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Unspecific missing of values in real chemical and biological industries have been found. Regardless of
the incompleteness of the measured sample, a monitoring system should be designed to tackle the miss-
ing data problem and be applied to on-line systems immediately. A calibration method of a factor analy-
sis (FA) model for incomplete data sets is proposed. And a prediction method based on the calibrated
model is suggested in order to estimate missing values in incomplete calibration sets and incomplete test
sets. An expectation and maximization (EM) algorithm is used to calibrate the model and expectation of
conditional density is used to predict the model result. The proposed method is compared with the well-
known iterative singular values decomposition (iSVD) method, i.e. a principal component analysis (PCA)
based method; and a simple data set is tested as an illustrative example. The proposed method gives
better estimation results for the missing values than the well-known PCA based method. There are sev-
eral advantages of the proposed method over the PCA based projection methods: (1) data pretreatment
is not an essential step since the FA model is scale invariant whereas the PCA model is not, (2) since the
proposed method utilizes probability information of all variables directly, to apply it as a statistical
process monitoring technique is preferable to others, and (3) the single model can be extended to a mix-
ture of such models by the virtue of the EM algorithm.

Introduction

The real-world multivariate data set can have
missing values at random by some reasons, e.g. trou-
bles of sensors for industrial data, incomplete answers
of respondents for statistical survey data, etc. The on-
line measured sample can also have missing values in
general since different sensing periods among sensors
may exist; some measurements not yet received in the
sample are regarded as missing values. Some tech-
niques can be used to handle such types of data set or
data, like a calibration technique of a multivariate
model from an incomplete calibration set, and a pre-
diction method for the missing values in every sam-
ple. Suppose that there is an incomplete calibration set.
Calibrating a multivariate model from the set, should
we discard a whole sample just for small portion of
missing in it? Again suppose a partial sample from
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missing data would be received successively. When di-
agnosing the sample, should we wait all measurements’
scores to be gathered? This paper primarily aims at
answering these two questions.

A principal component analysis (PCA) based re-
gression methods to estimate the missing values are
well known (Grung and Mamme, 1998; Walczak and
Massart, 2001). However, in spite of their algorithmic
simplicity, they have a critical defect that the PCA
model is scale variant inherently, that is, differently
scaled data sets result in totally different models. It is
the natural consequence of PCA which is designed to
focus on variances of variables. When working with
PCA, a pretreatment step on variables to have equal
importance is essential.

The factor analysis (FA) model by an EM algo-
rithm is scale invariant, where its parameters are the
factor loading matrix, mean vector and noise variance
matrix. The FA pursues learning the most probable
model parameters that can best explain correlations
between the measurements and the factors under
Gaussian probability density assumption on the
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measurement space. When making the FA model, we
may not worry about a scale problem of the measure-
ments. Mathematically, PCA is a special case of FA in
which set noise variances infinitesimal (Tipping and
Bishop, 1997a, 1997b; Kim and Lee, 2003).

After setting several notations in Section 1, we
will summarize the PCA based calibration and predic-
tion method from incomplete data in Section 2. The
FA model based probabilistic approach will be pro-
posed in Section 3. Comparisons of the two methods
will be presented in Section 4 through the case study
of a simple example. Finally, the conclusions will be
addressed.

1. Incomplete Data

Suppose that there is a calibration data set X =
{x

n
}

n∈ N
 ∈ �P×N with x

n
 = [xo

n
; xm

n
] ∈  �P. Here, sub-

script ‘n’ represents a calibration sample index, and
superscript ‘o’ and ‘m’ symbolize the observed and the
missing data, respectively; the dimension of the ob-
served vector of the n-th sample, dim(xo

n
), can have

one of {1, 2, ···, dim(x)} according to the sample in-
dex n but dim(xo

n
) + dim(xm

n
) = dim(x) ∀ n. Nota-

tion n ∈  N to express n = 1, 2, ···, N just for its con-
ciseness is used in this paper. This unusual notation
should be distinguished from an ‘element’ symbol,
e.g. x ∈ {x, y, z} or x ∈  �P. In parenthesis ‘[·]’, a semi-
colon is the symbol to denote the next row while
comma represents the next column, e.g. [1; 2] ∈  �2×1

and [1, 2] ∈  �1×2. Let us denote the observed part in X
as Xo = {xo

n
}

n∈ N
, and the missing part in X as Xm =

{xm
n
}

n∈ N
. Hence Xo ∪  Xm = X and Xo ∩ Xm = {φ}.

For a newly measured sample, x
n
, it can also have

a missing value. Let us denote x
n
 = [xi

n
; xt

n
], where

subscript ‘n’ represents a newly measured sample in-
dex, and superscript ‘i’ and ‘t’ symbolize the input and
the target, respectively. Here, to distinguish x

n
 from x

n

clearly, we gave the names ‘target’ and ‘input’ for the
new sample; the target and the input in the test sample
are equivalent to the missing and the observed data in
the calibration sample, respectively. Figure 1 shows
an example of missing values in the multivariate data,
where the hollowed squares represent the observed el-
ement and the grey squares indicate the missing ele-
ment in multivariate data. For instance, in this figure,
a calibration data set X = {x

n
}

n∈ 10
 ∈ �7×10 in which x

1
 =

[xo
1
 ∈ �6; xm

1
 ∈  �1], and a test data vector x

n
 = [xi

n
 ∈

�5; xt
n
 ∈  �2]. Then our tasks are clear: (1) to calibrate

the FA model only from Xo, and (2) to predict xt
n
 from

xi
n
 using the calibrated FA model.

2. PCA from Incomplete Data

First of all, the well-known iterative PCA based
regression method is addressed.

