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A new scheduling algorithm based on an optimal control theory is presented for large-scale industrial
problems. The main feature of this idea lies in a two-level hierarchical structure consisting of a reference
model and a rigorous model, respectively. As a fair compromise between the excess of decision detail and
long-range planning inspiration, we address simplified or relaxed models to derive optimal trajectories.
The optimal trajectory is then used as a reference trajectory to be tracked in real time by a feedback
control system to cope with uncertainty and modeling errors. We apply this idea to operation scheduling
of refinery processes that convert crude oil mix into a variety of marketable products through a number
of refining processes. The optimal control formulation is shown to enhance solution performance com-
pared with the traditional mixed-integer model.

Introduction

Numerous scheduling methodologies for chemi-
cal process industries have been developed because the
effective scheduling of operations has the potential for
high economic return (Shah, 1998). Basically most of
these methodologies are developed under assumption
that operating parameters such as processing times and
changeover times are deterministic for simplicity. How-
ever the inherent nature of the real processes is that
the parameters vary slightly with operation. Hence the
number of variables to be determined appears to be
substantially large, even for small-scale realistic proc-
esses giving rise to computationally serious problems.
The dimensionality can be quite reduced by aggrega-
tion, simplification, and approximation of scheduling
models (Bok and Park, 1998). However, such algo-
rithms cannot be a viable solution from the practition-
er’s point of view due to the fact that they do not leave
enough flexibility to react to unpredictable events. In
such context, the practitioners usually prefer schedul-
ing methods based on the application of priority rules
such as SPT (Shortest Processing Time) and EDD (Ear-
liest Due Date) in spite of their myopic nature that re-
sults in poor quality performance.

As a fair compromise between the excess of deci-
sion detail and long-range planning inspiration, litera-
ture addresses an optimal control approach represented
by a two-hierarchical structure consisting of a simpli-
fied or relaxed model to derive optimal trajectories and
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a rigorous model to keep the track of the trajectory
(Brandimarte et al., 1995; Kogan and Khmelnitsky,
1996; Nott and Lee, 1999). A remarkable advantage of
this approach is that computation is quite improved by
coping with the uncertainty in the model. In this ap-
proach, acceptable control functions have been pro-
posed that optimize the performance criteria, subject
to the dynamic system constraints including all initial
and final boundary conditions. The success of the op-
timal control approach is dependent on how close the
reference trajectory can approximate the true optimal
solution. To reduce the effect of modeling error a
closed-loop feedback control has been applied. Nott
and Lee (1999) have shown a new application area for
optimal control, a sugar milling system that is a mixed-
batch/continuous system.

The refinery industry has been a major innovator
of optimization applications. Typically, crude oil sched-
uling involves ensuring continuity of the right type of
crude oil to feed the main crude oil distillation units
according to their monthly plan. Shah (1996) has shown
the application of formal, mathematical programming
techniques of scheduling crude oil supply. Lee et al.
(1996) presented a MILP model over a uniformly
discretized time horizon for the inventory management
of refinery processes that import several types of crude
oil delivered by different vessels. However their dis-
crete representation of time horizon makes the models
computationally expensive.

In this paper, we apply an optimal control algo-
rithm to the short-term scheduling of refinery processes
ranging from crude oil unloading to distillation charge.

This paper is organized as follows. First, we in-
troduce the general optimal control theory. Next, prob-
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Fig. 1 Closed loop control system

Fig. 2 Tracking target cumulative production trajectory

lem definition and mathematical formulation of the
problem follow. And we describe the algorithm of pre-
sented the optimal control approach in detail. Then the
numerical results of three examples are shown.

1. Optimal Control Approach

In a control-theoretic approach, a dynamic model
of the manufacturing system should be developed in
advance. For a continuous time domain, the dynamic
model consists of a set of differential equations de-
scribing the time evolution of a state variable vector
x(t) with a control vector u(t):

d t

dt
t t t

x
x h x u

( ) = ( ) = ( ) ( )( ) ( )« , 1

Usually, both control and state vectors must com-
ply with appropriate constraints:

u xt t( ) ∈ ( ) ∈ ( )Ω Ψ;  2

Discrete time models arise when only time instants of
the form t = k∆ (k = 0, 1, 2, ...) are considered, where ∆
is the discretization step.

