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Theoretical Analysis of Bubble Formation in a Co-Flowing Liquid
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A realistic non-spherical model for bubble formation in a co-flowing liquid is presented. In the model,
an interfacial element approach is applied to describe the dynamics of bubble formation. The effect of
flowing liquid velocity is modeled by a combination of the bubble axis translation and liquid pressure
analysis of each interfacial element. The bubble shapes during formation are predicted reasonably well
by the present model. The effects of liquid velocity, gas flow rate, nozzle radius and gas chamber volume
on the bubble growth rates are studied. The model predictions are compared with the experimental data
in literature and show good agreement.

Introduction

In many practical chemical processes, continuous
operation is more frequently used than batch and semi-
batch operations, in which not only gases but also liq-
uids are continuously fed into a column. Therefore,
bubble formation in flowing liquids is of wide interest
in engineering applications.

Bubble formation in co-flowing or counter-flow-
ing liquids under constant gas flow conditions has been
investigated both experimentally and theoretically
(Chuang and Goldschmidt, 1970; Sada et al., 1978;
Takahashi et al., 1980; Räbiger and Vogelpohl, 1982;
Fawkner et al., 1990; Oguz and Prosperetti, 1993).
Several spherical, pseudo-spherical and non-spherical
models have been reported for bubble formation in
flowing liquids. All the investigations reported that the
bubble volume decreased with an increase of
superficial liquid velocity.
One-stage spherical models      Chuang and
Goldschmidt (1970) were the first to propose a one-
stage model for bubble formation at a nozzle sub-
merged in co-flowing liquid. Their model was based
on the force balance at bubble detachment. The bub-
ble volumes were obtained from the force balance equa-
tion or its dimensionless form. Sada et al. (1978) ob-
served bubble formation at a single nozzle in water
flowing parallel to the nozzle. The gas flow rate and
superficial liquid velocity ranged from 0.33 × 10–6

m3/s to 36.2 × 10–6 m3/s and from 0 m/s to 1.549 m/s,
respectively. It was assumed that the total force acting
on the bubble at the nozzle is the sum of the buoyancy
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force and the drag force. By using a modified Froude
number, they obtained the dimensionless correlation
of bubble size in the single bubbling regimes. Fawkner
et al. (1990) developed a theory to explain the varia-
tion in bubble sizes obtained when a flowing liquid
was pulsed into a column into which a constant flow
of air was sparged through a vertical nozzle at its base.
This one-stage model was based on that developed by
Davidson and Schüler (1960) for bubble formation in
a quiescent liquid. The bubble was assumed to be
spherical at all times during its formation. The upward
motion of the bubble was accounted for by superim-
posing the liquid motion on that obtained from a bal-
ance between the upward force due to buoyancy and
the drag force due to inertia. Bubble detachment was
assumed to take place when the distance between the
bubble base and the nozzle center was equal to the
nozzle radius. The results predicted by the model
agreed well with their experimental data.
Two-stage spherical models          Takahashi et al.
(1980) observed the bubble formed in co-current, coun-
ter-current, and crosscurrent flowing liquids under a
constant flow conditions. To estimate the bubble vol-
ume, a two-stage spherical model based on the model
of Takahashi and Miyahara (1976) in quiescent liquid
was proposed, involving an empirically formulated
correlation factor. Newton’s second law of motion ap-
plied both at the end of the first stage and the second
stage were given to determine the bubble volume.
Räbiger and Vogelpohl (1982) conducted experimental
and theoretical studies on bubble formation in flowing
Newtonian liquids. A two-stage model based on
Ramakrishnan et al. (1969) in a quiescent liquid was
developed to calculate the bubble volume. The corre-
lations obtained from the model showed a good agree-
ment for the maximum bubble pressure and the detach-
ment of bubbles.
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Pseudo-spherical model   Terasaka et al. (1999) ex-
perimentally investigated the effects of liquid veloc-
ity, nozzle diameter, gas chamber volume and gas flow
rate on volumes, shapes and growth rates of bubbles
formed at a nozzle submerged in a co-current upward
flowing liquid. A modified pseudo-spherical model,
based on that of Terasaka and Tsuge (1990) for bubble
formation in a quiescent liquid, was proposed. Al-
though the bubble volumes, bubble growth rates and
shapes were well predicted by the model, this model
still contained the same inadequacies present in the
original model of Terasaka and Tsuge (1990), that is,
the equations of motion for expansion and translation
of an equivalent spherical bubble were utilized for a
model of bubble formation.
Non-spherical models          Oguz and Prosperetti (1993)
employed a boundary integral method to predict the
bubble shapes and volumes in a flowing inviscid liq-
uid under constant pressure in a gas chamber connected
to a nozzle. The pressure in the bubble was taken to be
spatially uniform, while the liquid pressure at the bub-
ble interface was not required to be uniform and the
bubble was not assumed to grow spherically. The ef-
fects of nozzle length, gas flow rate and liquid flow-
ing velocity on the behavior of growing bubble were
well predicted by the model. This model is limited to
constant pressure bubbling conditions and low gas flow
rates.