2.1 Calibration
The PCA model of X reduced to L (=rank(Z) ≤

rank(X) = P) dimensional PC space is given by

X = A·Z + E (1)

where A = {a
l
}

l∈ L
 with a

i
T·a

j
 ∈ {0, 1} for {i ≠ j, i = j},

Z = { z
l }l∈ L

 and E = X – ∑
l∈ L

a
l
· z

l  have been called the
loading matrix, the score matrix, and the residual ma-
trix, respectively. All vectors used in this article are
column vectors unless specified; we will use a double
under bar to denote a row vector, e.g. z

l  is the l-th row
of an L × N matrix Z while z

n
 is the n-th column of Z.

If Xm = {φ}, i.e. there is no missing in X, a least-square
sense optimal pair of a

l
 and z

l  is easily extracted by a
nonlinear iterative partial least square (NIPALS) algo-
rithm successively or a singular value decomposition
(SVD) technique at once. In fact NIPALS is a method
to solve the SVD problem of X, e.g. [A, S, V] =
SVDs(X, L) then Z = S·VT and E = X – A·S·VT. How-
ever, in the case of Xm ≠ {φ}, the iterative SVD method
(Walczak and Massart, 2001) can be applicable. The
iSVD method enables us to estimate Xm as well as both
A and Z, e.g.
(1) initial guess of X = Xo ∪  Xm

initial

(2) until Xm converges, iterate the followings:

[A, S, V] = SVDs(X, L),
X

PCA
 = A·S·VT,

Xm = Xm
PCA

, X = Xo ∪  Xm (2)

where an ‘under bar’ denotes the estimate. We may
set L = P. Then an orthogonal square matrix A, which
is to be a new set of basis vectors, transforms the origi-
nal correlated variable x to a new uncorrelated vari-
able z without any information loss, i.e. E = {φ}. This
is the multiple linear regression (MLR) approach. But
in general, we set L < P to have robust estimate re-
sults. It is the principal component regression (PCR)
approach. In essence MLR is a special case of PCR:

Xm
PCR

 ← SVDs(X, L) and Xm
MLR

 ← SVDs(X, P) (3)

Fig. 1 Examples of missing values at random: (a) a cali-
bration data set, and (b) a test data vector
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where L ∈  {1, 2, …, ≤ P}. Notice that slight modifica-
tion of NIPALS algorithm can generate almost all kinds
of multivariate projection models, e.g. PLS, continuum
regression (CR), cyclic subspace regression (CSR), and
so on (Kalivas, 1999; Geladi, 2002). The iterative al-
gorithm can be applied to the intermediate models
without serious structural change.
2.2 Prediction

To analyze a new incomplete sample, x
n
 = [xi

n
;

xt
n
], the PCA model can be used, x = A·z + e, as a com-

bined two sub-models: an input model, xi = Ai·z + ei,
and a target model, xt = At·z + et. The combined model
form can be expresses as follows:

[xi; xt] = [Ai; At]·z + [ei; et] (4)

where Ai and At are submatrices of A corresponding to
dim(xi) and dim(xt), respectively. Suppose x = [x

1
; x

2
;

x
3
], z = [z

1
; z

2
], e = [e

1
; e

2
; e

3
] and A = [a

11
, a

12
; a

21
, a

22
;

a
31

, a
32

]. If xi = [x
1
; x

3
], xt = [x

2
], then Ai = [a

11
, a

12
; a

31
,

a
32

] and At = [a
21

, a
22

]; ei = [e
1
; e

3
], et = [e

2
]. If dim(xi

n
)

≠ 0, the corresponding target vector, xt
n
, is predicted

via two steps: first least-square sense optimal PC scores
using the input model, then to predict the target scores
using the target model:

z
n
 = Ai

n
+·xi

n
(5)

xt
n
 = At

n
·z

n
(6)

where left pseudo-inverse of Ai
n
 is defined by Ai

n
+ ≡

(Ai
n

T·Ai
n
)–1·Ai

n
T ≠ Ai

n
T. Notice that since dim(xi

j
) ≠

dim(xi
k
) for j ≠ k was permitted, the number of rows of

Ai
n
 and At

n
 are varied according to the sample index n;

however,  row(A i
n
)  + row(A t

n
)  = dim(x) ,  and

column(Ai
n
) = column(At

n
) = dim(z) are preserved ∀ n.

2.3 PCA model of scale variant
The PCA model is scale variant. To ease elucida-

tion, let us define a scaling matrix B ≡ diag({b
p
}

p∈ P
)

that changes the scale of X to B·X while it does not
affect the correlations among variables. However, the
PCA model of X is totally different from that of B·X.
It means that X → B·X does not imply neither A·Z →
B·A·Z nor E → B·E. The PCA model is also shift vari-
ant. Let us introduce a mean-shift vector m ∈  �P that
moves X to X′  = {x

n
 + m}

n∈ N
. But the movement does

not imply neither A·Z → A·Z′  nor E → E′ , where Z′  =
{z

n
 + α ·m}

n∈ N
 and E′  = {e

n
 + (1 – α )·m}

n∈ N
, for any

0 ≤ α  ≤ 1.
Therefore some pretreatments on a calibration set

to have equal importance among variables are a pre-
requisite for the PCA model through mean-centering
(x → xmc), auto-scaling (x → xauto), or whitening (x →
xwhite), where xmc = x – mean(x), x

p
auto = var(x

p
)–0.5·(x

p
 –

mean(x
p
)) ∀ p, xwhite = cov(x)–0.5·(x – mean(x)). The

pretreatments are also needed to analyze the test sam-
ple since the sample should be transformed to have

identical statistics of the calibration set. Without any
missing in both x

n
 and X, the pretreatments are sim-

ple. But if there are any missing values in X, they are
cumbersome because we should estimate the means and
the (co)variances of the variables only from Xo.

