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In this paper, a new supervised clustering and classification method is proposed. First, the application
of discriminant partial least squares (DPLS) for the selection of a minimum number of key genes is
applied on a gene expression microarray data set. Second, supervised hierarchical clustering based on
the information of the cancer type is subsequently proposed to find key gene groups and to group the
cancer samples into different subclasses. Here, the weights of the genes in the DPLS are proportional to
their importance in the determination of the class labels, that is, the variable importance in the projec-
tion (VIP) information of the DPLS method. The power of the gene selection method and the proposed
supervised hierarchical clustering method is illustrated on a three microarray data sets of leukemia,
breast, and colon cancer. Supervised machine learning algorithms thus enable the subtype classification
3 data sets solely on the basis of molecular-level monitoring. Compared to unsupervised clustering, the
supervised method performed better for discriminating between cancer types and cancer subtypes for
the leukemia data set. The performance of the proposed method, using only a limited set of informative
genes, is demonstrated to be comparable or better than results reported in the literature for the three
data sets. Furthermore the method was successful in predicting the outcome of medical treatment (suc-
cess or failure) based on the microarray data, which could make the method an important tool for clini-
cal doctors.

Introduction

The use of the relatively new DNA microarray
technology, which enables simultaneous monitoring of
the expression pattern of thousands of genes, has led
to an explosion in the amount of readily available gene
expression data. Correspondingly, there now is a great
need for methods capable of interpreting, visualizing
and analyzing the gene expression pattern data. How-
ever, analyzing gene expression data is far from
straightforward (Lu and Han, 2003). The data are typi-
cally characterized by a very high dimensionality (high
number of genes), a relatively small number of sam-
ples (observations), irrelevant features, as well as
collinear and multivariate characteristics. In particu-
lar, conventional statistical techniques do not work well
(or even not at all) for analysis of gene expression data,
when the number of variables (genes) by far exceeds
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the number of samples. Thus, there is great need for
new methods that are capable of analyzing microarray
data. The first step in creating such a new method con-
sists of extracting the fundamental features (or genes)
of the gene expression data set (i.e. a dimensionality
reduction). The second step is the usage of the retained
expression data within the desired framework of data
analysis, which could for example be classifying simi-
lar genes or samples, and/or identifying the tumor class
for a given sample (Dudoit et al., 2002).

A lot of studies have used microarray technology
to analyze gene expression in colon, breast, leukemia
and other cancers (Golub et al., 1999; Alizadeh et al.,
2000; Furey et al., 2000; Quackenbush, 2001; Cho et
al., 2002; Dudoit et al., 2002; Nguyen and Rocke,
2002a, 2002b; Stephanopoulos et al., 2002; Hampton
and Frierson, 2003; Ishida et al., 2003; Lu and Han,
2003; Takahashi et al., 2003, 2004, 2005a; Kulkarni et
al., 2005; Takahashi and Honda, 2005; Bullinger et al.,
2007). These studies have demonstrated the ability of
expression profiling to cluster similar genes and clas-
sify tumors. Lu and Han (2003) provide a detailed re-
view on methodologies that are commonly used for
microarray gene expression analysis.
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Many machine learning methods using support
vector machines (SVM) and Fisher’s linear discrimi-
nant analysis (FLD) on gene expression profiles have
recently been applied in cancer classification for co-
lon and breast cancer, for leukemia and other tumors.
(Cristianini et al., 2000; Moler et al., 2000; Furey et
al., 2000; Xiong et al., 2001; Zhang et al., 2001; Dudoit
et al., 2002; Stephanopoulos et al., 2002). These in-
vestigations have clearly shown the capability of gene
expression profiling for classifying the tumors. Gene
expression profiles may give more objective informa-
tion than traditional morphological tumor characteri-
zation methods.

On the other hand, there are a number of research
works about the methodologies to classify samples into
subclasses by the selected genes and the methodology
to select gene for such purpose. Bhattacharjee et al.
(2001) suggested a hierarchical and probabilistic clus-
tering of expression data defined distinct subclasses
of lung adenocarcinoma. Two genes of neuroendocrine
genes and of type II pneumocyte genes with high rela-
tive expression are selected for the tumor subclass. It
was revealed a less favorable outcome for the adeno-
carcinomas with neuroendocrine gene expression.
Tibshirani et al. (2002) suggested an approach to can-
cer class prediction from gene expression profiling,
based on an enhancement of the simple nearest proto-
type classifier for subclass cancer. Ishida et al. (2003)
suggested a new methodology for key gene selection
and clinical result for the classification of synthetic
retinoids and retinoid synergists. Fifty marker genes
whose expression pattern could distinguish these
classes are selected by analyzing the effects of all-trans
retinoic acid and 9-cis retinoic acid on the gene ex-
pressions in a leukemia cell line. And then they found
the existence of two subclasses among the selected
genes. Bullinger et al. (2007) analyzed the AML pa-
tients with CBF leukemia using DNA microarray tech-
nology and correlated findings with known collabo-
rating aberrations in CBF AML It leads to the identifi-
cation of clinically relevant subclasses, highlighting
genes and pathways of potential pathogenic relevance
that provide a basis for novel molecular targeted thera-
peutic approaches.

In this paper, we first explain the gene selection
method, discriminant partial least squares (DPLS),
which was used for the selection of the key genes. Sec-
ondly, various supervised classification methods, such
as principal component analysis (PCA), Fisher’s lin-
ear discriminant (FLD) analysis and support vector
machines (SVM) are subsequently used to classify the
gene expression data sets. Third, a new supervised hi-
erarchical clustering method then is proposed using
information obtained from the DPLS. The results in
microarray dataset shows that that the proposed method
allows prediction of tumor type and subtype for three
microarray data sets from leukemia, breast and colon

cancer patients, as well as establishment of the rela-
tionship between expression-based subclass and clini-
cal treatment outcome. Performance of the classifica-
tion methods is compared with other results reported
in the literature.

1. Material and Methods

1.1 Gene selection and dimension reduction in gene
expression data
Gene selection (feature selection) is a fundamen-

tal issue in gene expression data based tumor cluster-
ing and classification. In our research we used discri-
minant partial least squares (DPLS) as selection method
(Nguyen and Rocke, 2002a, 2002b; Sun, 2004a,
2004b). In DPLS, X n m∈ℜ *  corresponds to a gene ex-
pression data and each column in Y n p∈ℜ *  corresponds
to a class. Each element of Y is either 1 or 0. The DPLS
method can be explained mathematically as follows:
DPLS components are obtained in such a way that the
sample covariance between the response variables (in
this case the cancer subclasses) and a linear combina-
tion of the predictors (genes) are maximized. In other
words, DPLS finds a weight vector w which satisfies
(Yeung and Ruzzo, 2001; Cho et al., 2002; Nguyen
and Rocke, 2002a, 2002b; Sun, 2004a, 2004b; Yoo et
al., 2005):

w Xw yk
w w

= ( ) ( )
′ =

arg max cov , 2

1
1

subject to the orthogonality constraint

′ = ≤ ≤ ( )w Sw j j k  0 for all  1 2

where S′ =X′X. The i-th DPLS component is a linear
combination of the original predictors (Mwi).

In the DPLS method, gene components are se-
lected by sequentially maximizing the covariance be-
tween the cancer types and a linear combination of the
genes (also subject to orthogonality and normality con-
straints). This procedure identifies the gene component
weights, w, for which cov(Xw, y) reaches a maximum,
where y is the response vector of cancer subtypes. Note
that once the DPLS weight vectors are computed, rel-
evant genes are selected via the variable importance in
the projection (VIP), which is defined as follows
(Eriksson et al., 1995):

VIPk   ak
a

= ( ) ( )∑ w 2 3

where wak is the PLS weight for the gene expression
profiles. The VIP is the sum over all model dimensions
of the contributions and can be considered as a good
measure of the influence of all genes in the model on the
cancer class prediction. For a given DPLS dimension,
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VIPk is equal to the squared PLS weight (wak)2. The
VIP can be considered as a measure of how much a
certain gene corresponds to the samples. Thus, we can
select important genes, that is genes that allow to dis-
criminate between different cancer classes, based on
the VIP value. This concept is similar to that underly-
ing the selection of genes on the basis of the weights
of a linear discriminant function, whereby the genes
with the top K weights are selected (where K is the
desired number of the selected genes). Therefore, given
the DPLS model, a set of K high-ranking genes is ob-
tained by selecting the genes with the top K VIP weights
(Sun, 2004a, 2004b; Yoo et al., 2005).