In this study, a realistic non-spherical model for
bubble formation, which is based on interfacial ele-
ment approach, is developed to predict the bubble
shapes, growth rates and bubble volume and time at
detachment. Model predictions are compared with the
experimental results of Terasaka et al. (1999).

1. Model Development

Non-spherical models of bubble formation have
been successful in predicting bubble formation in a
quiescent liquid. In particular, the interfacial element
approach employed by Marmur and Rubin (1976) and
Tan and Harris (1986) has yielded good agreement with
experimental results for bubble growth rate, detach-
ment time, bubble volume at detachment and chamber
pressure fluctuations. The interfacial element method
was also successful in modeling of bubble formation
with liquid cross-flow (Tan et al., 2000).

Our present theoretical model for bubble forma-
tion in a co-flowing liquid will be based on this modi-
fied interfacial element approach. Thermodynamic
expressions relating the chamber and bubble pressures
and the instantaneous bubble volume are solved to pro-
vide the orifice gas flow rate. The effect of a parallel
flowing liquid is taken into account by combination of
bubble axis translation and pressure analysis of the
surrounding liquid.

1.1 Physical system and basic assumptions
The bubbling system under consideration consists

a gas that is fed into a chamber with volume V
c
, at a

constant flow rate Q and pressure P
o
. Gas flows through

the single nozzle R
o
 into the bubble at a flow rate q.

This flow is assumed to be controlled by the pressure
in the chamber and that in the bubble, P

c
 and P

b
, which

are both assumed to be uniform within their volumes.
A liquid flows upward at a velocity U

l
 parallel to the

nozzle axis. The following basic assumptions are made:
(a) The bubble remains symmetrical about its

vertical axis during the growth and is a volume of revo-
lution around its vertical axis.

(b) The influence of gas and liquid viscosities at
the interface is negligible.

(c) The growth of the bubble is unaffected by the
presence of other bubbles.

(d) The gas is ideal and the flow is adiabatic.
(e) The upward flowing liquid is isothermal, uni-

form, inviscid and irrotational.
(f) There is no energy exchange or mass trans-

fer across the gas-liquid interface.
1.2 Equations of motion
1.2.1 Interfacial element representation of the bubble
interface          The interfacial element approach di-
vides the bubble interface into a number of small ele-
ments. Because of assumption (a), the three-dimen-
sional bubble can be simply analyzed in a two-dimen-
sional way: with virtual axial direction z* and virtual
radial direction r* in the r*– z* plane, which is a virtual
space and does not take the co-flowing liquid velocity
into account, and only one side of the bubble needs to
be considered.

Figure 1(a) shows the axisymmetric bubble sur-
face represented by a single curve in the r*– z* plane,
which consists of a number of small elements. The
center of each element is represented by a black circle
on the curve. For a specific element i, the end points
of the element are the midpoints between point i and
each of its two nearest neighbors on both sides.