3. Factor Analysis (FA) from Incomplete Data

The factor analysis (FA) model (Anderson, 1984)
has the form of

x = A·z + µµµµµ + e (7)

where A ∈  �P×L denotes the loading matrix, µµµµµ ∈  �P

symbolizes the mean vector of the measurement vari-
able x ∈  �P; z ∈ �L represents the factor variable, and
e ∈  �P signifies the noise variable. Learning task in
the model is obtaining the likelihood-sense optimal
parameters set Θ ≡ {A, µµµµµ, ΛΛΛΛΛ} from a (in)complete cali-
bration data set X = Xo ∪  Xm. To do this, we assume
that probability density function (PDF) of the factor is
N(z: 0, I), where a random variable z can be completely
characterized by a Gaussian parametric function with
its mean µµµµµ and covariance ΣΣΣΣΣ. And the noise is N(e: 0,
ΛΛΛΛΛ = diag({λ

p
}

p∈ P
), where each noise element, e

p
, can

have a different variance, λ
p
. Furthermore, factors and

noises are supposed to be statistically independent of
each other, i.e. p(e | z) = p(e). It means that there is no
information in z about e.
3.1 Calibration

We consider Eq. (7) as a combined form of two
sub-models: an observed model and a missing model,

[xo; xm] = [Ao; Am]·z + [µµµµµo; µµµµµm] + [eo; em] (8)

It is obvious that Eq. (7) is a special case of
Eq. (8) when xm = {φ}. Since the Gaussian PDF is
closed to linear operations, and both z and e were as-
sumed to Gaussians; the followings are clear: N(xm:
µµµµµm, ΣΣΣΣΣmm), N(xo: µµµµµo, ΣΣΣΣΣoo), N(xm | z: µµµµµm|z, ΣΣΣΣΣm|z), and N(z|xo:
µµµµµz|o, ΣΣΣΣΣz|o). Here, the mean and the covariance in each
PDF are easily derived as follows:

ΣΣΣΣΣmm = Am·AmT + ΛΛΛΛΛm (9)

ΣΣΣΣΣoo = Ao·AoT + ΛΛΛΛΛo (10)

µµµµµm|z = Am·z + µµµµµm (11)

ΣΣΣΣΣm|z = ΛΛΛΛΛm (12)

µµµµµz|o = AoT·(ΣΣΣΣΣoo)–1·(xo – µµµµµo) (13)

ΣΣΣΣΣz|o = I – AoT·(ΣΣΣΣΣoo)–1·Ao (14)

Notice that if dim(z) < dim(xo), say, Ao is a thin
matrix, inversion of ΣΣΣΣΣoo is often intractable. For Eqs.
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(13) and (14), let us denote N ([xo; z]: [µµµµµo; 0], [ΣΣΣΣΣoo,
ΣΣΣΣΣoz; ΣΣΣΣΣzo, ΣΣΣΣΣzz]) then N(z|xo: ΣΣΣΣΣzo·ΣΣΣΣΣoo–1·(xo – µµµµµo), ΣΣΣΣΣzz –
ΣΣΣΣΣzo·ΣΣΣΣΣoo–1·ΣΣΣΣΣoz); where ΣΣΣΣΣoo = Ao·AoT + ΛΛΛΛΛo, ΣΣΣΣΣoz = Ao, ΣΣΣΣΣzo =
AoT, and ΣΣΣΣΣzz = I. However, there is an efficient way to
the type of inversion using the matrix inversion lemma,

(Ao·AoT + ΛΛΛΛΛo)–1

= ΛΛΛΛΛo–1 – ΛΛΛΛΛo–1·Ao·(I + AoT·ΛΛΛΛΛo–1·Ao)–1·AoT·ΛΛΛΛΛo–1 (15)

The lemma is essential to calculate both Eqs. (13)
and (14), where a more detailed proof is shown in Ap-
pendix B. Without the lemma, numerical problems may
be inevitable when the FA model is calibrated.
3.1.1 MLE for a complete data set           The maximum
likelihood estimator (MLE) is a well-known technique
to calibrate the FA model. Let’s define an augmented
data set D ≡ {d

n
}

n∈ N
 ∈ �(P+L)×N with d

n
 = [xo

n
; xm

n
; z

n
] ∈

�(P+L), where each data vector in D consists of an ob-
served vector, a missing vector, and a factor vectors.
Notice that the factor vector is regarded as a perma-
nent missing vector with the fixed dimension L while
the missing vector can have arbitrary dimension from
zero to (dim(x) – 1) according to its sample index.
Given both xm and z in d, that is, d is a complete vec-
tor, probability density of d, p(d), and log likelihood
of d, l (d), are given by

p(d: Θ) = p(z)·p(x | z: Θ)
= N(z: 0, I)·N(x | z: A·z + µµµµµ, ΛΛΛΛΛ) (16)

l (Θ: d) ≡ log p(d: Θ)
= 0.5·log det (ΛΛΛΛΛ–1)

– 0.5·(x – A′ ·z′)T·ΛΛΛΛΛ–1·(x – A′ ·z′) + δ (17)

where A′  ≡ [A, µµµµµ] ∈  �P×(L+1), z′  ≡ [z; 1] ∈ �L+1, and δ
represents Θ independent terms in the log likelihood
function. The Gaussian PDF of x is N(x: µµµµµ, ΣΣΣΣΣ) =
(2π)–0.5·dim(x)·det(ΣΣΣΣΣ–1)0.5·exp(–0.5·(x – µµµµµ)T·ΣΣΣΣΣ–1·(x – µµµµµ)). Let
us suppose an independent and identically distributed
(iid) condition on D. Mathematically, iid on D implies
that p(d

i
 | D \ d

i
) = p(d

i
) = p(d

J
), where the first equal-

ity indicates an independent condition and the second
identity represents an identically distributed condition.
Given both xm

n
 and z

n
 ∀ n under iid on D, the log like-

lihood of D, L(D), is simply the sum of l (Θ: d
n
) ∀ n.