In spite of applying gene selection of the original
data set, microarray data may still contain redundant
information. In this paper, two methods of principal
component analysis and Fisher’s linear discriminant
analysis are used for the dimension reduction after the
gene selection. Principal component analysis (PCA) is
a dimensionality reduction technique that uses a linear
transformation to sequentially maximize the variance
of a linear combination of the predictor variables
(Nguyen and Rocke, 2002a),

v Xv
v'v

k 
2 argmax  var= ( ) ( )
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4

subject to the orthogonality constraint

′ = ≤ ≤ ( )v Sv j j k0,   for  all  1    5

where S′ =X′X is the covariance matrix (Quackenbush,
2001). A lot of research work using PCA and SVD has
been performed for analyzing and classifying gene
expression data (Alter et al., 2000; Yeung and Ruzzo,
2001; Landgrebe et al., 2002; Méndez et al., 2002).

Fisher’s linear discriminant analysis (FLD) is a
linear dimensionality reduction technique that is opti-
mal in terms of maximizing the separation amongst
these classes. Where PCA seeks directions that are ef-
ficient for representation, FLD seeks directions that
are efficient for discrimination. Hence, FLD determines
a set of projection vectors which simultaneously maxi-
mize the scatter between classes and minimize the scat-
ter within each class, and which maximize the separa-
bility of the data (Duda et al., 2001). The projection
vector of FLD can be obtained by solving the follow-
ing optimization problem:

max
w 0

B

W

w S w
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where SB is the between-class scatter matrix, SB =
∑ i

c
=1 ni( x xi − )( x xi − )T, xi  is the mean vector for class

i, and x  is the total mean vector (Duda et al., 2001).
With FLD vectors determined, each sample can then

be classified in this reduced FLD space using discrimi-
nation analysis. Several researches are used to create a
linear projection of gene expression measurements that
maximizes the separation of different sample classes
and to develop the classification method which used a
distance measure within a FLD space (Cho et al., 2002;
Hwang et al., 2002; Stephanopoulos et al., 2002).
1.2 Cancer classification by machine learning

The purpose of supervised gene expression data
analysis is to construct well-performing classifiers us-
ing machine learning algorithms such as linear discri-
minants, decision trees or support vector machines,
which assign predefined classes to a given expression
profile (Alizadeh et al., 2000). In this paper, two clas-
sification methods of linear discriminant function and
support vector machine are used to classify the type of
a cancer.

A linear discrimination function (LDF) that is a
linear combination of the components of x can be writ-
ten as

g Tx w x b( ) = + = ( )0 7

where w is the weight vector and b is the bias. Given
the sets of the input vector to train the classifier, the
training process involves the adjustment of the weight
vector w in such a way that the two classes (w1 and w2)
are linearly separable (Haykin, 1999; Duda et al.,
2001).

On the other hand, support vector machines
(SVM), which are a kind of supervised machine learn-
ing techniques, have been shown to perform well in
multiple areas of biological analysis, including the
evaluation of microarray gene expression data. While
the linear discriminant analysis described above can
produce linear decision boundaries for the classifica-
tion, SVM produces nonlinear boundaries as a result
of generating linear decision boundaries in the feature
space (Vapnik, 1995; Hastie et al., 2001). SVM has
demonstrated the ability to not only correctly separate
entities into appropriate classes, but also to identify
instances whose established classification is not sup-
ported by the data (Brazma and Vilo, 2000; Brown et
al., 2000; Furey et al., 2000; Shipp et al., 2002).

2. Supervised Clustering and Classification by
Machine Learning Algorithms

In this paper, a new supervised hierarchical clus-
tering algorithm is proposed including a new metric
that uses additional information available from the gene
selection with the DPLS method. VIP values, repre-
senting the importance of the genes in the DPLS, can
be considered as a good information source for increas-
ing the clustering efficiency and interpretation capa-
bility of a clustering algorithm. It is reasonable to as-
sume that the weights of the genes in the clustering
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are proportional to their importance in the determina-
tion of the class labels; that is, the higher the weight,
the better the distinction power of the genes with re-
spect to the class label.

A new weighted Euclidean distance (dij
(w)) is pro-

posed as a distance metric using the normalized VIP
weights as follows:

d w x xij
w

k ik jk
k N

( )

,...

( )= −






( )

=
∑ 2

1

8

where w = (w1, w2, ..., wk) is the feature-weight vector
with the normalized VIP values and N is the number of
samples. Therefore, the normalized weights which are
based on the VIP weights are assigned to each gene
for indicating the importance of those genes (Questier
et al., 2005). Their weights are the importance degree
corresponding to each feature. The larger wk (VIPk) is,
the more important the k-th gene is in the hierarchical
clustering. When w is (1, ..., 1), the space {||dij

(w)|| ≤ r}
is a hypersphere with radius r in the well-known
Euclidean space (called the original space). In the origi-
nal space, dij

(w) is then denoted by dij and the super-
vised hierarchical clustering would reduce to an unsu-
pervised hierarchical clustering algorithm. When w ≠
(1, ..., 1), it means that the axes of the hypersphere
would be extended or shrunk in accordance with the
value of wk. Thus in this case the space {||dij

(w)|| ≤ r} is
a hyper-ellipse, and the lower the value of wk is, the
higher the flattening extent of the ellipse is for that
dimension. It is well known that an appropriate assign-
ment of feature-weights can improve the performance
of feature-weighted (supervised) hierarchical cluster-
ing algorithms (Wang et al., 2004). This weighted dis-
tance can be easily proven to satisfy four requirements
of a generic metric: nonnegativity, reflectivity, sym-
metry and triangle inequality.

According to Johnson and Wichern (1992), the
following are the steps in the suggested agglomerative
supervised hierarchical clustering algorithm for a group
of N samples.
1. Start with N clusters, each contains a single entity

and an N × N symmetric matrix of the weighted
distance D = {dij

(w)}.
2. Search the weighted distance matrix for the near-

est (most similar) pair of clusters. Let the distance
between the “most similar” clusters U and V be
dUV.

3. Merge cluster U and V. Label the newly formed
cluster (U V). Update the entries in the distance
matrix by (a) deleting the rows and columns cor-
responding to clusters U and V and (b) adding a
row and column giving the distances between clus-
ter (U V) and the remaining clusters.

4. Repeat steps 2 and 3 a total of (N – 1) times.
Record the identity of clusters that are merged and

the levels at which the mergers take place.
Figure 1 shows a schematic diagram of the su-

pervised gene selection, clustering and classification
by supervised machine learning algorithms for dis-
criminating cancer subclasses. First, the key genes are
selected using the VIP information of the DPLS model.
Secondly, a weighted Euclidean distance is calculated
for the proposed supervised clustering using the VIP
weights. Thirdly, multivariate analysis and supervised
clustering for cancer subclasses are used to interpret
gene expression patterns, to classify the sample into a
subclass, or to predict the clinical results of treatment.
Because the proposed method makes use of the DPLS
method in both supervised gene selection and super-
vised clustering, we expect to obtain synergistic ef-
fects of the supervised knowledge that is responsible
for selecting the key genes, by sequentially using the
influence of the key genes into a supervised hierarchi-
cal clustering and classification method. Supervised
machine learning algorithms are applied to three

 

 

 

Fig. 1 Schematic diagram of the gene selection, the su-
pervised clustering, and the subsequent subclass-
focused cancer classification using gene expression
profiling
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microarray data sets obtained from leukemia, breast,
and colon cancer patients to establish a relationship
between the microarray data and expression-based can-
cer subclasses as well as patient treatment outcome.

