solidification interface, i.e., the interface separat-
ing solid and liquid, and the tri-junction conditions deter-
mine the form of the solidified product. In addition, density 
difference between solid and liquid in conjunction with the 
tri-junction effect can produce a curious shape (Ajaev and 
Davis, 2004).

Recently, a drop solidifying on a cold plate, which in-
cludes the above-mentioned aspects, has been paid much 
attention to. Experimental studies can be found in Anderson 
et al. (1996), Satunkin (2003) and Hu et al. (2010). However, 
direct numerical simulations of this problem are still lack-
ing. Schultz et al. (2001) used a boundary integral method 
to investigate a drop solidifying on a cold plate (Anderson et 
al., 1996), but neglecting the gravity effect. A similar meth-
od with fixed contact angles has been used by Ajaev and 
Davis (2004) to consider the effect of the density difference 
and contact angles on the shape of the solidified drop under 

zero gravity. Virozub et al. (2008) included the gravity and 
surface tension effects to the problem. The Young–Laplace 
equation in conjunction with a constant growth angle was 
numerically solved to find the position of the liquid–gas 
front. In another work (Pasandideh-Fard et al., 2002), the 
volume of fluid combined with the enthalpy method has 
been used to investigate the solidification process of a drop. 
However, volume change was not accounted for.

In this paper, we deal with the solidification process, 
which includes volume change and the tri-junction and 
gravity effects. We base on the front-tracking/finite differ-
ence method for dendritic solidification (Al-Rawahi and 
Tryggvason, 2002) and impose simple and straightforward 
tri-junction conditions to simulate a drop solidifying on a 
cold plate.

1.　Mathematical Formulation and Numerical 
Method

Figure 1(a) shows the investigated problem. An axisym-
metric drop contacts with a cold plate at cold temperature Tc 
and then solidifies from the bottom. Initially, the liquid drop 
surrounded by ambient (gas) at temperature Tg is at hot 
temperature Th that is greater than or equal to its melting 
temperature Tm. During solidification, the volume change 
and the tri-junction play an important role in the ultimate 
shape of the drop. In addition, in the case of water, there ex-
ists evaporation from the freezing drop, which generates a 
condensation halo around the drop (Jung et al., 2012). For-
mation of evaporation and halos also affects the solidifica-
tion process. However, in this paper we neglect the effect of 
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the evaporation and condensation halo. The focus points are 
volume change caused by density difference between solid 
and liquid, and effect of the tri-junction.

Here, we assume that the fluids are incompressible, im-
miscible and Newtonian. We treat all phases as one fluid 
with variable properties such as density ρ, viscosity μ, 
thermal conductivity k and heat capacity Cp. Accordingly, 
the governing equations are given as Eqs. (1) to (3). The heat 
source at the solidification front q̇f is given as Eq. (4).
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Equation (3) accounts for volume change at the solidifica-
tion front due to density difference between solid and liquid.

We use here a front-tracking/finite difference method 
(Esmaeeli and Tryggvason, 2004) with modification to ac-
count for the presence of three phases, phase change and 
volume change. The three phases and their properties are 
specified using indicator functions that are determined from 
known positions of the interface points: the points of the 
solidification and solid–gas fronts are used to construct the 
indicator Is (Is=0 in solid and Is=1 in liquid and gas) while 
the indicator Il (Il=0 in liquid and solid and Il=1 in gas) is 
built from the points on the solid–gas and liquid–gas inter-
faces. Accordingly, the values of the material property fields 
at every location are then given by

− −= + +g l l l s s s(1 )[ (1 )  ] I I I Iφ φ φ φ   (5)

Here, ϕ stands for ρ, μ, Cp, or k. Is is also used to set velocity 

field in the solid phase to zero. A detailed description of how 
to solve the above governing equations can be found in Es-
maeeli and Tryggvason (2004). Here we just describe how to 
incorporate conditions at the tri-junction, i.e., triple point in 
2D view as shown in Figure 1(b). We have three types of in-
terfaces represented by connected elements that move on a 
stationary grid. The solidification front propagates with the 
normal velocity Vn, Vn= q̇f/(ρsLh) while the liquid–gas front 
is advected by the velocity interpolated from the fixed grid 
velocities. At the triple point, we correct the position of this 
point by applying a constant growth angle (Virozub et al., 
2008). We do this by introducing an extended element at the 
end of each interface. We then estimate the tangent vector 
of each interface at the triple point by fitting a third-order 
polynomial through the triple point, the other point on the 
extended element and two adjacent points on the nearest 
elements. Thereby, the growth angle is defined as ϕgr=θs−θl 
where θs and θl are the angles between the tangent to the 
solid–air interface and the horizontal and between the tan-
gent to the liquid–air interface and the horizontal. We ad-
just the position of the triple point to satisfy the prescribed 
growth angle using the secant method.