L(Θ: D)
≡ ∑

n∈ N
 l (Θ: x

n
)

= ∑
n∈ N

[0.5·log det(ΛΛΛΛΛ–1)
– 0.5·(x

n
 – A′ ·z′

n
)T·ΛΛΛΛΛ–1·(x

n
 – A′ ·z′

n
)] + δ

(18)

Therefore the likelihood-sense optimal Θ that
maximizes L(Θ: D) is found by

(∂/∂A′)[L(Θ: D)] = 0
⇒  A′  = (∑

n∈ N
x

n
·z

n
′T)·(∑

 n∈ N
 z

n
′ ·z

n
′T)–1 (19)

(∂/∂ΛΛΛΛΛ–1)[L(Θ: D)] = 0
⇒  ΛΛΛΛΛ = N–1·diag ∑

n∈ N
(x

n
·x

n
T – A′ ·z

n
′ ·x

n
T) (20)

where (∂/∂A)·(x – A·z)T·ΛΛΛΛΛ–1·(x – A·z) = –2·ΛΛΛΛΛ–1·(x –
A·z)·zT for symmetric ΛΛΛΛΛ, (∂/∂ΛΛΛΛΛ–1)·[log det(ΛΛΛΛΛ–1)] = ΛΛΛΛΛT,
and (∂/∂ΛΛΛΛΛ–1)·[(x – A·z)T·ΛΛΛΛΛ–1·(x – A·z)] = (x – A·z)·(x –
A·z)T and diag(·) denotes set off-diagonal elements in
the parenthesis to zeros. Note that A′  in Eq. (20) should
be the resultant of Eq. (19). If a mean-centered X is
used to these equations, Eq. (19) indicates the least-
square solution, A = X·Z+, and Eq. (20) implies slightly
biased, N·(N – 1)–1, the sample error variance matrix
whose diagonals are the variances of the estimation
errors, i.e. ΛΛΛΛΛ = N–1·diag(X·(I – Z+·Z)·XT).
3.1.2 EM for incomplete data         Only given Xo in D
= Xo ∪  Xm ∪  Z, direct maximization of L(Θ: D) is
impossible through analytic ways. An expected com-
plete data log likelihood function can be assumed, as
it has been called an energy function, q(·) for l (·) first.

q(Θ|Θ
t
)

≡ E
z,xm|xo:Θt

[l (d: Θ)]
= E

z,xm|xo:Θt
[0.5·log det(ΛΛΛΛΛ–1)

– 0.5·(x – A′ ·z′)T·ΛΛΛΛΛ–1·(x – A′ ·z′)] + δ
(21)

where E
z,xm|xo:Θt

[l (d: Θ)] ≡ ∫∫ l (xo, xm, z: Θ)·p(z, xm|xo:
Θ

t
)dzdxm, and Θ

t
 denotes an estimate of Θ at iteration

time t. If xm were given, then q(Θ|Θ
t
) = E

z|x:Θt
[l (d: Θ)]

which results in the standard FA. Since iid on D was
assumed, an energy function Θ(·) for L(·) is just the
summation of q

n
(Θ|Θ

t
) ∀ n.

Q(Θ|Θ
t
)

≡ ∑
 n∈ N

q
n
(Θ|Θ

t
)

= ∑
 n∈ N

E
zn,xmn|xon:Θt

[0.5·log det(ΛΛΛΛΛ–1)
– 0.5·(x

n
 – A′ ·z

n
′)T·ΛΛΛΛΛ–1·(x

n
 – A′ ·z

n
′)]

+ δ (22)

Instead of intractable L(·), maximize Eq. (22) via
two steps: an expectation step (E-step) and a
maximization step (M-step). The E-step evaluates Q

given from previous M-step resultant Θ, and the
maximization step (M-step) finds maximizing Θ of the
E-step resultant Q. The iterative algorithm altering the
E-step and the M-step has been named an EM algo-
rithm, and the algorithm can never decrease L(·) as it-
eration proceeds (Dempster et al., 1977), in other
words, Θ

t
 converges to likelihood-sense (local) opti-

mal Θ as t increases. There might be local optimal since
there is no way to find a global optimum solution for a
general nonlinear functions. The local region of the
solution candidates of the function can be extended via
a genetic algorithm, a Boltzmann machine, and so on.
E-Step: To evaluate Q(Θ|Θ

t
) let us approximate

p(xm|z, xo) ≈ p(xm|z) where z ≡ E[z|xo]. It implies that
the observed vector is only used to infer the factor
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scores which are responsible for all generated signals
from the concerned process. In generative latent vari-
able models, e.g. FA, probabilistic PCA, hidden markov
model, mixture modeling, measurement scores, no
matter how many they are, are treated just as shadows
of latent variables’ combinations. With the approxima-
tion, the conditional joint density over two unknowns,
given a known is factorized to

p(z, xm|xo) ≈ p(z|xo)·p(xm|z) (23)

Since we knows p(z|xo) = N(z|xo: µµµµµz|o, ΣΣΣΣΣz|o) and
p(xm|z) = N(xm|z: µµµµµm|z, ΣΣΣΣΣm|z), Eq. (23) is evaluated using
Eqs. (11)–(14). Furthermore, using this factorization,
the expected elements which implicitly existed in the
Q function are easily derived as follows:

z ≡ E
z,xm|xo

[z] ≈ µµµµµz|o (24)

zz ≡ E
z,xm|xo

[z·zT] ≈ ΣΣΣΣΣz|o + µµµµµz|o·µµµµµz|oT (25)

xm ≡ E
z,xm|xo

[xm] ≈ µµµµµm|z (26)

xxm ≡ E
z,xm|xo

[xm·xmT] ≈ ΣΣΣΣΣm|z + µµµµµm|z·µµµµµm|zT (27)

xmz ≡ E
z,xm|xo

[xm·zT] ≈ µµµµµm|z·µµµµµz|oT (28)

zxm ≡ E
z,xm|xo

[z·xmT] ≈ µµµµµz|o·µµµµµm|zT (29)