3. Results and Discussion

3.1 Leukemia gene expression profiles
Leukemia is a malignant cancer that originates in

cells in the bone marrow, and is characterized by un-
controlled growth of developing white blood cells. The
bone marrow normally generates cells called blasts that
develop (mature) into several different types of blood
cells with specific tasks in the human body. Acute
leukemia data set can be classified into acute lymphob-
lastic leukemia (ALL) and acute myeloid leukemia
(AML). Moreover, ALL cases can be classified into

T-cell ALL and B-cell ALL, depending on the type of
lymphocytes that is affected (Golub et al., 1999). Medi-
cal treatment of patients will vary depending on the
leukemia class. Thus, knowledge of the leukemia class
is very important information for doctors to correctly
treat patients.

The leukemia data set and all details with respect
to the methods used to collect the data are described in
the paper of Golub et al. (1999). The data set consists
of a set of high-density oligonucleotide microarrays
(Affymetrix) with probes of 7129 human genes, and
was obtained from 72 patients. 47 patients were af-
fected with ALL (38 B-ALL and 9 T-ALL), and 25
patients were affected with AML. The training data set
consists of 38 bone marrow samples: 27 samples were
taken from ALL patients (19 B-ALL and 8 T-ALL) and
11 were taken from AML patients. The independent

No. ALL/AML Subclass Treatment result No. ALL/AML Subclass Treatment result

1 ALL B-cell 38 AML M1 Success
2 ALL T-cell 39 ALL B-cell
3 ALL T-cell 40 ALL B-cell
4 ALL B-cell 41 ALL B-cell
5 ALL B-cell 42 ALL B-cell
6 ALL T-cell 43 ALL B-cell
7 ALL B-cell 44 ALL B-cell
8 ALL B-cell 45 ALL B-cell
9 ALL T-cell 46 ALL B-cell
10 ALL T-cell 47 ALL B-cell
11 ALL T-cell 48 ALL B-cell
12 ALL B-cell 49 ALL B-cell
13 ALL B-cell 50 AML M4 Failure
14 ALL T-cell 51 AML M2 Failure
15 ALL B-cell 52 AML M4 Success
16 ALL B-cell 53 AML M2 Success
17 ALL B-cell 54 AML M4
18 ALL B-cell 55 ALL B-cell
19 ALL B-cell 56 ALL B-cell
20 ALL B-cell 57 AML M2
21 ALL B-cell 58 AML M2
22 ALL B-cell 59 ALL B-cell
23 ALL T-cell 60 AML M2
24 ALL B-cell 61 AML M1
25 ALL B-cell 62 AML
26 ALL B-cell 63 AML
27 ALL B-cell 64 AML
28 AML M2 Failure 65 AML
29 AML M2 Failure 66 AML
30 AML M5 Failure 67 ALL T-cell
31 AML M4 Failure 68 ALL B-cell
32 AML M1 Failure 69 ALL B-cell
33 AML M2 Failure 70 ALL B-cell
34 AML M2 Success 71 ALL B-cell
35 AML M1 Success 72 ALL B-cell
36 AML M5 Success
37 AML M2 Success

Table 1 Classification of the 72 microarrays according to leukemia subtype and, when available,
information on the outcome of the leukemia treatment (Golub et al., 1999)
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(test) data set consisted of 34 samples: 20 ALL patients
and 14 AML patients. Furthermore, a description of
cancer subtypes, treatment response, patient gender,
and laboratory that performed the analysis is provided
with the data (Golub et al., 1999). Table 1 provides
some information on the leukemia subclasses to which
each of the leukemia microarray data sets belongs.
Moreover, the result of the subsequent medical treat-
ment (success or failure) is provided for a limited
number of samples. The gene expression profiles of
the original data set are represented as log10 normal-
ized expression values, such that overall intensities for
each chip are equivalent. To remove systematic sources
of variation in the microarray experiments, the expres-
sion level of each gene was normalized to have a zero
mean and a standard deviation of one (Yang et al.,
2002).

The proposed method is applied to the acute
leukemia data set published by Golub et al. (1999) for
four different cases: (1) discrimination between acute
lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML), (2) ALL subtype prediction (T-cell
or B-cell), (3) AML subtype prediction (M1, M2, M4,
or M5), and (4) AML subtype clinical outcome predic-
tion (success or failure).
3.2 Supervised clustering of leukemia data set
3.2.1 Supervised clustering between ALL and AML

The DPLS method was used for selection of the
genes that are most suited to discriminate between AML
and ALL in the training data set of Golub et al. (1999),
where the response variable Y was either 0 (AML) or
1 (ALL). Out of the 7129 available genes in the ex-
pression data, the 23 genes which are most correlated
with the leukemia classification into ALL or AML were
selected on the basis of the VIP value resulting from
applying DPLS. The cross validation method was used
to determine the number of relevant genes to be re-
tained. This method reconstructs a DPLS model with a
minimal number of genes until the classification per-
formance of DPLS in a cross validation does not de-
crease. This procedure finally resulted in the selection
of 23 genes as the minimum number of genes that pro-
vides a good classification performance. In contrast to
Golub et al. (1999), who selected 50 relevant genes,
the approach used here results in the selection of a sig-
nificantly lower number of relevant genes. The DPLS-
based gene selection method assigns high rankings to
zyxin, leukotriene (C4 synthase gene), leptin, CD33
antigen, FAH, as well as cystatins and cathepsins. These
genes are known to play important roles in acute
leukemia. For example, zyxin is located in chromo-
some 7, which may contain genes related to myeloid
malignancy, and cystatins are endogenous protein in-
hibitors of cathepsins, and hence these specific pro-
tease inhibitors might be important in the etiology of
ALL and AML (Cho et al., 2002). In addition, CD33 is
located in chromosome 19q13.3, and has been devel-

oped for targeted antibody therapy to kill leukemia
AML cells (Golub et al., 1999; Thomas et al., 2001;
Bicciato et al., 2002; Cho et al., 2002).

Figure 2(a) shows gene expression maps of a
leukemia data set based on the 23 selected genes most
relevant for discrimination between ALL and AML,
where we used CLUSTER and TREEVIEW software,
which are both publicly available at http://rana.lbl.gov.
The figure confirms that the expression of the selected
genes is significantly different for ALL and AML sam-
ples, and that expression of the individual genes is
rather similar within each class. From this figure, we
can conclude that the genes selected via VIP are dis-
criminatory.

Supervised hierarchical clustering with the ag-
glomerative linkage algorithm was applied to the 38

Fig. 2 Gene expression heat maps of a leukemia data set
based on (a) the 23 selected genes most relevant
for discrimination between ALL and AML and
(b) the 21 selected genes most relevant for discrimi-
nation between success and failure of AML
leukemia treatment
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samples of the training data set, in order to cluster the
samples on the basis of their weighted similarities over
the selected 23 genes. In the dendrogram (Figure 3(a)),
two clusters appear, corresponding to ALL and AML
respectively. There is no discrimination error for the
supervised clustering. On the other hand, when no in-
formation on the relative importance of each gene for
leukemia class distinction was used in the clustering,
the unsupervised clustering analysis shows a single
misclustered sample (sample 35), which is AML but
was clustered as ALL. This confirms that the super-
vised (weighted) hierarchical clustering analysis can

improve the clustering performance for discriminat-
ing ALL and AML subclasses, since the normalized
weights of the VIP can give relative contribution val-
ues to each gene for discrimination of subclasses.
3.2.2 Supervised clustering for ALL subclass (B-cell
and T-cell)         ALL can be further classified into T-
cell and B-cell lineages. In clinical practice, the B-cell
lineage responds better to treatment than the T-cell lin-
eage. Therefore, it is important to distinguish between
these lineages. Among the 47 ALL patients of Golub
et al. (1999), 27 patients were used as a training data
set (19 B-cell ALL and 8 T-cell ALL). The DPLS

Fig. 3 Dendrogram of supervised clustering for the leukemia training data set based on (a) the 23 genes most relevant for
discrimination between ALL and AML and (b) the 21 genes most relevant for discrimination between success and
failure of AML leukemia treatment

(a)

(b)
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method combined with the cross validation method
resulted in the selection of 15 genes that allow dis-
criminating between T-cell ALL (T-ALL) and B-cell
ALL (B-ALL). The DPLS response variable Y is 0 (T-
ALL) or 1 (B-ALL).