Equations of motion are developed from force
balances carried on each element. The equations are
written in finite-difference form and solved numeri-
cally to obtain the instantaneous coordinates of all el-
ements. The position of the bubble surface at each in-
stant during its growth can be determined by the in-
stantaneous position of each element.
1.2.2 Basic equations            Figure 1(b) shows a three-
dimensional differential element of this interface and
the forces acting on it. The surface force is due to pres-
sure difference between the gas in the bubble and the
liquid, and the line forces are due to surface tension.
For a static interface, these forces are in equilibrium.
However, in dynamic bubble formation, the resultant
of these forces is equal to the rate of change in the
liquid momentum. Figure 1(b) shows also an initial dif-
ferential interface element dA

0
, which grows to dA af-
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ter time t, and the volume of liquid displaced by the
differential element during this time period. To avoid
the extremely complicated solution of the Navier-
Stokes equations for the motion of liquid, liquid mo-
mentum can be calculated using the inertial mass and
the velocity of the interface element:

˜ ˜F
d

dt
U mi i i= ( ) ( )1

where mi  is the added mass of liquid accelerated by
the motion of the interface element at a velocity Ũi ,
and

m Vi i= +( ) ( )αρ ρl b 2

where α  is the theoretical added mass coefficient
[= 0.6875], ρ

b
, ρ

l
 are the density of bubble and sur-

rounding liquid, respectively. V
i
 is the volume of liquid

displaced by the element since the beginning of its
movement.

Resolving Eq. (1) to give coordinates of specified
differential interface element in space as a function of
time, considering unit angle of revolution, κ  about the
bubble axis, we obtain a set of differential equations
of motion in cylindrical coordinates:

r Pdr d r
d

dt
U mi i i i i z i

* * * sin *∆ − ( ) = ( ) ( )σ β 3

r Pdz d r
dz

d

dt
U m

i i i i i
i

i

r i

* * * cos
*

sin

*

∆ − ( ) −









= ( ) ( )

σ β
β

4

where r*, z* are virtual radial coordinate from the axis
of the bubble and axial coordinate from nozzle hori-
zontal level respectively, as shown in Fig. 1(a), ∆P

i
 is

the pressure difference between bubble pressure P
b
 and

the liquid pressure P
l
 at each interface element. β is an

angle defined by:

β = ∂
∂

( )−tan
*

*
1 5

z

r

To account for a parallel flowing liquid with upward
velocity U

l
, the apparent vertical translation of each

interface element, dz*/dt, is defined relative to the uni-
form liquid velocity U

l
. The relationship between the

virtual coordinates r*, z* and the fixed cylindrical co-
ordinates r, z yields (Terasaka et al., 1999):

dz

dt

dz

dt
U

* = − ( )l 6

and

dr

dt

dr

dt

* = ( )7

1.3 Thermodynamics of the system
The equations of motion are based on a differen-

tial force balance at the gas-liquid interface. This force
balance involves the pressure difference between the
gas within the bubble and the liquid. Hence, calcula-
tion of the instantaneous pressure within the bubble
and the pressure distribution around the surrounding
liquid are required.

The pressure within the bubble is determined by
its thermodynamic relation to the pressure in the gas
chamber and the flow rate through the nozzle. Accord-
ing to the basic assumptions made on the physical sys-

Fig. 1 (a) Two-dimensional interfacial element representation of bubble surface: (b) Forces acting on an interfacial element,
in cylindrical coordinate
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tem, the thermodynamic equations describing the bub-
bling system are derived as bellow.