They are also calculated by Eqs. (11)–(14). Aug-
mented forms of the expectation elements, which ex-
plicitly exist in the Q function are evaluated as follows
using Eqs. (24)–(29):

z′  ≡ E
z,xm|xo

[z′] = [z; 1] (30)

zz′  ≡ E
z,xm|xo

[z′ ·z′T] = [zz, z; zT, 1] (31)

x ≡ E
z,xm|xo

[x] = [xo; xm] (32)

xx ≡ E
z,xm|xo

[x·xT] = [xo·xoT, xo·xmT; xm·xoT, xxm] (33)

xz′  ≡ E
z,xm|xo

[x·z′T] = x·z′T (34)

z′x ≡ E
z,xm|xo

[z′ ·xT] = z′ ·xT (35)

Notice that the most probable inferences on all
unobserved states, i.e. factors and missings, and their
correlations are evaluated and used in the EM algo-
rithm of the FA model calibration while the least square
of the PCA model simply adapts the orthogonal pro-
jection of x to the latent space as the best inference of
the states.
M-step: Similar to Eqs. (19) and (20), likelihood-sense
optimal Θ that maximizes Q(Θ|Θ

t
) is obtained by

(∂/∂A′)[Q(Θ|Θ
t
)] = 0

⇒  A′  = (∑
n∈ N

xz′
n

T)·(∑
n∈ N

zz′
n
)–1 (36)

(∂/∂ΛΛΛΛΛ–1)[Q(Θ|Θ
t
)] = 0

⇒  ΛΛΛΛΛ = N–1·diag∑
n∈ N

(xx
n
 – A′ ·z′x

n
) (37)

As before, A′  in Eq. (37) should be the resultant
of Eq. (36). Notice that xx

n
 ≠ x

n
·(x

n
)T and zz′

n
 ≠ z′

n
·(z′

n
)T

but xz′
n
 = x

n
·(z′

n
)T and z′x

n
 = z′

n
·(x

n
)T as we expressed

in Eqs. (30)–(35).
EM algorithm to calibrate the FA model from in-

complete data set is summarized as follows: unob-
served states and their correlations are the likelihood-
sense optimal inferred by E-step using Eqs. (24)–(29)
given Θ. Then we can update Θ by the M-step using
Eqs. (30) and (31), given the inference results which
have the forms represented in Eqs. (24)–(26). A lot of
iterations altering the E-step and the M-step converge
to a likelihood-sense (local) optimal Θ definitely. Ap-
pendix A is the summary of these procedures; it may
be helpful to realize the method in computer programs,
e.g. Matlab.
3.1.3 Variance explanation ratio        A covariance
matrix of x has been estimated by the sum of its sys-
tematic part A·AT, and noise part ΛΛΛΛΛ, i.e. ΣΣΣΣΣx = A·AT + ΛΛΛΛΛ,
in the model. Denoting the systematic part of the p-th
variable in x as xs

p
, then the variance explanation ratio

of the p-th variable in x ,  x
p
,  is  given by r

p
 =

var(xs
p
)·var(x

p
)–1. Hence, the average variance expla-

nation ratio, r
avg

, can be defined by the mean of all the
ratios.

r
p
 = diag(A·AT)

p
·[diag(A·AT)

p
 + diag(ΛΛΛΛΛ)

p
] –1 (38)

r
avg

 = P–1·∑
p∈ P

 r
p

(39)

where diag(·)
p
 ∈ �1 and diag(·)

p
–1 ∈ �1 denote the p-th

diagonal element in the parenthesis and its inverse,
respectively. Like the score plot of the PCA model,
dim(z) of the FA model can be decided by plotting
r

avg
(l) for l = 1, 2, ···, dim(x). Notice that total vari-

ance explanation ratio in the PCA model is obtained
from

rPCA = [∑
p∈ P

var(xs
p
)]·[∑

p∈ P
var(x

p
)]–1

= [∑
p∈ P

diag(A·AT)
p
]·[∑

p∈ P
diag(A·AT)

p

+ diag(ΛΛΛΛΛ)
p
] –1

= ||A||
F

2·tr(ΣΣΣΣΣx)–1 (40)

where ||·||
F
 denotes a Frobenius norm. Thus an impor-

tant difference to find an appropriate number of latent
variables between FA and PCA is that FA decides the
number by the summation of all the elements’ ratios
while PCA determine it by the ratio of the two
summations:
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rFA = P–1·∑
p∈ P

[var(xs
p
)·var(x

p
)–1] vs.

rPCA = [∑
p∈ P

var(xs
p
)]·[∑

p∈ P
var(x

p
)] –1 (41)

They also indicate that PCA depends on variances
of variables but FA does not.
3.2 Prediction

For a newly measured sample x
n
 = [xi

n
; xt

n
], simi-

lar to PCA, a target vector is predicted via two steps:
infer factor scores first, and then predict target score
using the inference result.

z
n
 ≡ E[z|xi

n
] = β

n
·(xi

n
 – µµµµµi

n
) (42)

xt
n
 ≡ E[xt

n
|z

n
] = At

n
·z

n
 + µµµµµt

n
(43)

where β
n
 ≡ Ai

n
T·ΣΣΣΣΣii

n
–1; ΣΣΣΣΣii

n
–1 = (Ai

n
·Ai

n
T + ΛΛΛΛΛi

n
)–1 should be

calculated regarding to dim(xi
n
) using Eq. (15). Notice

that PCA simply used orthogonal projection to infer
the latent score and predict the target score as expressed
in Eqs. (5) and (6); but FA utilizes conditional densi-
ties for these tasks. In fact Eq. (5) is the special case
of Eq. (42) when using a mean centered calibration
set, µµµµµi

n
 = 0, and restrict the variances of the noise vari-

ables to have infinitesimal, i.e. limλp→0
 Ai

n
+ = β

n
 ∀ p.