The 15 genes were examined for chromosomal
localization using NCBI LocusLink (http://
www.ncbi.nlm.nih.gov/LocusLink). Almost all genes
are mapped to regions that have been previously asso-
ciated with ALL chromosomal abnormalities, includ-
ing the T-cell antigen receptor (X03934, 9p56), TCRB
(X00437, 7q34) (CD47, X69398 3q13), CD7 (D00749,
7q34) and TCF7(X59871, 5q31). The results thus sug-
gest that the 15 genes selected via DPLS as being most
relevant for discriminating between B-ALL and T-ALL
subclasses are biologically relevant as well. The sub-
sequent supervised hierarchical clustering for the train-
ing data set using the expression information of the
15 selected genes resulted in correct clustering for all
samples, confirming that the selected genes can be used
to discriminate B-ALL and T-ALL subclasses.
3.2.3 Supervised clustering between AML subclasses

The original French-American-British (FAB) sys-
tem for detemining leukemia subtype was only based
on the appearance of leukemic cells under the micro-
scope after routine processing or cytochemical stain-
ing. AML can be classified into six subtypes, desig-
nated M1, M2, M3, M4, M5, and M6. Although pa-
tients tend to be classified into either the M2 or M4
subtype under the FAB system, it is difficult for most
doctors to discriminate sharply between these subtypes.
Identifying the M3 subtype is of importance because
this subtype usually responds well to treatment with
retinoids. The M5 subtype is not easy to detect using
the FAB system, and usually shows poor response to
treatment. Most doctors recommend intensive chemo-
therapy for patients with this subtype. Clearly, correct
identification of the AML subtype is very important to
the subsequent clinical treatment step (Golub et
al.,1999).

Among the 25 AML patients, data of 20 patients
were used as a training data set, (4 M1 cases: samples
32, 35, 38, 61; 10 M2 cases: samples 28, 29, 33, 34,
37, 51, 53, 57, 58, 60; 4 M4 cases: samples 31, 50, 52,
54; 2 M5 cases: samples 30, 36). The DPLS method
was again used for determining the minimum number
of relevant genes that allow discriminating between
the AML subclasses. The response matrices (Y) were
[1 0 0 0] for M1, [0 1 0 0] for M2, [0 0 1 0] for M4 and
[0 0 0 1] for M5 respectively. Many of the genes in the
top 25 genes relevant for AML subclass discrimina-
tion (M1, M2, M4, and M5) encode proteins critical
for S-phase cell cycle progression (Cyclin D3, Op18,
and MCM3), chromatin remodeling (RbAp48 and
SNF2), transcription (TFIIEβ), and cell adhesion
(zyxin) or are known oncogenes (c-MYB, E2A and
HOXA9). CD33 and MB-1 encode cell surface proteins

for which monoclonal antibodies have been demon-
strated to be useful in distinguishing lymphoid from
myeloid lineage cells (Dorrie et al., 2001).

Unsupervised and supervised clustering were ap-
plied to the training data set for the 25 selected genes
most relevant for discrimination between AML sub-
classes (M1, M2, M4 and M5). For both clustering
methods, there is one misclustered sample: Sample 51
is M2 but was clustered as M1.
3.2.4 Supervised clustering for clinical outcome of
AML patients (failure and success)          Relating gene
expression patterns to the clinical outcome of cancer
treatment is a key issue in cancer genetics. One of the
most promising aspects of gene expression profiling
is the hope that it will enable more accurate identifica-
tion of patients who are at a high risk of failing con-
ventional therapy. Gene selection for the prediction of
the clinical output of AML treatment (success or fail-
ure) was performed using DPLS. Among the 25 AML
patients of Golub et al. (1999) with know clinical out-
come of leukemia treatment, 15 samples formed a train-
ing data set (7 patients survived: 34–38 and 52–53;
8 patients died during treatment: 28–33, 50 and 51 (see
Table 1). The response variable Y was 0 (success) or 1
(failure).

A subset of 21 genes was selected for discrimi-
nating between failure and success of clinical treat-
ment of AML patients, as a result of applying DPLS
with the crossvalidation method. The chromosomal
locations of the 21 identified genes were checked in
the NCBI, because chromosomal abnormalities are
prevalent in leukemia patients and often have prog-
nostic implications (Thomas et al., 2001). Almost all
genes among the selected 21 genes have been identi-
fied previously as containing abnormalities in AML or
another form of leukemia. Most of the genes reported
by Lyons-Weiler et al. (2003) are also found in our
DPLS gene set (HoxA9, PIG-B, MACH-alpha-2 pro-
tein, BPI Bactericidal/permeability increasing protein,
Autoantigen PM-SCL, ERGIC-53 Protein, and so on).
Figure 2(b) shows a heat map of the leukemia gene
expression data based on the 21 selected genes most
relevant for discrimination between success and fail-
ure of AML leukemia treatment. It illustrates that the
selected genes have a significant expression difference
for AML leukemia treatment success and failure. The
figure thus indicates that the selected genes can be used
as a set of diagnostic genes for discrimination between
the treatment results of AML patients.

Figure 3(b) shows the dendrogram resulting from
applying the supervised hierarchical clustering analy-
sis to the training data set using the selected 21 genes.
This clustering analysis divides the treatment failure
and success in two distinct groups, which perfectly
match with the recorded treatment results. The loca-
tion of all successful treatments and all treatment fail-
ures in two separate groups indicates that the candidate
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genes selected via VIP can be used successfully as a
set of diagnostic genes for discrimination between the
treatment results of AML patients. Similarly to previ-
ous cases, the clustering appears to be improved by
inclusion of VIP weights.

The gene selection indicated that HoxA9 was the
most relevant gene for discriminating between success-
ful and failing leukemia treatment. Overexpression of
HoxA9 would presumably result in an overproduction
of leukocytes and lymphocytes. Indeed, the injection
of retrovirally engineered primary bone marrow cells
that overexpressed both HoxA9 and Meis1 into mice
induces AML within three months (Kroon et al., 1998).
Golub et al. (1999) found that HoxA9 had the highest
correlation to their ideal distribution, but did not find
a suitable gene set that enabled predicting chemo-
therapy success and failure. Thomas et al. (2001) sus-
pected that, out of all the genes in the original data,
HoxA9 could predict success and failure of chemo-
therapy, but were confronted with a lack of statistical
significance in their measure of the difference between
success and failure (P < 0.1). Figure 4 shows the gene
expression profiles of HoxA9 in the 15 AML patients
with known clinical outcomes (success = S; failure =
F), where S means the patient survived after the treat-
ment and F means the patient died after the treatment.

Among these patients, those with poor treatment
outcomes showed increased expression of HoxA9. Bio-
technological advances, such as gene expression pro-
filing via DNA microarrays, allow researchers to en-
large their understanding of the mechanisms underly-
ing diseases. The DNA microarray technology is use-
ful when applied to RNA extracted from tissue sam-
ples: The resulting data allow discriminating between
various subtypes of leukemia, which is necessary for

the accurate diagnosis and treatment of patients. From
the results demonstrated in this paper, we can conclude
that the gene selection method via VIP can be used to
select key genes for discriminating leukemia types and
subtypes. The method also allowed successful predic-
tion of medical outcome of leukemia treatment using
gene expression data. Moreover the supervised clus-
tering can improve the clustering performance for dis-
criminating leukemia subclasses, compared to unsu-
pervised clustering.
3.3 Supervised Classifications by Machine Learn-

ing
With the information on the most relevant features

in a gene expression data set available, a following step
is to build a robust cancer classifier capable of cor-
rectly predicting the sample labels from the available
expression profiles. Supervised machine learning tech-
niques are well-suited for this purpose. Two feature
selection methods are compared: PCA as an unsuper-
vised feature selection method and FLD as a super-
vised feature selection method. Two supervised clas-
sification methods, LDF and nonlinear SVM are sub-
sequently applied to classify leukemia gene expression
samples. This paper focuses on two case studies: Clas-
sification of samples into acute lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML) on the one
hand, and classification of clinical treatment outcomes
for AML patients (treatment success or failure) on the
other hand. These two case studies are selected since
they are considered to be more important for the clas-
sification of leukemia patients than the other case stud-
ies considered in the first part of this paper.
3.3.1 Classification of ALL and AML samples          To
interpret and correctly classify gene expression data
obtained from ALL and AML patients, PCA was first
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applied to obtain a further dimension reduction of the
23 most relevant genes retained by Yoo et al. (2005) in
order to interpret and avoid overfitting problems, since
the gene expression data are too related to the response
value. LDF was subsequently applied as a classifier.