2.　Numerical Parameters

We choose the wetting radius R as a scaling length, and 
τc=ρlClR2/kl as the characteristic time scale. The character-
istic velocity scale is thus not independent and is taken to 
be Uc=R/τ. With these above choices, it is possible to show 
that the dynamics of the problem is governed by the follow-
ing dimensionless parameters: Prandtl number Pr=Cpμl/kl; 
Stefan number St=(Tm−Tc)/Lh; Bond number Bo=ρlgR2/σ; 
Weber number We=ρlUc

2R/σ; density ratios ρsl=ρs/ρl and 
ρgl=ρg/ρl viscosity ratios μsl=μs/μl and μgl=μg/μl; thermal 
conductivity ratios ksl=ks/kl and kgl=kg/kl; heat capacity ra-
tios Cpsl=Cps/Cpl and Cpgl=Cpg/Cpl. The temperature is non-
dimensionalized as Θ=(T−Tc)/(Th−Tc). The non-dimen-
sional time is τ=t/τc.

Most of the experimental studies mentioned previously 

Fig. 1 A drop solidifying on a cold plate: (a) computational domain and (b) triple point treatment. In (b), solid elements represent actual fronts and 
dash elements are extended ones to account for calculations of contact angles and surface tension force
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concern the solid–liquid–gas systems. The density and vis-
cosity ratios of liquids to gas are very high. However, our 
simulation results presented in this paper are limited to 
cases of moderate ratios of viscosity and density since, at 
high density ratios with high interfacial tension, typical of 
liquid–gas systems, high and irregular velocities appearing 
near the interfaces destroy the solution (Tryggvason et al., 
2011). In addition, high density and viscosity ratios result 
in a high computational cost. However, as shown below, our 
approximations for the density and viscosity ratios as well as 
for ratios of thermal properties are reasonable.

3.　Results and Comparisons

We first compare our computational results with analyti-
cal solutions for a 2D Stefan problem (Carslaw and Jaeger, 
1986) in which a line heat source Q causes a circular solid 
seed at the center to evolve in the direction of increasing 
the radius of the seed. Simulations are performed for this 
2D problem set at St=Cps/(ksLh)=0.1, 1, and 10. The initial 
front location and temperature used for simulations are 
found from the exact solutions at the moment t=t0 when 
a small, circular solid seed with a radius r=0.1 has formed. 
Q is set at 10. Figure 2 shows that the computational results 
agree well with the exact solutions at different Stefan num-
bers.

To verify the method, we investigate a case of drop so-
lidification with Pr=0.02, St=0.1, Bo=0, We=1, ksl=1, 
kgl=0.01, Cpsl=Cpgl=1, μsl=5, μgl=0.1, ρsl=1, ρgl=0.1 and 
ϕgr=0°. Since there is no volume change with a zero growth 
angle, the shape of the solidified drop must be the same 
as that of the initial liquid drop (Ajaev and Davis, 2004). 
Figure 3 confirms this.

Next, we turn to the cases in which there exists volume 
change in conjunction with constant growth angles. In all 
cases presented below, at the beginning of computation τ= 
0, a thin solid layer at Θ=0 has formed at the cold plate, as 
shown in Figures 5 to 7.

Figure 4 shows the solidification process of a water drop 
on a cold plate (Hu et al., 2010) with Pr=7.25, St=0.025, 
Bo=0.025, We=5×10−5, ksl=3.8, kgl=0.04, Cpsl=0.5, 
Cpgl=0.24, μsl=5, μgl=0.05, ρsl=0.9, ρgl=0.05, and ϕgr=0°. 
The liquid drop initially has a spherical cap. During the 
freezing process, heat in the liquid phase is released to the 
gas and solid phase, leading to a decrease in the tempera-
ture. The velocity field (on the right of Figure 4) indicates 

that the drop tends to expand in the vertical direction rather 
than in the horizontal direction (Enríquez et al., 2012). In 
addition, the velocity field becomes stronger as the liquid 
part decreases. This causes heat in the liquid phase to be 
transferred faster to the gas phase during the last stages of 
solidification. Detailed evolution of the solidification front 
is shown in Figure 5(a) with a comparison with the ex-
perimental drop shape reported in Hu et al. (2010) (Figure 
5(b)). Because of different density of the solid and liquid 
phases, the shape of the solidified drop is profoundly differ-

Fig. 2 Comparisons with exact solutions of Carslaw and Jaeger (1986)

Fig. 3 Method verification: dash and solid lines represent solidifica-
tion and solid–gas fronts; circles represent the initial liquid–
gas front. The solidification front is plotted every Δτ=0.67

Fig. 4 Solidification process of a water drop: The left showing the 
temperature field and the right showing the velocity field nor-
malized by Uc. Yellow lines on the left represent the tempera-
ture contours
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ent from the liquid one. Figure 5(a) also indicates that the 
growth rate is high during the initial stages of solidification 
because of a large temperature gradient. When the solidi-
fication front goes further, the solidification rate gradually 
decreases (Ajaev and Davis, 2004). However, when the drop 
has nearly solidified, the growth rate again increases since 
the interface area shrinks to zero (Schultz et al., 2001). The 
comparison with the experimental solidified drop shape 
shows good agreement.