And Eq. (6) is identical to Eq. (43) for the mean
centered data.
3.3 FA model of scale invariant

Contrast to the PCA model, the FA model is in-
variant to both scale-change and mean-shift. For
rescaled x by scaling matrix B ≡ diag({b

p
}

p∈ P
), i.e.

x → B·x, the rescaling does not affect the FA model
structure, it only influences model parameters: A →
B·A, µµµµµ → B·µµµµµ, and ΛΛΛΛΛ → B·ΛΛΛΛΛ·B. For mean shifted x by
m, i.e. x → x + m, it indicates simply µµµµµ → m·µµµµµ. When
developing the FA model, we are free from the
pretreatments both on the calibration set and the tested
sample, which are essential in projection models.
3.4 Statistical tests

An estimation error of the input part in a new sam-
ple is given by ei

n
 = xi

n
 – xi

n
 where xi

n
 = Ai·z

n
 + µµµµµi. If the

developed FA model is still valid to the sample,
Mahalanobis squared norms of input error (MSNE),
ei

n
T·ΛΛΛΛΛ i

n
–1·ei

n
, should follow the chi-square distribution

with dim(xi
n
) degrees of freedom since the FA model

assumed N(ei: 0, ΛΛΛΛΛi). Thus if Eq. (38) is satisfied for
the sample, the developed FA model would be adequate
to the sample with the α  level of significance (LoS).
Under the condition, both types of the variance expla-
nation ratios, elements based ratios in Eq. (38) and the
average ratio in Eq. (39), are also expected to the sam-
ple. Furthermore, the process which generates xi

n
 is

considered as in-control with α LoS if Eq. (45) is held
since N(ei: 0, I).

ei
n

T·ΛΛΛΛΛi–1·ei
n
 ≤ χ–2

(1–α ; dim(xni))
(44)

z
n

T·z
n
 ≤ χ–2

(1–α, L)
(45)

where χ–2 denotes the inverse of cumulative chi-square
PDF. Equations (44) and (45) are closely related to the
Q tes t  ( Jackson  and  Mudholkar,  1979) ,  and
Hotelling’s T 2 test (Hotelling, 1947), respectively;
they are popular tests in statistical process control
(SPC) and fault detection (MacGregor and Kourti,
1995; Wise and Gallagher, 1996). Note here that Q and
T 2 tests are given by

Q: xT·(I – A·AT)·x
≤ θ

1
·[(N

s
–1

(1–α)
·(2·θ

2
·h

0
2)0.5·θ

1
–1)

+ (θ
2
·h

0
·(h

0
 – 1)·θ

1
–2) + 1]1/h0 (46)

T 2: ||S
S

–0.5·x||2 ≤ L·(N2 – 1)·(N2 – N·L)–1·F–1
(1–α; L,N–L)

(47)

where N
s
–1 denotes the inverse of cumulative N(0, 1);

using the following SVD results of X: [A = {a
p
}

p∈ P
,

S = diag({s
p
}

p∈ P
), V] = SVDs(X, P), θ

j
 = ∑

i=L+1,…,P
 s

i
2·j

for j ∈ {1, 2, 3}, h
0
 = 1 – (2·θ

1
·θ

3
)·(3·θ

2
2)–1, (S

S
–0.5)T =

{s
p

–1·a
p
}

p∈ L
.

There are several advantages on the proposed tests
over the conventional tests:
(1) They provide simpler forms than the existing tests.
(2) They work with the same measuring unit, i.e.
squared Mahalanobis norm. All statistical inference
should be based on the Mahalanobis measuring unit;
however, the left-hand term in the Q test indicates the
squared Euclidian norm of the estimation errors, i.e.
||e||2, since e = x – A·z = (I – A·AT)·x, and (I – A·AT) is
an idempotent matrix. It is the reason why the right-
hand term in the test is so complicated. But the left-
hand term in the T 2 test represents the squared
Mahalanobis norm of principal components’ scores
with the normalizing constants {s

p
–1}

p∈ L
. Note here

that the limiting condition of L·(N2 – 1)·(N2 – N·L)–1·
F–1

(1–α ; L, N–L)
 when N ≈ ∞ is χ–2

(1–α ; L)
; however, we do

not set the condition for the upper control limit of Q.
(3) They can work on partial available elements
among all the measurements; while Q and T2 tests
should wait for all measurements to be gathered. This
point may be the decisive merit of the tests when ap-
plying the tests to an on-line monitored process with
some malfunctioning sensors or missing values.
(4) They provide statistical normality tests for all in-
dividuals both in z

n
 = {z

l
}

l∈ L
 and ei

n
 = {e

p
}

p∈ dim(xni)
. No-

tice that N(z
n
: 0, I) and N(ei

n
: 0, diag{λ

p
}

p∈ dim(xni)
) indi-

cate {N(z
l
: 0, 1)}

l∈ L
 and {N(λ

p
–0.5·e

p
: 0, 1)}

p∈ P
, respec-

tively, where p(z
i
|z

j
) = p(z

i
) and p(e

i
|e

j
) = p(e

i
) for i ≠ j.

Therefore if the p-th sensor in xi
n
 is fault then Eq. (48)

will not be satisfied with α  LoS. And if Eq. (49) is not
hold for the extracted l-th factor score in z

n
, z

l
, then the

factor is considered responsible for the process’ out-
of-control condition with α  LoS.

e
p
 ∈  [λ

p
0.5·N

s
–1

(0.5·α)
, λ

p
0.5·N

s
–1

(1–0.5·α)
] (48)
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z
l
 ∈  [N

s
–1

(0.5·α)
, N

s
–1

(1–0.5·α)
] (49)

These tests are comparable to the contribution plot used
in conventional SPC.

4. Simulation and Results

Multivariate process data from liquid-fed ceramic
melter (LFCM) data were employed to test the per-
formance of the proposed method, where the data set
are taken from the PLS_toolbox ver. 3.1 (Eigenvetor
Research, Inc.). A slurry of nuclear waste and glass-
forming chemicals were fed into the LFCM, and glass
was periodically poured from the melter, resulting in
time-dependent variations in the glass level. The LFCM
was monitored with 10 thermocouples located in two
thermo-wells within the glass pool (Stork et al., 1997).
Raw data set was treated to have 20% missing at ran-
dom. The data pattern and missing values are shown
in Figure 2, where the missing values are symbolized
by ‘�’. In the figure, p(m, v) indicates that the p-th
variable in the raw data set, without any missing value,
has mean m and variance v. As shown in the figure,
every 10 variables show the strong correlation among
the measured variables and also have remarkably dif-
ferent statistics of means and variances. If there were
negligible missing data, the pretreatment step for PCA
would be a simple task. However, 20% missing may
not be a negligible quantity at all.