The dimension reduction obtained with PCA al-
lowed to visualize the patterns of ALL and AML in the
leukemia data set, and to improve the classification
performance. Indeed, two PCs which capture about
74.3% of the variation in the 23 genes were found to
be adequate based on the cross-validation of the pre-
diction residual sum of squares (PRESS). The LDF
classification results for AML and ALL samples are
provided in Figure 5. Figure 5(a) illustrates the clas-
sification result of the LDF for the training data set
(38 samples), where ALL and AML samples are well
separated. Figure 5(b) shows the classification results
of 34 test patients in the two-dimensional space formed
by the first two PCs. The test data set was classified
with 97% accuracy (33/34 patients) using LDF. The
only misclassified sample corresponds to patient 66,
which was classified as ALL but actually labeled AML.
Reclassifying the samples using the original 23 genes
selected in the first  paper,  also showed one
misclassification result for sample 66 using LDF. Sev-
eral investigations indicated that the leukemia data set
of Golub et al. (1999) contains at least one sample in-
cluding patient 66 that is mislabeled and patient 66 has
unusually low gene expression levels compared to other
AML patients. Yoo et al. (2005) showed that the con-
tributions of most genes in the 66th patient are nega-
tive, contrary to the behavior of the other AML pa-
tients. In particular, the top-ranked gene, Zyxin, shows
an abnormally low expression level for patient 66. It
means that there is actually no classification error for
the 34 test data since sample number #66 is known as

the mislabeled sample in the leukemia data set. Thus,
it can be concluded that a further dimension reduction
by PCA enables extraction of meaningful features that
permit distinguishing between ALL and AML. This
classification result is superior to that of Golub et al.
(1999), who obtained a total of five misclassifications
from applying a weighted voting scheme, a variation
of a diagonal linear classifier. The result is also better
than that of Liang and Kachalo (2002), who achieved
three classification errors by a linear classifier.

In developing a nonlinear classifier like SVM, the
most important thing is the extraction of appropriate
features, that is which features are retained from the
original inputs, in order to avoid the overfitting prob-
lem (Schölkopf et al., 2000). In order to see the effect
of the feature extraction on the classifier performance,
four different classifiers were used on the data: Linear
and nonlinear SVM were applied to the original gene
data (23 genes), selected by Yoo et al. (2005) and to
two reduced scores resulting from applying FLD to the
original data. Each classifier uses the SVM algorithm
to define a hyperplane that best separates the training
samples into two classes, ALL and AML. In this pa-
per, the radial basis function exp(–||x – y||2/c) is used
as a SVM kernel function to capture the nonlinearity.
The width of a Gaussian function c = 1.5µ is selected,
as suggested by Cremers et al. (2003), in order to get a
smooth energy landscape, where µ is the average dis-
tance between two neighboring data points. Data nor-
malization is used for kernels to improve the condi-
tion number of the Hessian in the optimization rou-
tine. The parameter C which places an upper bound on
the Lagrange multipliers is set to 1 for implementing
linear and nonlinear SVM, and for reducing the number
of support vectors.
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Table 2 shows the classification performance of
the four classifiers for identifying ALL and AML la-
bels. Linear and nonlinear SVM have very similar clas-
sification results for distinguishing between ALL and
AML, both for the original features and the FLD scores.
The training samples are perfectly classified, except
for method 2, the nonlinear SVM applied to the origi-
nal features. The classification performance evaluation
for the test samples shows 1 to 2 errors for all four
classifiers on a total of 34 test samples. Compared to
the other methods, the result of method 1 (linear SVM
applied to the original features) was not good, with 2
misclassified test samples. It indicates that the origi-
nal data (23 genes) may contain non-separable signals
or be corrupted by a high noise. Note also that the
number of support vectors for method 2 is 35 while
only 38 training samples were used. This means that
the original 23 genes may contain a lot of noise and
can easily be overfitted. A high number of support vec-
tors for a data set forms indeed an indication that the
SVM model may be overfitted, and that significant
misclassification rates can be expected for the train-
ing and test samples. The classification results of meth-
ods 3 and 4, which are the linear and nonlinear SVM
applied to two FLD score vectors, are quite similar.
Sample 66 is misclassified with 2 support vectors. The
features extracted via FLD make it a simple model, in
which the number of support vectors for the classifier
decreases to only two. In spite of this small number of
support vectors, the classification results for both the
training and test samples are good. Note that sample
number #66 is known as the mislabeled sample in the
leukemia data set. It means there is no classification
error of SVM for the test data except the mislabeled
sample #66. This demonstrates the fact that a dimen-
sion reduction (i.e. feature extraction) by FLD can
improve the generalization performance of a classifier
such as SVM.

To further evaluate the performance of the pro-
posed method, we compared our method with previ-
ously developed methods which were applied to the
same leukemia microarray data set. In general, it is
somewhat difficult to directly compare these methods
because they each use a different criterion. We com-
pared their classification performance using the number
of the misclassification samples. Table 3 compares the

misclassification results of 34 test set using some pre-
viously published results, such as decision tree learner
J48 (Weka’s implementation of C4.5), simple Bayesian
classifier or naive Bayes, sequential  minimal
optimization(SMO)-wrapper, emerging patterns (Li and
Wong, 2002), SVM (Fuery et al., 2000), voting ma-
chine (Golub et al., 1999), maximal margin linear pro-
gramming (MAMA, Antonov et al., 2004), and pro-
jective adaptive resonance theory (PART, Takahashi et
al., 2005). As one of the most well-known results, the
previous result of the voting machine with 50 genes
by Golub et al. (1999) can correctly predict 29 sam-
ples in the test set with 4 misclassified samples. The
proposed method can correctly predict the test sam-
ples with a relatively low number of selected genes
(23) except for a single misclassified sample (#66),
which is known as a mislabeled sample and may influ-
ence the error rate (Chow et al., 2001). The compari-
son of the method proposed in this paper with previ-
ously published results thus demonstrates that classi-
fication performance of the proposed method is equiva-
lent or better than results reported in the literature.
3.3.2 Classification of clinical outcome of AML pa-
tient treatment (success or failure)         The FAB sys-
tem for classifying AML subtypes was originally only
based on the morphological states of cells under the
microscope, and has later on been extended with crite-
ria based on immune markers and cytogenetic abnor-
malities. Correct determination of the AML subtype
is important, since different subtypes will respond

Method Classifiers No. of SV Training error Validation error

Method 1 Original data + linear SVM 5 0 2 (#61, 66)
Method 2 Original data + nonlinear SVM 35 1(#35) 1 (#66)
Method 3 FLD + linear SVM 2 0 1 (#66)
Method 4 FLD + nonlinear SVM 2 0 1 (#66)

Table 2 Comparison of classification results of several classifiers obtained by applying FLD
and SVM for discriminating between ALL and AML (*Note: sample number #66 is
known as a mislabeled sample in the leukemia data set)

Method No. of genes Misclassification results

J48a 1 3
Naive Bayesa 1 3
SMO-CFSa 1 3
SMO-wrappera 2 4
Emerging patternsb 1 3
SVMc 25–1000 2–4
Voting machined 50 5
MAMAa 132–549 0

Table 3 The comparison of classification results for ALL/
AML classification in a test set of 34 samples

aWang et al. (2005); bLi and Wong (2002); cFurey et al.
(2000); dGolub et al. (1999); eAntonov et al. (2004);
fTakahashi et al. (2005)
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differently to medical treatment. Gene expression data
also contain information that can elucidate the success
or failure of leukemia treatment. Designing a suitable
classifier thus allows predicting the clinical outcome
of leukemia patient treatment. The 21 most relevant
genes for discriminating between failure and success
of clinical treatment of AML patients selected in the
first part of this paper were used as a starting point for
the development of a classifier. PCA was used to re-
duce the data dimensionality, and to interpret the clini-
cal outcome of AML patient treatment. Two PCs were
used, which captured about 63.6% of the variation in
the 21 genes.