For a given control input, a corresponding state
trajectory is obtained by solving the state equations
and the relation can be explained as shown in Fig. 1.
Controlling the system requires finding a suitable con-

trol u(t) in order to obtain a satisfactory state trajec-
tory. One way to accomplish this task is to define some
performance measures (or objective function) f and
solve the following optimization problem:

min ,f t tx u( ) ( )( ) ( )3
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The solution of this optimization problem yields an
optimal control u*( t) and an optimal state trajectory
x*( t). When the state equations of model P are com-
plex, the above optimization problem becomes very
difficult to solve. A way to overcome this drawback is
to solve the optimization problem only for a simpli-
fied representation P

0
 of the system, called the relaxed

model. The state trajectory may be affected by distur-
bances d(t). For instance, an unpredictable demand rate
plays the role of a disturbance. Therefore, the applica-
tion of the optimal control u*( t) from the nominal
model P

0
 would not result in the optimal trajectory

x*( t).
In control theory, the approach to overcome these

difficulties is the adoption of closed-loop or feedback
control in Fig. 1. Instead of computing the optimal
control u*( t) and applying it to open-loop, i.e. neglect-
ing real-time information on system performance, the
optimal trajectory x*( t) is used as a reference trajec-
tory to be tracked.

In the past, optimal control has been applied to
continuous production in a hierarchical two-level split-
ting of the optimization. At the upper hierarchical level
the relaxed model of the manufacturing system is used,
yielding a continuous flow schedule; the continuous
flow schedule is an ideal production target, represented
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Fig. 3 Graphical overview of crude oil charging system

by a cumulative production trajectory. And at the lower
level, detailed schedules are computed, using accurate
models that account for all the features of the produc-
tion system, with the objective of following the tar-
gets proposed by the higher level. Figure 2 shows the
procedure of tracking a target production trajectory.
This is essentially the problem of tracking a reference
signal in a feedback control system and can be accom-
plished off-line or in real time.

2. Problem Definition

The main role of refining operation is to transfer
crude oil to a storage tank in a refinery plant, and to
convert crude oil mix into a variety of marketable prod-
ucts through a number of refining processes. The sys-
tem configuration of this scheduling problem corre-
sponds to a multistage system consisting of vessels,
storage tanks, blending tanks, and CDUs (crude distil-
lation unit) as illustrated in Fig. 3.

During a given scheduling horizon, crude vessels
arrive in the vicinity of the refinery docking station
and, if busy, wait for unloading of the preceding ves-
sel in the docking station. At the docking station, crude
oil is unloaded into storage tanks. Crude oil is then
transferred from storage tanks to blending tanks that
are buffers to produce a crude mix, of which compo-
nent compositions are determined at the planning level.
The crude oil mix in each blending tank is then charged
into a CDU.

The followings are operating rules that have to be
obeyed in this problem (Lee et al., 1996).

• If a vessel does not arrive at the wharf, it can-
not unload the crude.

• If a vessel leaves the wharf, it cannot unload
the crude oil.

• The vessel should leave the wharf after its
arrival.

• The vessel in the sea cannot arrive at the
wharf if the preceding vessel does not leave.

• While a blending tank is charging CDU, crude
cannot be fed into the blending tank and vice versa.

• CDU cannot be charged simultaneously by
different blends.

The major operating constraints are as follows:
• Equipment capacity limitations (tank capac-

ity, pumping rate).
• Quality limitations on each mixed crude oil.
• Demand of each mixed oil to be charged into

CDU.

3. Model Formulation

There are some assumptions for the model that
will be proposed in this paper:

• Changeover times on the CDU are neglected.
• There is perfect mixing in the blending tanks.
• Additional mixing time is not required be-

fore it charges CDU.
• Only specific key components in crude or

mixed oil decide the property of each oil.
• Each vessel delivers the specific oil from a

specific source of supply to an assigned storage tank.
And the proposed scheduling model is based on a

uniform discretization of time in the given scheduling
horizon.

The objective of this problem is to maximize the
operating profit from the defined refinery processes.
The total profit of the crude oil production can be ex-
pressed as the subtraction of operating cost from the
revenue of the final oil mixture.

The operating cost consists of the unloading cost
from crude vessels to storage tanks, the vessel waiting
cost in the sea due to the previously docked vessel in
the docking station, the inventory cost of storage and
blending tanks, and the changeover cost by transition
of connection between blending tanks and CDUs.

Therefore, the objective function can be expressed
as follows: (Profit) = (sales revenue) – (unloading cost
for the crude vessel) – (demurrage cost of vessels) –
(inventory cost for storage and blending tanks) –
(changeover cost in CDUs).