Figure 6(a) shows the solidification process of a drop 
with Pr=0.013, St=0.116, Bo=1.32, We=0.05, ksl=0.5, 
kgl=0.01, Cpsl=Cpgl=1, μsl=5, μgl=0.05, ρsl=0.91, and 
ρgl=0.05. These parameters except for We correspond to sil-
icon (Si) (Satunkin, 2003). The growth angle ϕgr is set to 12° 
according to the experiment of Satunkin (2003). Initially, the 
liquid–gas interface is spherical, and the liquid phase is at 
Th=Tm. During solidification, the temperature in the liquid 
phase keeps at the melting temperature. Good agreement 
between computational and experimental solidified drop 
shape has been found as shown in Figure 6(b).

Figure 7(a) shows the solidification process of a drop 
with Pr=0.0255, St=0.278, Bo=0.6, We=0.008, ksl=0.39, 
kgl=0.01, Cpsl=0.77, Cpgl=3.7, μsl=5, μgl=0.03, ρsl=0.8, 
and ρgl=0.05. These parameters except for We correspond 
to indium antimonide (InSb) (Satunkin, 2003). Initially, 
the liquid phase has a spherical cap. Satunkin (2003) re-
ported that the growth angle increases, in the range of 
25 to 30°, with a decrease in the wetting radius. And this 
variable growth angle could be easily taken into account in 
our codes. However, ϕgr here is fixed at 25°, and reasonable 
agreement between the computational and experimental so-
lidified drop shape is found as shown in Figure 7(b).

Fig. 5 Solidification of a water drop: (a) Evolution of the solidifica-
tion front (dash line plotted every Δτ=0.0295); and (b) a com-
parison with the experimental solidified drop shape reported 
in Hu et al. (2010). In (a), the dot line represents the initial 
liquid–gas front

Fig. 6 Solidification of a Si drop. (a) The left shows the temperature 
contours at τ=1.2, and the right shows evolution of the solidi-
fication front (dash line plotted every Δτ=0.4). (b) A compari-
son with the experimental solidified drop shape reported in 
Satunkin (2003). In (a), the dot line on the right represents the 
initial liquid–gas front

Fig. 7 Solidification of an InSb drop. (a) The left shows the drop 
states at τ=2.96 and the right shows evolution of the solidifi-
cation front (dash plotted every Δτ=0.592). (b) A compari-
son with the experimental solidified drop shape reported in 
Satunkin (2003). In (a), the dot line on the right represents the 
initial liquid–gas front
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4.　Discussion

During the solidification, the liquid phase is confined by 
balance of the interfacial tension and the gravitational forc-
es, while the volume change and the solidified drop shape 
are mainly caused by both the difference between density 
of solid and liquid and the growth angle. In the case of zero 
growth angle, e.g. Figures 4 and 5, a cone formed near the 
axis of symmetry is mainly due to the density ratio (Ander-
son et al., 1996). Figures 5 and 7 show that the increasing 
the solid–liquid density ratio increases the corner angle at 
the top of the solidified drop (Ajaev and Davis, 2004). This 
angle also increases as the growth angle decreases, see Fig-
ures 5–7.

The main focus in this paper is to demonstrate the capa-
bility of the front-tracking method for the problems includ-
ing the volume change and the tri-junction effect. We just 
reproduced, with some assumptions, the solidified drop 
shape observed in the related experiments. Even though 
good agreement has been found, there have been still many 
unresolved issues. For instance, how the non-dimensional 
parameters affect the solidified drop shape as well as the 
solidification rate. In addition, more physics such as Maran-
goni effect, evaporation and formation of the condensation 
halo should be added to the method to provide more accu-
rate solutions.

Conclusions

We have presented a front-tracking method for simula-
tion of the drop solidification with volume change. The 
solidification and liquid–gas interfaces are updated in dif-
ferent ways while the evolution of the solid–gas interface is 
determined by the triple point conditions. At this point we 
applied a constant growth angle. The computational method 
was applied to simulate the solidification process of water, Si 
and InSb drops. After solidification, a cusp forms near the 
axis of symmetry. Comparisons with corresponding experi-
ments show that the method yielded the reasonably accurate 
solidified drop shape.
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Nomenclature

Cp =  specific heat capacity [J/(kg K)]
g =  gravitational acceleration [m/s2]
I =  indicator function [—]
k =  thermal conductivity [W/(m K)]
Lh =  latent heat of fusion [J/kg]
n =  unit normal vector [—]
p =  pressure [N/m2]
q =  heat flux [W/m2]
R =  wetting radius [m]

S =  surface [m2]
T =  temperature [K]
t =  time [s]
Uc =  characteristic velocity [m/s]
u =  velocity vector [m/s]
Vn =  solidification rate [m/s]
x =  position vector [m]

δ =  delta function [m−3]
ϕgr =  growth angle [°]
κ =  curvature [m−1]
μ =  viscosity [Pa s]
θ =  contact angle [°]
ρ =  density [kg/m−3]
σ =  interfacial coefficient [N/m]
τ =  dimensionless time [—]
Θ =  dimensionless temperature [—]

‹Subscripts›
c =  cold
f =  interface
g =  gas, air
h =  hot
l =  liquid
m =  melting
s =  solid
T =  transpose
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