The score and loading plots of the 15 AML pa-
tients included in the training set (8 failures and 7 suc-
cesses) were examined for determining the correlation
between the selected genes and the clinical outcome
of AML patient treatment (Figure 6). The plots clearly
demonstrate that the selected 21 genes can exactly dis-
criminate the clinical outcome of AML patients, and

that PCA can extract the key feature components. The
loadings plot in Figure 6(b) can be used to establish
how the 21 genes are interrelated. The shape of the
loading plot is closely connected with the pattern of
the score plot in Figure 6(a), and shows how the 21
genes are expressed, and how they interact to separate
the AML patients based on clinical outcome. In the
loading plot, genes that correlate with successful treat-
ment appear on the right hand side and genes that cor-
relate with treatment failure appear on the left hand
side. Almost all of the genes in each gene group have
common expression patterns, that is, group-specific
regulation patterns known as co-regulation patterns. It
means that the expression of each group is highly el-
evated only in one sample class, and down-regulated
in the other classes (Stephanopoulos et al., 2002). This
result is notable in that these genes may be considered
marker genes related to the clinical outcome of AML
patient treatment.
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Figure 7 shows the classification results obtained
by combining PCA and LDF for all 25 AML patients,
including the 15 training samples (8 treatment failures,
7 successes), and 10 test samples (patient 54, 57, 58,
60–66). Samples are plotted in the space spanned by
the first two PCs. Figure 7(a), after applying the linear
classifier in the two PC space, illustrates that the in-
formation contained in the 21 genes provides excel-
lent separation for the 15 training sample AML patients
with respect to the clinical outcome of the treatment.
Figure 7(b) depicts the classification results of PCA
and LDF for the 10 AML patients in the test data set
(54, 57, 58, 60–66), whose clinical outcome was not

specified by Golub et al. (1999). The classification
results point towards successful treatment for eight
AML patients (#54, 57, 58, 62, 63, 64, 65, and 66).
Two AML patients (#61 and 62) are predicted not to
survive treatment. Thus, the classifier is able to pre-
dict the clinical outcome of AML patients, but the per-
formance of the classifier on the test samples cannot
be evaluated since the appropriate information on pa-
tient survival is not available.

Table 4 represents the prediction results of sev-
eral SVM classifiers for the 10 AML patients of the
test data set, whose clinical outcome was not specified
by Golub et al. (1999). All classifiers, linear as well as
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nonlinear classifiers, both applied on the original gene
expression data (21 genes) as well as on two FLD score
vectors, showed exactly the same clinical outcome pre-
diction of AML patients. Eight AML patients (samples
54, 57, 58, 62, 63, 64, 65, and 66) are predicted to sur-
vive after treatment, and two AML patients (#61 and
62) are predicted to die after treatment. Thus, the con-
clusion is that a dimension reduction by FLD enables
extracting the meaningful features to discriminate be-
tween success and failure of AML treatment. Based on
the present findings with regard to the link between
expression of certain genes and clinical outcome of
AML treatment, determining the specific genes com-
bined with the proposed classifiers would allow pre-
dicting relapse in leukemia patients. Although clinical
outcome is also affected by many other factors, such
as patient age, treatment regime, and time of diagno-
sis, the results presented here highlight the potential
of the proposed method for uncovering prognostic in-
dicators for leukemia.
3.4 Supervised classification of breast and colon

cancer data sets
To evaluate the performance of the proposed su-

pervised classification method, two additional data sets
are selected—a breast cancer microarray data set and

a colon cancer microarray data set—and the proposed
method is compared with three previously developed
methods. The breast cancer data set is used for the dis-
crimination between BRCA1 mutation, BRCA2 muta-
tion and other mutations (data set consisting of seven
BRCA1 mutation samples and eight BRCA2 mutation
samples and sporadic samples) with 3226 genes and
22 samples (Hedenfalk et al., 2001). The colon cancer
data set is used for diagnosis of cancer patients and
consists of 2000 probes and 62 samples (40 cancer tis-
sues and 22 normal tissues, Alon et al., 1999). Although
it is somewhat difficult to compare these methods be-
cause they each use a different criterion, the number
of misclassifications is used for the comparison. Ta-
ble 5 shows the comparison results with Bayesian vari-
able selection (Lee et al., 2003), kernel Fisher discri-
minant analysis (FDA, Li et al., 2002; Cho et al., 2003,
2004). The gene set that was selected by Cho et al.
(2004) is used in this paper.

For the breast cancer data set, the proposed method
shows a satisfactory classification result in Table 5.
While Cho et al. (2003) produced 3 misclassification
samples over three models, the results of our method
and results reported by Lee et al. (2003) and Cho et al.
(2004) show zero misclassification results. Note that

Sample No. Original data
+ Linear SVM

Original data
+ nonlinear SVM

FLD
+ Linear SVM

FLD
+ nonlinear SVM

54 S S S S
57 S S S S
58 S S S S
60 F F F F
61 F F F F
62 S S S S
63 S S S S
64 S S S S
65 S S S S
66 S S S S

Table 4 Prediction results of 10 AML test patients using several classifiers obtained by
applying FLD and SVM, where S indicates the survival of the patient after treat-
ment and F indicates the death of the patient after treatment)

Data set Method Misclassification results

Breast cancer data set Bayesian variable selectiona 0
Kernel FDAb 5
Kernel Fisher FDAd 0
Method proposed in this paper 0

Colon cancer data set Bayesian classification methodc 2.90
Kernel Fisher FDAb 2.57
Kernel Fisher FDAd 2.15
Method proposed in this paper 2.11

Table 5 The comparison of classification results for breast and colon cancer data sets

aLee et al. (2003); bCho et al. (2003); cLi et al. (2002); dCho et al. (2004)
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the approach of Lee et al. (2003) is based on a quite
complex method which is composed of Bayesian mix-
tures and markov chain monte carlo computation. From
this result, we can conclude that the proposed method
performs well and is much simpler and thus easier to
use than the methods of Lee et al. (2003) and Cho et
al. (2003, 2004).

For the colon cancer data set, Li et al. (2002) pre-
viously analyzed it using the average performance over
100 random partitions into 50 training and 12 test sam-
ples. As shown in Table 5, the proposed method—
reaching classification using a limited set of informa-
tive genes which are specific to a certain type of can-
cer—shows a minimum average test error that is lower
than the error reported by Li et al. (2002). The selected
genes in the colon cancer data set used for classifica-
tion with the proposed method contain the vascular
endothelial growth factor (VEGF, IMAGE ID:47326).
The clinical studies show that VEGF is a dominant
angiogenic factor in human colorectal cancer and is
associated with the formation of metastases and poor
prognosis (Cho et al., 2004).

These results lead to the following conclusion.
First, the classification result which can exactly clas-
sify the tumor type is mainly dependent on the selected
genes. Research by Dettling and Buhlmann (2002) also
shows that a supervised clustering algorithm can iden-
tify functional groups of interacting genes that have
high explanatory power for the given tumor type, which
in turn can be used to accurately predict the class la-
bels of new samples. Second, as noted by Kulkarni et
al. (2005), supervised clustering with DPLS informa-
tion of the tumor types of the tissues makes local trans-
formations with supervised translations in the gene
expression data. It changes the representation of the
data whose class overlap is decreased slightly as com-
pared to their original data distribution.