A mass balance on the chamber yields

V
d

dt
Q qc

c
a c

ρ ρ ρ= − ( )8

where ρ
a
 and ρ

c
 are the gas densities at supply and

chamber conditions, respectively.
Similarly, applying mass balance to the gas within

the bubble,

d V

dt
q

ρ ρb b
c= ( )9

or the molar change of gas within the bubble can be
expressed as

dn dn dn dn= − = ( )in out outand, 0 10

Applying open system energy balance (or the first
law of thermodynamics for an open system) to the gas
with the bubble, the internal energy change of gas
within the bubble, dE

b
, can be expressed in terms of

the heat interaction across the gas-liquid interface, dΘ,
work interaction across gas-liquid interface, dW, and
energy balance due to a non steady flow (the last four
terms in the right-hand side of Eq. (11)),

dE d dW

h dn dE h dn dEk

b

in in in out out in,out

= +

+ +( ) − +( )[ ] ( )
Θ

, 11

Here

dE nde e dn n de e dnb v v in v v in= + = + ( )12

and e
v
 is molar internal energy of gas within a bubble.

As we assume that there is no heat transfer across
the gas-liquid interface,

dΘ = ( )0 13

dW P dV= − ( )b b 14

The contribution of the kinetic energy of gas
through the orifice is taken into account in the equa-
tion. This change in kinetic energy is assumed to arise
from the trapping of the upward flowing gas by the
bubble envelope, and may affect the bubble pressure
significantly due to the small bubble volume. This
change of the kinetic energy may be expressed as:

dE
q

a
qdtk,in

b

o

=






( )ρ
2

15
2

dEk,out = ( )0 16

where a
o
 is the cross-sectional area of the orifice.

Substituting Eqs. (12)–(16) into Eq. (11), it fol-
lows that

n C dT P dV R Tdn
q

a
qdtin v b g in

v

o

+ = +






( )ρ
2

17
2

where C
v
 is constant-volume heat capacities.

Rewriting Eq. (17) together with an ideal gas law
equation

P V nR Tb b g= ( )18

The pressure change of the gas within the bubble
is obtained

dP

dt V
q

q

a
P

dV

dt
b

b
c

c

o
b

b= + −( ) −








 ( )1

1
2

19
3

2γρ γ ρ γ

where γ is adiabatic gas exponent.
A similar derivation of pressure change within the

chamber was obtained

dP

dt V
P Q P qc

c
a c= −( ) ( )γ

20

In this case, the kinetic energy change between
inflow and outflow is taken to be negligible. This can
be justified by the fact that the effect of gas kinetic
energy on chamber pressure is small when the cham-
ber is large. If the chamber volume is small, the gas
flow rates into the chamber and out through the orifice
are approximately the same. Hence, the net change of
gas kinetic energy is close to zero.

The pressure drop through a nozzle can be de-
scribed as follows (Terasaka, et al., 1999)

P P k q k qc b− = + ( )1 2
2 21

where k
1
 and k

2
 are experimentally obtained.

Equations (8), (9), (19), (20) and (21) make up a
set of simultaneous differential equations and can be
solved to obtain P

b
, P

c
, ρ

b
, ρ

c
, and q via an explicit

finite time-difference method.
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1.4 Calculation of liquid pressure
The effect of the parallel liquid flow (velocity U

l
)

is estimated via the liquid pressure distribution at the
bubble interface as shown in Fig. 2. The centroid, C,
of the bubble envelope is located by the expression:

z
z dS

S

i i

n

c = ( )∫1 22

For each time step, the angle θ
i
 for each interface ele-

ment i is defined as shown in Fig. 2(a). Figure 2(b)
shows the values of the pressure coefficient C

p
 for a

steady flow around a fluid sphere (Hamielec et al.,
1967). The authors provided the steady state solutions
of the Navier-Stokes equations for flows around cir-
culating fluid spheres by using finite-difference meth-
ods. Their results showed that the potential flow solu-
tion provided a good approximation at the front part
of a bubble (Clift et al., 1978). The dashed line is the
analytical solution for an ideal potential flow, while
the solid line was used in the present model as a close
approximation to Hamielec et al., (1967) solution. In
the present model, C

p
 is estimated as follows:

C i ip a= − ≤ ≤ ° ( )1
9

4
0 138 2 232sin , .θ θ

C ip b= > ° ( )0 138 2 23, .θ

Thus, liquid pressure distribution on the surface of a
bubble can be calculated:

ϕ ϕ ρl o l l p= + ( )1

2
242U C

where ϕ
l
 and ϕ

o
 are non-gravitational pressures with

reference to the orifice,

ϕ ρl l l= + ( )P gz 25

ϕ o o= ( )P 26

Therefore, liquid pressure distribution can be computed
by:

P P U C gzl o l l p l= + − ( )1

2
272ρ ρ

where P
o
 is absolute liquid pressure at the orifice,

P P gh Uo s l l l= + − ( )ρ ρ1

2
282

and P
s
 is system pressure above the bulk liquid.

2. Numerical Solution

2.1 Initial and boundary conditions
The bubble is initially assumed to be a hemisphere

of radius equal to the nozzle radius, and its interface is
represented by N equally spaced points. Each point
represents a mid-point of an interfacial element.

The initial pressures in the bubble and chamber
are both assumed to be the sum of hydrostatic pressure

Fig. 2 Analysis of liquid pressure distribution: (a) geometry for estimation of liquid pressure distribution, (b) distribution
of dimensionless modified pressure: (---) potential flow for spheres and (—) approximation for fluid spheres
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at the nozzle and the excess pressure due to surface
tension

P t P t P
Roc b( ) ( )= = = = + ( )0 0
2

29
0

σ

Hence, the orifice flow rate is assumed to be zero ini-
tially,

q t( )= = ( )0 0 30

2.2 Computational procedure
After initialization and time increment, the new

coordinates of each element are computed by solving
differential equations of motion via an explicit finite
time-difference method (Refer to Appendix). The new
bubble volume at time t is then obtained by a numeri-
cal integration of the new coordinates of each element,
and used to evaluate the new chamber and bubble pres-
sures. The pressure of surrounding liquid is evaluated
by Eq. (27). When the radial distance between an ele-
ment on the neck and the bubble vertical axis is re-
duced to zero, bubble detaches.

The bubble interface is divided initially by 50
points, which is sufficient to adequately represent the
bubble shape. Since growth is non-spherical, some

points on the bubble surface may tend to bunch together
while others tend to move further apart during the
course of the computation. Non-uniform point spac-
ing is undesirable since excessively large spacing be-
tween elements results in an inaccurate representation
of the bubble surface while bunching of element points
unnecessary increases computation time. This problem
is overcome by the introduction of a simple subrou-
tine which inserts additional points when the spacing
between elements become too large, and deletes points
if point spacing falls within a specified range.

3. Results and Discussion

In this section, the model predictions of single
bubble formation in co-flowing liquid are compared
with the experimental observations by Terasaka et al.
(1999). The following equipment variables are input
to the model: orifice radius, gas chamber volume. The
system variables are: gas-liquid interfacial surface ten-
sion, density of liquid, density of gas, and the adiabatic
constant for the gas. The operating variables are: sys-
tem pressure, gas flow rate, co-flowing liquid veloc-
ity, and liquid height above the nozzle. The experimen-
tal measured parameters k

1
 and k

2
 for different nozzles

are obtained from Terasaka et al. (1999).

Fig. 3 Effect of co-flowing liquid velocity on the bubble shapes during formation for experimental conditions: N
2
/Water,

Q = 5.11 × 10–6 m3/s, R
0
 = 0.595 × 10–3 m, V

c
 = 49.7 × 10–6 m3, U

l
 = 8.67 × 10–2, 13.0 × 10–2, 16.5 × 10–2 m/s,

respectively (from left to right). Experimental photographs are from Terasaka et al. (1999)
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3.1 Bubble shapes during formation
Figure 3 shows the effect of co-flowing liquid

velocity on the bubble shapes during formation and
detachment time. The conditions for these runs are
based on the following conditions: System = N

2
/Wa-

ter, System pressure = atmospheric, Q = 5.11 × 10–6

m3/s, R
0
 = 0.595 × 10–3 m, V

c
 = 49.7 × 10–6 m3, and U

l
 =

8.67 × 10–2 m/s, 13.0 × 10–2 m/s and 16.5 × 10–2 m/s,
respectively, corresponding to an experimental study
by Terasaka et al. (1999). The bubble shapes at any
liquid flow velocity within the range of our study are
not considerably different, and the detachment time for
bubble growth decreases with an increase of co-flowing
liquid velocity, which agrees very well with the ex-
perimental observations.