Maximize
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Unloading cost for the crude vessel is proportional to
the unloading duration of vessels at the docking sta-
tion and vessel waiting cost is proportional to the time
difference between the unloading start time and arrival
time. Tank inventory costs are calculated according to
the trapezoid area and changeover cost is proportional
to the number of the crude mix switch (Lee et al., 1996).

Subject to:
a. Vessel arrival and departure operation rules.

Each vessel arrives and leaves the docking sta-
tion for unloading only once.

X X vv t

t

T

v t

t

T

F L a, , , ,,  
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∑ ∑= = ∀ ( )

1 1

1 1 1

Unloading starting time and completion time can
be calculated by following equations.
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Each crude vessel should start unloading after ar-
rival time set and cannot arrive at the docking station
for unloading unless the preceding vessel leaves.

T T T T vv RR v v vF A F L a, , , ,,  ≥ ≥ ∀ ( )+1 3

Each crude vessel needs not less than the mini-
mum duration time of the vessel.

T T DURATION vv v vL F a, ,− ≥ ∀ ( )4

Unloading is possible between unloading starting
time and completion time.
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b. Material balance equations for the vessel.
Crude oil in vessel v at time t = initial crude oil in

the vessel v – crude oil transferred from vessel v to
storage tanks up to time t.
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Operating constraints are needed on crude oil
transfer rate from vessel v to storage tank i at time t.

F X F F X v iv i v t v i t v i v tVS W VS VS W

b

, , ,min , , , , , , , ,max , , ,≤ ≤ ∀

( )2

The volume of crude oil transferred from vessel v
to storage tanks during the scheduling horizon equals
to the initial crude oil volume of vessel v.
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c. Material balance equations for the storage tank.
Crude oil in storage tank i at time t = initial crude

oil in storage tank i + crude oil transferred from ves-
sels to storage tank i  up to time t – crude oil trans-
ferred from storage tank i  to blending tanks up to time
t.
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Operating constraints are needed on crude oil
transfer rate from storage tank i to blending tank j at
time t.

The term 1 – Dj l t
L
l , ,=∑ 1  denotes that if blending

tank j is charging any CDU, there is no oil transfer
from storage tank i  to blending tank j.
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Storage tank i has volume capacity at time t.

V V V i Ii i t iS S, S, c, ,min , ,max≤ ≤ ∀ ∈ ( )3

Cumulative flow amount from storage tank i to
blending tank j at time t can be formulated by the sum-
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mation of crude oil transferred from storage tank i to
blending tanks up to time t.

CF CF F i j ti j t i j t i j tSB SB SB c, , , , , , , , , , ,= + ∀ ( )−1 4

d. Material balance equations for the blending tank.
Crude oil mix in blending tank j at time t = initial

mixed oil in blending tank j + crude oil transferred from
storage tanks to blending tank j up to time t – crude oil
mix j charged into CDUs up to time t.
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Operating constraints on mixed oil transfer rate
from blending tank j to CDU l at time t.
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Blending tank j has volume capacity at time t.
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Total production amount of crude oil mix j should
be larger than the demand of crude mix j for the sched-
uling horizon.
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Cumulative flow amount from blending tank j to
CDU l at time t can be formulated by the summation
of crude oil transferred from blending tank j  to CDU l
up to time t.

CF CF F j l tj i t j l t j l tBC, BC, BC, d5, , , , , , , ,= + ∀ ( )−1

e. Material balance equations for component k in the
blending tank.

Volume of component k in blending tank j at time
t = initial component k in blending tank j + component
k in crude oil transferred from storage tanks to blend-
ing tank j up to time t – component k in crude oil mix
j  transferred to CDUs up to time t.
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Operating constraints on volumetric flow rate of
component k from storage tank i  to blending tank j
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Operating constraints on volumetric flow rate of
component k from blending tank j  to CDU l
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Volume capacity limitations for component k in
blending tank j at time t
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f. Operating rules for crude oil charging.
Blending tank j can charge at most one CDU at

any time t and CDU l can be charged at most by one
blending tank at any time t.