Conclusions

In this paper, we develop a supervised framework
for the gene selection, clustering, and classification of
microarray gene expression profiles, thus allowing dis-
crimination between cancer subclasses. First, the
marker genes which have great classification ability
for given cancer types are selected. Second, supervised
clustering using the valuable weights information of
DPLS was suggested to subsequently group the tumor
samples into different classes, where the normalized
weights of VIP can give relative contribution values
for the discrimination of subclasses. Third, supervised
linear and nonlinear classification methods were ap-
plied to three microarray data sets of (leukemia, breast,
and colon cancer) to predict and classify the tumor
samples according to their membership to particular
tumor classes. Supervised machine learning algorithms
enable the classification of leukemia subtypes solely

on the basis of molecular-level monitoring. The per-
formance of the proposed method, using only a lim-
ited set of informative genes, is demonstrated to be
comparable or better than results reported in the lit-
erature. Furthermore, the use of the proposed method
for predicting patient treatment outcome was demon-
strated on the microarray data sets. Thus, the proposed
methods can potentially be used to guide the design of
new, more effective approaches for cancer treatment.
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Nomenclatures
b = bias
dij

(w) = weighted Euclidean distance between i and j
D = symmetric matrix of the weighted distance
DPLS = discriminant partial least squares
K = the desired number of the selected genes
m = the number of training samples
p = cancer class number
qi = number of observation for class i
S = covariance matrix
SB = between-class scatter matrix
SW = within-class scatter matrix
VIP = variable importance in the projection
w = weight vector
wak = PLS weight for the gene expression profiles
X = gene expression data matrix
xi = input vector

= mean vector
Y = response variables (cancer labels)
yi = output label

Literature Cited
Alizadeh, A. A., M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos,

A. Rosenwald, J. C. Boldrick, H. Sabet, T. Tran, X. Yu, J. I.
Powell, L. Yang, G. E. Marti, T. Moore, J. Hudson, L. Lu, D. B.
Lewis, R. Tibshirani, G. Sherlock, W. C. Chan, T. C. Greiner,
D. D. Weisenburger, J. O. Armitage, R. Warnke, R. Levy,
W. Wilson, M. R. Grever, J. C. Byrd, D. Botstein, P. O. Brown
and L. M. Staudt; “Distinct Types of Diffuse Large B-Cell Lym-
phoma Identified by Gene Expression Profiling,” Nature, 403,
503–511 (2000)

Alon, U., N. Barkai, D. A. Notterman, K. Gish, Y. Barra, D. Mach
and A. J. Levine; “Broad Patterns of Gene Expression Revealed
by Clustering Analysis of Tumor and Normal Colon Tissues
Probed by Oligonucleotide Arrays,” Proc. Natl. Acad. Sci., 96,
6745–6750 (1999)

Alter, O., P. O. Brown and D. Botstein; “Singular Value Decompo-
sition for Genome-Wide Expression Data Processing and
Modeling,” Proc. Natl. Acad. Sci., 97, 10101–10106 (2001)

Antonov, A. V., I. V. Tetko, M. T. Mader, J. Budczies and H. W.
Mewes; “Optimization Models for Cancer Classification: Ex-
tracting Gene Interaction Information from Microarray Expres-
sion Data,” Bioinformatics, 20, 644–652 (2004)

Bhattacharjee, A., W. G. Richards, J. Staunton, C. Li, S. Monti,
P. Vasa, C. Ladd, J. Beheshti, R. Bueno, M. Gillette, M. Loda,
G. Weber, E. J. Mark, E. S. Lander, W. Wong, B. E. Johnson,
T. R. Golub, D. J. Sugarbaker and M. Meyerson; “Classifica-
tion of Human Lung Carcinomas by mRNA Expression Profil-
ing Reveals Distinct Adenocarcinoma Subclasses,” Proc. Natl.
Acad. Sci., 98, 13790–13795 (2001)

Bicciato, S., M. Pandin, G. Didone and C. Di Bello; “Pattern Iden-
tification and Classification in Gene Expression Data Using an

x



VOL. 41 NO. 9 2008 913

Autoassociative Neural Network Model,” Biotechnol. Bioeng.,
81, 594–606 (2002)

Brazma, A. and J. Vilo; “Gene Expression Data Analysis,” FEBS
Lett., 480, 17–24 (2000)

Brown, M. P. S., W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet,
T. M. Ares and D. Haussler; “Knowledge-Based Analysis of
Microarray Gene Expression Data by Using Support Vector
Machines,” Proc. Natl. Acad. Sci., 97, 262–267 (2000)

Bullinger, L., F. G. Rucker, S. Kurz, J. Du, C. Scholl, S. Sander,
A. Corbacioglu, C. Lottaz, J. Krauter and S. Frohling; “Gene-
Expression Profiling Identifies Distinct Subclasses of Core
Binding Factor Acute Myeloid Leukemia,” Blood, 110, 1291–
1300 (2007)

Cho, J., D. K. Lee, J. H. Park, K. W. Kim and I. Lee; “Optimal
Approach for Classification of Acute Leukemia Subtypes Based
on Gene Expression Data,” Biotechnol. Prog., 18, 847–854 (2002)

Cho, J., D. K. Lee, J. H. Park and I. Lee; “New Gene Selection
Method for Classification of Cancer Subtypes Considering
Within-Class Variation,” FEBS Lett., 551, 3–7 (2003)

Cho, J., D. K. Lee, J. H. Park and I. Lee; “Gene Selection and Clas-
sification from Microarray Data Using Kernel Machine,” FEBS
Lett., 571, 93–98 (2004)

Chow, M. L., E. J. Moler and I. S. Mian; “Identifying Marker Genes
in Transcription Profiling Data Using a Mixture of Feature
Relevance Experts,” Physiol. Genomics, 5, 99–111 (2001)

Cremers, D., T. Kohlberger and C. Schnorr; “Shape Statistics in
Kernel Space for Variational Image Segmentation,” Pattern
Recognition, 36, 1929–1943 (2003)

Cristianini, N. and J. Shawe-Taylor; An Introduction to Support
Vector Machines and Other Kernel-Based Learning Methods,
Cambridge University Press, Cambridge, U.K. (2000)

Dettling, M. and P. Buhlmann; “Supervised Clustering of Genes,”
Gen. Biology, 12, 0069.1–0069.15 (2002)

Dorrie, J., H. Gerauer, Y. Wachter and S. J. Zunino; “Resveratrol
Induces Extensive Apoptosis by Depolarizing Mitochondrial
Membranes and Activating Caspase-9 in Acute Lymphoblastic
Leukemia Cells,” Cancer Res., 61, 4731-4739 (2001)

Duda, R. O., P. E. Hart and D. G. Stork; Pattern Classification, 2nd
ed., John Wiley & Sons, New York, U.S.A. (2001)

Dudoit, S., J. Fridlyand and T. P. Speed; “Comparison of Discrimi-
nation Methods for the Classification of Tumors Using Gene
Expression Data,” J. Am. Stat. Assoc., 97, 77–87 (2002)

Eriksson, L., J. L. M. Hermens, E. Johansson, H. J. M. Verhaar and
S. Wold; “Multivariate Analysis of Aquatic Toxicity Data with
PLS,” Aquat. Sci., 57, 1015–1621 (1995)

Furey, T. S., N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer
and D. Haussler; “Support Vector Machine Classification and
Validation of Cancer Tissue Samples Using Microarray Expres-
sion Data,” Bioinformatics, 16, 906–914 (2000)

Golub, T. R., D. K. Slonim, P. Tamayo, C. Huard, M. Gaasen, J. P.
Mesirov, H. Coller, M. L. Loh, J. R. Downing and M. A.
Caligiuri; “Molecular Classification of Cancer: Class Discov-
ery and Class Prediction by Gene Expression Monitoring,” Sci-
ence, 286, 531–537 (1999)

Hampton, G. M. and H. F. Frierson; “Classifying Human Cancers
by Gene Expression Analysis,” Trends Mol. Med., 9, 5–10
(2003)

Hastie, T., R. Tibshirani and J. Friedman; The Elements of Statisti-
cal Learning: Data Mining, Inference, and Prediction, Springer-
Verlag, U.K. (2001)

Haykin, S.; Neural Networks: A Comprehensive Foundation,
Prentice Hall, Upper Saddle River, U.S.A. (1999)

Hedenfalk, I., D. Duggan, Y. Chen, M. Radmacher, M. Bittner,
R.  Simon, P. Meltzer, B. Gusterson, M. Esteller, O. P.
Kallioniemi, B. Wilfond, A. Borg and J. Trent; “Gene-Expres-
sion Profiles in Hereditary Breast Cancer,” New Engl. J. Med.,
344, 539–548 (2001)

Hwang, D. H.,  W. A. Schmitt ,  G. Stephanopoulos and G.