In Fig. 3, the time interval between two consecu-
tive contours is 4 ms, and the final shape shows neck
closure and hence detachment. These sequences clearly
show that the bubbles are approximately spherical only
in the early stages of formation, eventually becoming
noticeably non-spherical and detaching naturally when
the neck closes. The computed bubble shapes by the
present model agree approximately with the shapes
photographed by a high-speed video camera by
Terasaka et al. (1999).

For large gas flow rates, gas flow velocity into a
bubble increases, and the frequency of bubble genera-
tion also increases. A significant pressure wake is
caused by the previous rising bubble, so that the bub-
ble shapes may become slightly elongated along the
axis. In our present model, the effect of the presence

of others bubbles is not taken into account. Hence the
computed bubble shapes appear to be more rounded
and less sharpened at the top. However, the general
agreement on both shape and size is reasonable.
3.2 Bubble growth rates

Figure 4 shows the bubble volume computed at
various times during the formation period. The condi-
tions for this run are corresponding to Fig. 3 with U

l
 =

8.67 × 10–2 m/s, and a comparison is made with bubble
volume experimentally obtained by Terasaka et al.
(1999). The figure indicates that the results computed
by the present model correlate well with the experi-
mental data.
3.2.1 Effect of liquid velocity          Figure 5 shows the
bubble growth rates for several values of co-flowing
liquid velocity. The conditions for these runs are cor-
responding to Fig. 3. The symbols represent the bub-
ble volume and time at detachment for different liquid
flow velocities. Clearly, the instantaneous bubble
growth rate is virtually unaffected by the co-flowing
liquid velocity. The main effect of liquid flow velocity
is to affect the detachment time, and thereby the bub-
ble volume at detachment. With increasing liquid flow
velocity, the bubble is predicted to detach earlier and
the bubble volume at detachment is consequently
smaller. These results agree with the experimental ob-
servations and trends reported by Terasaka et al. (1999).
3.2.2 Effect of gas flow rate      Figure 6 shows the
effect of gas flow rate on bubble growth rates for the
conditions: System = N

2
/Water, System pressure = at-

mospheric, R
0
 = 0.595 × 10–3 m, V

c
 = 49.7 × 10–6 m3,

U
l
 = 13.0 × 10–2 m/s, corresponding to the experimen-

tal run in Terasaka et al. (1999). The bubble has a longer

Fig. 4 Bubble growth rates in co-flowing liquid for bub-
ble formation at conditions: N

2
/Water, Q = 5.11 ×

10–6 m3/s, R
0
 = 0.595 × 10–3 m, V

c
 = 49.7 × 10–6 m3,

U
l
 = 8.67 × 10–2. Experimental data from Terasaka

et al. (1999)

Fig. 5 Effect of co-flowing liquid velocity on the bubble
growth rates. Experimental data from Terasaka et
al. (1999)
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growth time and the final bubble volume is smaller
when the injected gas flow rate is lower as expected
empirically. This trend is also observed experimentally
for single bubble formation in a quiescent liquid. It
can be noted again that the model predictions match
the experimental data rather well.
3.2.3 Effect of nozzle radius      Figure 7 shows the
effect of nozzle radius on bubble growth rates for the
conditions: System = N

2
/Water, System pressure = at-

mospheric, Q = 0.15 × 10–6 m3/s, V
c
 = 49.7 × 10–6 m3,

U
l
 = 13.0 × 10–2 m/s, corresponding to the experimen-

tal run in Terasaka et al. (1999). When the nozzle ra-
dius is larger, the rate of the increase of bubble volume
is slower. An increase in nozzle radius causes the re-
duction of a pressure drop through the nozzle, which
means the driving force for bubble formation is
reduced. Therefore, bubble growth rate is slower in the
case of larger nozzle radius.
3.2.4 Effect of gas chamber volume        The effect of
gas chamber volume on bubble growth rate is shown
in Fig. 8 for experimental conditions: System = N