To develop a multivariate model from incomplete
data set and predict the missing values in the set, we
partitioned the overall incomplete set X = {x

j
}

j∈ 300
 into

Fig. 2 Liquid-fed ceramic melter (LFCM) data set made to have artificial 20% missing values at random

Fig. 3 Plots of variance explanation ratios: (a) averaged
variance explanation ratio, and (b) individual ele-
ments’ variance explanation ratios
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two subsets: a calibration set X
cali

 = {x
n
}

n∈ 250
 and a test

set X
test

 = {x
n
}

n=251, …, 300
. Multivariate models based on

both PCA and FA are calibrated from the observed part
in X

cali
, i.e. {xo

n
}

n∈ 250
. Using the developed models, the

missing values in the n-th calibration sample xm
n
 by

xo
n
 are estimated and the target values in the n-th test

sample xt
n
 by xi

n
, are predicted.

Figure 3 shows the variance explanation ratios
with an increased factor number and each sensor’s vari-
ance explanation ratio. The appropriate number of fac-
tors is found to be four by plotting averaged variance
explanation ratios as increasing the factor number from
1 to 8 in Figure 3(a). Under the four factor model struc-
ture, Figure 3(b) depicts each sensor’s variance expla-
nation ratios and 78% variances of individual elements
are explained by the FA model. Notice that the ratios
are arranged by r

2
 > r

3
 … > r

4
 > r

8
; however, the order

of the ratios does not depend on the variances of the
variables but on the correlations between measurements
and factors.

Prediction results for {xm
n
}

n∈ 250
 and {xt

n
}

n=251, …, 300

using the PCA and the FA models are presented in Fig-
ure 4. Here, the means and the variances of the pre-
diction errors estimated by PCA and FA for the miss-
ing values are shown in hollow bars and in gray bars,
respectively. The mean and the variance of the p-th
variable are shown as m

p
 and v

p
, respectively. These

were calculated by (a) m
p
 = N

pm
–1·∑

n∈ Npm
(x

p
m

n
 – x

p
m

n
),

and (b) v
p
 = (N

pm
 – 1)–1·∑

n∈ Npm
[(x

p
m

n
 – x

p
m

n
) – m

p
]2,

where N
pm

 represents the number of missing elements
in the p-th variable, and under bar denotes the esti-
mate. Among all the variables, two extreme cases which
are (c) minimal variance variable, x

5
, and (d) maximal

variance variable, x
9
, are chosen for the detailed com-

parison. In order to simplify the comparison, ± abso-
lute values are plotted in both (c) and (d), e.g. e

PCA
 =

abs(xm – xm
PCA

) with a triangle symbol, e
FA

 = –abs(xm –
xm

FA
) with a circle mark. As shown in the figure, The

FA model gives better results for both biases and
variances of the prediction errors than the PCA one.
The results are straightforward because FA is devised
to consider the probability density information of all
the variables and its measuring unit is the Mahalanobis
distance, while PCA is governed by Euclidian distance
measure.

There are a calibrated multivariate model of the
process and an incomplete new sample which is gen-
erated from the concerned process. Then there are two
important questions which should be answered to moni-
tor the process status when analyzing a new sample:
the first question is whether the developed model is
still valid to the sample or not, and the second ques-
tion is if the model is proper to the sample, how we
can decide the process condition from the sample, i.e.,

Fig. 4 Comparisons of the prediction performance between the PCA based method and the FA based method. (a) Means of
prediction errors of missing values by PCA and FA, (b) variances of prediction errors by PCA and FA, (c) minimal
variance variable, x

5
, and (d) maximal variance variable, x

9
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in-control or out-of-control. If there were no missing
value in the tested sample, Q and T 2 tests of the PCA
model might be the answers to these questions. When
the sample has any missing elements, these questions
should be answered only by the available part in the
sample, i.e. xi

n
.

When only partial information of the sample is
given, Figure 5 can be the answers for the first ques-
tion and the second question, respectively. Figure 5
shows multivariate control charts of the FA model. Fig-
ure 5(a) shows the model error test of the tested sam-
ples using Mahalanobis squared norms of input error
scores (MSNE), and Figure 5(b) shows in-control test
using Mahalanobis squared norms of extracted factor
scores. Chi-square upper control limits with solid lines
were calculated regarding the 0.05% level of signifi-
cance in both the charts, that is, 95% upper control
limits. Notice that the 95% upper control limits in Fig-
ure 5(a) are varied according to the number of avail-
able measurements in the sample. However, the limit
to check the in-control in Figure 5(b) is invariant to all
the samples because of dim(z

j
) = 4 ∀ j. As shown in

Figure 5(a), both the available parts in calibration sam-

Fig. 5 Multivariate control charts of the FA model,
(a) model error test, (b) process’ in-control test

ples, {xo
n
}

n=1,…,250
, and test samples, {xi

n
}

n=251,…,300
, in-

dicate that all samples are harmonized with the devel-
oped FA model with the 0.05% level of significance.
Extracted factor scores from the FA model are enough
to decide the current process condition. If there were
some violations in the figure, we can also test which
elements in the available part, xo

n
 or xi

n
, are responsi-

ble for these violations using Eq. (48). Therefore, the
following general decision can come out that there is
an out-of-control sample by Figure 5(b) and the pro-
priety of the decision is confirmed by Figure 5(a).