Stephanopoulos; “Determination of Minimum Sample Size and
Discriminatory Expression Patterns in Microarray Data,”
Bioinformatics, 18, 1184–1193 (2002)

Ishida, S., Y. Shigemoto-Mogami, H. Kagechika, K. Shudo, S. Ozawa,
J. Sawada, Y. Ohno and K. Inoue; “Clinically Potential Sub-
classes of Retinoid Synergists Revealed by Gene Expression
Profiling,” Molecular Cancer Therapeutics, 2, 49–58 (2003)

Johnson, R. A. and D. W. Wichern; Applied Multivariate Statistical
Analysis, Prentice Hall, Englewood Cliffs, U.S.A. (1992)

Kroon, E., J. Krosl, U. Thorsteinsdottir, S. Baban, A. M. Buchberg
and G. Sauvageau; “HoxA9 Transforms Primary Bone Marrow
Cells through Specific Collaboration with Meis1a but Not
Pbx1b,” EMBO J., 17, 3714–3725 (1998)

Kulkarni, A., V. K. Jayaraman and B. D. Kulkarni; “Knowledge
Incorporated Support Vector Machines to Detect Faults in Ten-
nessee Eastman Process,” C&C Eng., 29, 2128–2133 (2005)

Landgrebe, J., W. Wurst and G. Welzl; “Permutation-Validated Prin-
cipal Components Analysis of Microarray Data,” Genome Biol.,
3, 0019.1–0019.11 (2002)

Lee, K. E., N. Sha, E. R. Dougherty, M. Vannucci and B. K. Mallick;
“Gene Selection: a Bayesian Variable Selection Approach,”
Bioinformatics, 19, 90–97 (2003)

Li, J. and L. Wong; “Identifying Good Diagnostic Gene Groups
from Gene Expression Profiles Using the Concept of Emerging
Patterns,” Bioinformatics, 18, 725–734 (2002)

Li, Y., C. Campbell and M. Tipping; “Bayesian Automatic Relevance
Determination Algorithms for Classifying Gene Expression
Data,” Bioinformatics, 18, 1332–1339 (2002)

Liang, J. and S. Kachalo; “Computational Analysis of Microarray
Gene Expression Profiles: Clustering, Classification and Be-
yond,” Chem. Int. Lab. Sys., 62, 199–213 (2002)

Lu, Y. and J. Han; “Cancer Classification Using Gene Expression
Data,” Inf. Sys., 28, 243–268 (2003)

Lyons-Weiler, J., S. Patel and S. Bhattacharya; “A Classification-
Based Machine Learning Approach for the Analysis of Genome-
wide Expression Data,” Genome Res., 13, 503–512 (2003)

Méndez, M. A., C. Hödar, C. Vulpe, M. González and V. Cambiazo;
“Discriminant Analysis to Evaluate Clustering of Gene Expres-
sion Data,” FEBS Lett., 522, 24–28 (2002)

Moler, E. J., M. L. Chow and I. S. Mian; “Analysis of Molecular
Profile Data Using Generative and Discriminative Methods,”
Physiol. Genomics, 4, 109–126 (2000)

Nguyen, D. V. and D. M. Rocke; “Tumor Classification by Partial
Least Squares Using Microarray Gene Expression Data,”
Bioinformatics, 18, 39–50 (2002a)

Nguyen, D. V. and D. M. Rocke; “Multi-Class Cancer Classifica-
tion via Partial Least Squares with Gene Expression Profiles,”
Bioinformatics, 18, 1216–1226 (2002b)

Quackenbush, J.; “Computational Analysis of Microarray Data,”
Nat. Rev. Genet., 2, 418–427 (2001)

Questier, F., R. Put, D. Coomans, B. Walczak and Y. vander Heyden;
“The Use of CART and Multivariate Regression Trees for Su-
pervised and Unsupervised Feature Selection,” Chem. Intel.
Lab. Sys., 76, 45–54 (2005)

Schölkopf, B.; Statistical Learning and Kernel Methods, Technical
Report (MSR-TR-2000-23), Microsoft Research, Cambridge,
U.K. (2000)

Shipp, M. A., K. N. Ross, P. Tomayo, A. P. Weng, J. L. Kutok, R. C.
T. Aguiar, M. Gaasenbeek, M. Angelo, M. Reich, G. S. Pinkus,
T. S. Ray, M. A. Koval, K. W. Last, A. Norton, T. A. Lister,
D. S. Neuberg, E. S. Lander, J. C. Aster and T. R. Golub; “Dif-
fuse Large B-Cell Lymphoma Outcome Prediction by Gene-
Expression Profiling and Supervised Machine Learning,” Nat.
Med., 8, 68–74 (2002)

Stephanopoulos, G., D. H. Hwang, W. A. Schmitt, J. Misra and
G. Stephanopoulos; “Mapping Physiological States from
Microarray Expression Measurements,” Bioinformatics, 18,
1054–1063 (2002)



914

Sun, H.; “A Universal Molecular Descriptor System for Prediction
of LogP, LogS, LogBB, and Absorption,” J. Chem. Inf. Comput.
Sci., 44, 748–757 (2004a)

Sun, H.; “Prediction of Chemical Carcinogenicity from Molecular
Structure,” J. Chem. Inf. Comput. Sci., 44, 1506–1514 (2004b)

Takahashi, H. and H. Honda; “A New Reliable Cancer Diagnosis
Method Using Boosted Fuzzy Classifier with a SWEEP Opera-
tor Method,” J. Chem. Eng. Japan, 38, 763–773 (2005)

Takahashi, H., S. Tomida, T. Kobayashi and H. Honda.; “Inference
of Common Genetic Network Using Fuzzy Adaptive Resonance
Theory Associated Matrix Method,” J. Biosci. Bioeng., 96, 154–
160 (2003)

Takahashi, H., K. Masuda, T. Ando, T. Kobayashi and H. Honda;
“Prognostic Predictor with Multiple Fuzzy Neural Models Us-
ing Expression Profiles from DNA Microarray for Metastases
of Breast Cancer,” J. Biosci. Bioeng., 98, 193–199 (2004)

Takahashi, H., T. Kobayashi and H. Honda; “Construction of Ro-
bust Prognostic Predictors by Using Projective Adaptive Reso-
nance Theory as a Gene Filtering Method,” Bioinformatics, 21,
179–186 (2005)

Thomas, J. G., J. M. Olson, S. J. Tapscott and L. P. Zhao; “An Effi-
cient and Robust Statistical Modeling Approach to Discover
Differentially Expressed Genes Using Genomic Expression
Profiles,” Genome Res., 11, 1227–1236 (2001)

Tibshirani, R., T. Hastie, B. Narasimhan and G. Chu; “Diagnosis of
Multiple Cancer Types by Shrunken Centroids of Gene Expres-
sion,” Proc. Natl. Acad. Sci., 99, 6567–6572 (2002)

Vapnik, V.; The Nature of Statistical Learning Theory, Springer-
Verlag, New York, U.S.A. (1995)

Wang, X., Y. Wang and L. Wang; “Improving Fuzzy c-Means Clus-
tering Based on Feature-Weight Learning,” Pattern Recognit.
Lett., 25, 1123–1132 (2004)

Wang, Y., I. V. Tetko, M. A. Hall, E. Frank, A. Facius, K. F. X.
Mayer and H. W. Mewes; “Gene Selection from Microarray
Data for Cancer Classification—a Machine Learning Ap-
proach,” Comput. Biol. Chem., 29, 37–46 (2005)

Xiong, M. M., W. Li, J. Zhao, L. Jin and E. Boerwinkle; “Feature
(Gene) Selection in Gene Expression-Based Tumor Classifica-
tion,” Mol. Genet. Metabol., 73, 239–247 (2001)

Yang, Y. H., S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai and T. P.
Speed; “Normalization for cDNA Microarray Data: a Robust
Composite Method Addressing Single and Multiple Slide Sys-
tematic Variation,” Nucl. Acid. Res., 30, e15 (2002)

Yeung, K. Y. and W. L. Ruzzo; “Principal Component Analysis for
Clustering Gene Expression Data,” Bioinformatics, 17, 763–
774 (2001)

Yoo, C. K., I. Lee and P. A. Vanrolleghem; “Interpreting Patterns
and Analysis of Acute Leukemia Gene Expression Data by
Multivariate Fuzzy Statistical Analysis,” Comput. Chem. Eng.,
29, 1345–1356 (2005)

Zhang, H. P., C. Y. Yu, B. T. Singer and M. M. Xiong; “Recursive
Partitioning for Tumor Classification with Gene Expression
Microarray Data,” Proc. Natl. Acad. Sci., 98, 6730–6735 (2001)