2
/

Water, System pressure = atmospheric, Q =5.11 × 10–6

m3/s, R
0
 = 0.595 × 10–3 m, U

l
 = 8.67 × 10–2 m/s, corre-

sponding to experimental run in Terasaka et al. (1999).
The bubble begins to expand earlier in the case of

smaller gas chamber volume. While, the final bubble
volumes at detachment are almost same in this condi-
tions.
3.3 Variation of bubble volume with liquid flow

velocity and gas flow rate
Figure 9 shows the variation of bubble departure

radius with co-flowing velocity for the conditions:
System = N

2
/Water, System pressure = atmospheric,

R
0
 = 0.595 × 10–3 m, V

c
 = 49.7 × 10–6 m3, Q = 0.138 ×

10–6, 1.28 × 10–6, 5.11 × 10–6 m3/s. Simulated results
are compared with the experimental data available
(Terasaka et al., 1999) for the influence of co-flowing
liquid velocity on bubble volumes at the three values
of gas flow rate. For all gas flow rates studied, bubble
volume at detachment decreases with the increase of
liquid flow velocity. It can be seen that the model pre-
dictions follow the experimental trends rather well.

Fig. 6 Effect of gas flow rate on bubble growth rate in co-
flowing liquid. Exoerimental data from Terasaka et
al. (1999)

Fig. 7 Effect of nozzle radius on bubble growth rate in
co-flowing liquid. Experimental data from Terasaka
et al. (1999)

Fig. 8 Effect of gas chamber volume on bubble growth
rate in co-flowing liquid. Experimental data from
Terasaka et al. (1999)
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The variation of bubble volume at detachment with
gas flow rate is shown in Fig. 10; the conditions
are :  System = N

2
/Water,  System pressure =

atmospheric, R
0
 = 0.595 × 10–3 m, V

c
 = 49.7 × 10–6 m3,

U
l
 = 0, 8.67 × 10–2, 13.0 × 10–2, 17.3 × 10–2 m/s. At a

constant liquid flow velocity, bubble volume at
detachment increases when the gas flow rate increases.
It can be noted again that our model predictions match
the experimental trends closely.

Fig. 9 Variation of bubble volume at detachment with co-
flowing liquid velocity. Experimental data from
Terasaka et al. (1999)

Conclusions

In this paper, a non-spherical model for bubble
formation in co-flowing liquid has been developed. The
basic concepts and equations of the interfacial element
method, which is applied to describe the dynamics of
bubble formation, are discussed in details. Thermody-
namics expressions of the bubbling system are solved
together with the equation of a pressure drop through
a nozzle to obtain the gas flow rate through the nozzle
and the pressure of gas within the bubble. The effect
of a parallel flowing liquid is taken into account by
pressure analysis of surrounding liquid. Model
predictions are compared with the experimental results
available in literature for different conditions of liquid
flow velocity, gas flow rate, nozzle radius and gas
chamber volume. Bubble shapes, bubble growth rates
and the variation of bubble volume with liquid flow
velocity and gas flow rate are presented. The simulated
results agree well with the experimental data of
Terasaka et al. (1999).

Appendix: Finite difference forms of equations of motion
Equations (3) and (4) involve differentiation with respect to

time t and virtual space. In order to solve these simultaneous dif-
ferential equations of motion for each element, these equations are
rewritten to be with respect to time t and fixed space, then expressed
as finite difference forms.