D D j l tj l t
l

L

j l t
j

J

, , , ,,  , ,
= =
∑ ∑≤ ≤ ∀ ( )

1 1

1 1 f1

If CDU l  is charged by crude oil mix j at time t –
1 and charged by j ′  at time t, changeover cost is in-
volved.
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4. Scheduling with Optimal Control Approach

In the optimal control approach, we often use a
simplified or relaxed model to derive an optimal tra-
jectory, which is then used as a reference trajectory to
be tracked in real time by a feedback control system.
4.1 First step: Relaxed model and reference trajec-

tory
For production scheduling problems, a suitable

relaxed model may be obtained by approximating the
discrete material flow as a continuous flow for sim-
plicity. By the operating rules, this MILP problem has
the following binary variables, such as X

F,v,t
, X

L,v,t
, and

D
j ,l ,t

. X
F,v,t

 and X
L,v,t

 are used to determine the unloading
time of crude vessels and D

j ,l,t
 is introduced to denote

the operating rule that each tank can feed at most one
CDU at one time interval and each CDU is charged by
only one mixed crude oil at one time interval. The
number of these binary variables is so large that the
corresponding MILP model becomes computationally
very expensive. So we can simplify the complex MILP
problem by relaxing the binary variables.
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We then add the bounds for D
j,l,t

 as follows:

0 1 6≤ ≤ ∀ ( )D j l tj l t, , , , ,

Therefore example 1 is relaxed to an LP model
which is relatively easy to solve. In the cases of exam-
ple 2 and 3, we need additional binary variables, X

F,v,t

and X
L,v,t

 and should solve the resulting MILP prob-
lem. The cumulative production curve from the relaxed
model and the complete model may appear different.
However, comparing with the traditional MILP formu-
lation, there is no change of the objective function. In
the relaxed model, we assume the crude oil flows be-
tween tanks are continuous flows. Assuming D

j ,l ,t
 are

continuous varables (after formulating relaxed model),
we can obtain the reference trajectory by solving the
relaxed model.
4.2 Second step: Tracking reference trajectory

After obtaining the reference trajectory from the
relaxed model, the complete scheduling problem must
be solved. This can be done in different ways. A sim-
ple approach is to use the reference trajectory in order
to define part priorities. The actual processing sched-
uling is selected in order to minimize the error between
continuous flow and real cumulative production tra-
jectories. This can be accomplished by using the sim-
ple greedy strategy adopted in the Toyota Goal Chas-
ing method (Miltenburd, 1989). The objective might
be one of the following in this method.

Minimize
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In Eq. (7), T
REF,i ,j

 is reference trajectory from unit
i to unit j and T

ACTUAL, i,j
 is the solution solved by the

optimization problem with constraints, or the tracking
trajectory. These objective functions seek to minimize
the variation (either squared deviations or absolute
deviations) of actual production from the desired pro-
duction. Miltenburd (1989) and Nott (1998) used the
cumulative production as the reference trajectory.

In the case of refinery crude oil processing, the
crude oil flow procedure is very complex due to many
storage and blending tanks and operation rules. If the
cumulative flows of the whole transport lines are used
as the reference trajectories, the complete MILP prob-
lem requires much computation time. Therefore, in-
stead of using the cumulative flow, we use the binary
variables, D

j,l,t
, X

F,v,t
 and X

L,v,t
 as the reference trajecto-

ries.
In this system, the binary variable D

j ,l ,t
 plays an

important role of the crude oil transport scheduling.

So if it is determined, whole scheduling can be ob-
tained.

Tracking the reference trajectory is accomplished
by penalizing any deviations from the reference tra-
jectories of D

REF,j ,l ,t
, X

F,REF,v,t
 and X

L,REF,v,t
. Therefore, the

new objective function consists of penalty terms of
binary variable deviations.
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(Example 1 does not have the third term, X
F,v,t

 penalty
and fourth term, X

L,v,t
 penalty.)

We can obtain the tracking results by solving the
complete MILP problem with new objective function.
The tracking solution in this step is near the reference
trajectory solution from the relaxed model. It reduces
the number of iterations of lots of branches by giving
penalties to the objective function in order to track the
reference trajectories. As the result, we can obtain the
solution with less calculation time.

In this system, we use the bigger values for
PENT

XF
 and PENT

XL
 than the value for PENT

D
. If the

penalty values for X
F,v,t

 and X
L,v,t

 are bigger than that
for D

j ,l ,t
, the crude oil unloading time is fixed close to

the reference determined by the relaxed model. After
fixing  X

F,v,t
 and X

L,v,t
, we find the optimum D

j ,l ,t
.