Conclusions

A new calibration method of the FA model from
an incomplete calibration set and a prediction method
for the missing values in the calibration set and a newly
measured sample are proposed. The proposed method
gives better estimation results for the missing values
than the well-known PCA based method. The results
come from an underlying fundamental difference in
each method. While PCA seeks to find a least-square
sense optimal solution and a Euclidian distance is used
as the measuring unit of similarities among data, FA
aims to get a maximum likelihood optimal solution and
the Mahalanobis distance is to be the unit. On the other
hand, when they are applied to auto-scaled data, the
PCA based method results similar to the FA based
method since the Euclidian distance is converted to the
Mahalanobis distance. However, the scaling is often
impossible when the data has some missing values.

The probabilistic model such as FA is more suit-
able than the other projection models when a statisti-
cal decision should be made. All kinds of statistical
decisions are based on statistics; more generally, it is
the matter of the probability densities of variables
within the model. But the model building and the de-
cision making are completely separated in the projec-
tion model, e.g. PCA based process monitoring. In the
probabilistic modeling approach, building the model
and making the decision are done in one fold. Another
good merit, which was not discussed in this article, of
the probabilistic approaches is that it can be extended
to mixture modeling, e.g. a mixture of Gaussians (Duda
et al., 2001), a mixture of factor analyzers (Ghahramani
and Hinton, 1996), a mixture of probabilistic PCA (Tip-
ping and Bishop, 1997), etc. In fact, there is no guar-
antee of assuming that all probabilistic density func-
tions of the FA model would be Gaussians. But there
is a good approximation technique of non-Gaussian
density through the summations of several Gaussian
densities, so called a mixture of Gaussian modeling
(MOG). For a nonlinear function, there are two types
of modeling techniques: (1) to model it by appropriate
nonlinear function directly, or (2) to develop several
local linear models for a nonlinear function, then ap-
proximate the original to the linear combinations of
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the local models. Future work on the both topics, called
a generic nonlinear modeling and a mixture modeling
of FA, will be carried out.
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Appendix A: FA Model Calibration from Incomplete Data Set
FA model calibration from an incomplete data set is trained

by the EM algorithm.
Set initial Θ then

E-step: Q(Θ|Θ
t
) = E[L(D: Θ)|Xo: Θ

t
] (A1)

M-step: Θ
t+1

 = arg
Q
 max: Q(Θ|Θ

t
) (A2)

Until Θ converges, iterate the E-step and the M-step:
The idea is realized as follows:

Set initial Θ = {A, µµµµµ, ΛΛΛΛΛ} and let A′  = [A, µµµµµ].

Until Θ converge, iterate the followings:
For n =1, 2, …, N,

if dim(xo
n
) ≤ dim(z), then ΣΣΣΣΣoo

n
–1 = (Ao

n
·Ao

n
T + ΛΛΛΛΛo

n
)–1

if dim(xo
n
) > dim(z),

then ΣΣΣΣΣoo
n

–1 = ΛΛΛΛΛo
n

–1 – ΛΛΛΛΛo
n

–1·Ao
n
·(I + Ao

n
T·ΛΛΛΛΛo

n
–1·Ao

n
)–1·Ao

n
T·ΛΛΛΛΛo

n
–1

β
n
 = Ao

n
T·ΣΣΣΣΣoo

n
–1 (A3)

z
n
 = β

n
·(xo

n
 – µµµµµo

n
): ΣΣΣΣΣz|o

n
 = I – β

n
·Ao

n
: zz

n
 = ΣΣΣΣΣz|o

n
 + z

n
·z

n
T (A4)

z′
n
 = [z

n
; 1]: zz′

n
 = [zz

n
, z

n
; z

n
T, 1] (A5)

xm
n
 = Am

n
·z

n
 + µµµµµm

n
: ΣΣΣΣΣm|z

n
 = ΛΛΛΛΛm

n
: xxm

n
 = ΣΣΣΣΣm|z

n
 + xm

n
·xm

n
T (A6)

x
n
 = [xo

n
; xm

n
]: xx

n
 = [xo

n
·xo

n
T, xo

n
·xm

n
T; xm

n
·xo

n
T, xxm

n
] (A7)

End for

A′  = (∑
n∈ N

x
n
·z′

n
T)·(∑

n∈ N
zz′

n
)–1 (A8)

ΛΛΛΛΛ = N–1·diag ∑
n∈ N

(xx
n
 – A′z′

n
·x

n
T) (A9)

A = A′
[:, 1:L]

: µµµµµ = A′
[:, L+1]

(A10)

End until

Final ΘΘΘΘΘ = {A, µµµµµ, ΛΛΛΛΛ} (A11)

Appendix B: Proof of Eq. (15) Using a Matrix Inversion Lemma
For any invertible U, in this case U = I,

I = [ΛΛΛΛΛ–1 – ΛΛΛΛΛ–1·A·(U–1 + AT·ΛΛΛΛΛ–1·A)–1·AT·ΛΛΛΛΛ–1]·[ΛΛΛΛΛ + A·U·AT]
= I + Λ Λ Λ Λ Λ–1·A·U·AT – Λ Λ Λ Λ Λ–1·A·(U–1 + AT·ΛΛΛΛΛ–1·A)–1·AT

– Λ Λ Λ Λ Λ–1·A·(U–1 + AT·ΛΛΛΛΛ–1·A)–1·AT·ΛΛΛΛΛ–1·A·U·AT

= I + ΛΛΛΛΛ–1·A·[U·AT –     (U–1 + AT·ΛΛΛΛΛ–1·A)–1·AT

– (U–1 + AT·ΛΛΛΛΛ–1·A)–1·AT·ΛΛΛΛΛ–1·A·U·AT]
= I + ΛΛΛΛΛ–1·A·[U·AT –     (U–1 + AT·ΛΛΛΛΛ–1·A)–1·U–1·U·AT

– (U–1 + AT·ΛΛΛΛΛ–1·A)–1·AT·ΛΛΛΛΛ–1·A·U·AT]
= I + ΛΛΛΛΛ–1·A·[I – (U–1 + AT·ΛΛΛΛΛ–1·A)–1·(U–1 + AT·ΛΛΛΛΛ–1·A)]·U·AT

= I + 0
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