The relationship between the variables with respect to virtual
and fixed spaces is as follows:

U
dr

dt

dr

dt
r *
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dt
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dt
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Substituting the above expressions into Eqs. (3) and (4),
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Fig. 10 Variation of bubble volume at detachment with gas
flow rate. Experimental data from Terasaka et al.
(1999)
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Applying the differencing formula as follows:

U
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z z
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i i
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z
z zi i=
+ − ( )1

2
A.9

where the superscript ′  refers to the position at time t – ∆t, and ′′
denotes the position at time t – 2∆t. Subscript i denotes element i
on the bubble interface, starting from the top of the bubble.

Finally, converting Eqs. (A.6) and (A.7) to finite difference
form with respect to fixed space:
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Equations (A.10) and (A.11) are arranged to yield explicit expres-
sions for fixes position of element i
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where L
1
 and L

2
 are the left-hand-sides of Eqs. (A.10) and (A.11),

respectively.
Equations (A.12) and (A.13) together with Eq. (2) can be

solved to obtained three unknowns: r
i
, z

i
 and m

i
. Since m

i
 is itself

computed from r
i
 and z

i
, an iterative procedure is required.

Nomenclature
A = bubble surface shown in Fig. 1(b) [m2]
A

0
= initial bubble surface shown in Fig. 1(b) [m2]

a
0

= cross-sectional area of the orifice [m2]
C = centroid point of bubble envelope
C

p
= pressure coefficient defined in Eq. (23) and Fig.

2(b) [—]
C

v
= constant-volume heat capacities [J/(mol·K)]

E
b

= internal energy of gas within bubble [J]
e

v
= molar internal energy of gas within bubble

[J/mol]

F̃i
= total force acting on interfacial element i [N]

g = acceleration due to gravity [m/s2]
h = height of liquid above the orifice (nozzle) [m]
k

1
= factor defined by Eq. (21) [Pa·s/m3]

k
2

= factor defined by Eq. (21) [Pa·s2/m6]
mi = added mass of interfacial element i [kg]
n = molar number of gas within bubble [mol]
n

in
= molar number of gas injected into bubble [mol]

P
a

= gas pressure at inlet to chamber [Pa]
P

b
= pressure of gas within bubble [Pa]

P
c

= pressure of gas in chamber [Pa]
P

l
= pressure of surrounding liquid [Pa]

P
o

= liquid pressure at infinity [Pa]
P

s
= system pressure above the bulk liquid [Pa]

Q = gas flow rate into chamber [m3/s]
q = gas flow rate through orifice (or nozzle) [m3/s]
R

o
= orifice (or nozzle) radius [m]

R
g

= gas constant [J/(mol·K)]
r = true radial coordinate with respect to the true ver-

tical [m]
r* = virtual cylindrical radial coordinate from axis of

bubble [m]
t = bubble growth time [s]
Ũi

= velocity of interfacial element i [m/s]
U

l
= liquid co-flow or cross-flow velocity [m/s]

U
r*

= horizontal velocity of element based on virtual
coordinate [m/s]

U
 z*

= vertical velocity of element based on virtual coor-
dinate [m/s]

V
b

= bubble volume at any instant [m3]
V

c
= gas chamber volume [m3]

V
i

= volume of liquid displaced by the element i since
the beginning of its movement [m3]

W = work interaction across gas-liquid interface [J]
z = true axial coordinate with respect to orifice (noz-

zle) horizontal level [m]
z* = virtual axial coordinate from orifice (nozzle) hori-

zontal level [m]

α = added mass coefficient [—]
β = angle defined in Eq. (5)
γ = adiabatic gas constant [—]
∆P = pressure difference between the bubble pressure P

b

and the liquid pressure P
l

[Pa]
ρ

a
= gas density at supply [kg/m3]

ρ
b

= density of vapor inside bubble [kg/m3]
ρ

c
= density of vapor inside chamber [kg/m3]

ρ
l

= density of surrounding liquid [kg/m3]
σ = surface tension [N/m]
ϕ

l
= non-gravitational liquid pressure on bubble surface

[Pa]
ϕ

o
= non-gravitational liquid pressure at infinity [Pa]

Θ = heat interaction across gas-liquid interface [J]
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