Fig. 4 Crude oil charging system of example 1
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vals, and initially there is 100 units of crude oil in stor-
age tank 1, 80 units in storage tank 2, and 60 units in
storage tank 3. Blending tank 1 contains crude 1 and
crude 2 in its crude mix 1. Crude mix 2 is composed of
1, 2, and 3, while blending tank 3 contains crude 2 and
3. CDU 1 is fed by blending tank 1 and 2, and CDU 2
is blending tank 2 and 3. The two key components in
crude and mixed oil should be considered. The tank
inventory unit costs are different from each other and

Fig. 5 Crude oil charging system of example 2

Table 1 System information for example 1

Fig. 6 Crude oil charging system of example 3

5. Examples

In this paper, we have three examples. The first is
for the inventory management of storage tanks and
blending tanks and the second example includes crude
unloading from crude oil vessel. In the both examples,
we assume 3 storage tanks and 3 blending tanks. Ex-
ample 3 deals with an industry size problem that has 3
crude vessels, 6 storage tanks, 4 blending tanks and 3
CDUs.

The modeling system GAMS (Brooke et al., 1992)
is used for setting up the optimization models and the
problems are solved by OSL on a SUN SPARC 10.
5.1 Example 1

Figure 4 illustrates the system for example 1. The
scheduling horizon for this problem is 10 time inter-
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turnover of crude mix is 100 units for crude mix 1, 90
units for crude mix 2, and 80 units for crude mix 3.
The minimum demand by CDUs for the given sched-
uling horizon is 100 for each crude mix. Table 1 shows
the data involved in this problem.
5.2 Example 2

Example 2 includes crude unloading from crude
oil vessels in Fig. 5. The scheduling horizon for this
problem is 15 time intervals, and three crude vessels
arrive at times 1, 5 and 9, respectively. Crude vessel 1
delivers crude 1 to storage tank 1, crude vessel 2 to
storage tank 3, and crude vessel 3 to storage tank 2.
Each crude vessel contains 60 amount of crude oil.
Unloading cost of each vessel is 8 and demurrage cost
is 5. The minimum demand by CDUs for the given
scheduling horizon is 60 for each crude mix. Table 2
shows the data involved in this problem.
5.3 Example 3

Example 3 is the oil flow network of industry size
problem in Fig. 6. This example consists of 3 crude
vessels, 6 storage tanks, 4 blending tanks, and 3 CDUs.
Three crude vessels arrive at times 1, 6 and 11, respec-
tively and vessel 1 unloads oil to storage tank 2, ves-
sel 2 to storage tank 3, vessel 3 to storage tank 4. Ta-
ble 3 gives the data of example 3.

Table 2 System information for example 2

6. Results

Table 4 compares the computational results of the
traditional MILP formulation with the optimal control
algorithm proposed in this paper. In the case of tradi-
tional MILP formulation of all examples, the problem
is solved with 1% tolerance to the optimum.

Figures 7–13 show the reference trajectories and
tracking trajectories of crude oil flows from the blend-
ing tanks to CDUs. They are the results from the track-
ing trajectory of D

j,l ,t
 obtained in the second step. In

the case of the reference trajectory, with assumption
that each crude oil transfer line is contiuous flow, the
problem is solved. So the cumulative flow increases
continuously linearly. On the other hand, the tracking
trajectories of complete MILP formulation show step
change due to the characteristics of operation rules.
The solutions obtained with optimal control approach
track well to the reference trajectories.

The solution obtained by the proposed optimal
control algorithm shows some deviation from the glo-
bal optimum (less than 1%). However, the proposed
algorithm shows excellent performance for a complex
problem that has been shown to be very difficult to
solve. In other words, while the solution can not guar-
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Table 3 System information for example 3

Table 4 Computational results

Constraints Continuous
Variables

0–1
Variables

CPU time
[s]

Iterations Optimal
Solutions

Ex. 1 Original MILP 813 442 40 923.1 78,494 32,687.8

Proposed Method 813 1 step: 482 0 5.7 590 32,525.5
2 step: 503 40 44.7 4,813

Ex. 2 Original MILP 1,352 739 96 4,653.3 274,721 26,966.8

Proposed Method 1,352 1 step: 797 36 24.3 1,278 26,782.4
2 step: 918 96 133.4 7,451

Ex. 3 Original MILP 2,397 1,133 120 6,682.7 237,463 38,079.2

Proposed Method 2,397 1 step: 1,223 30 66.5 3,247 37,646.8
2 step: 1,404 120 244.5 11,001



420 JOURNAL OF CHEMICAL ENGINEERING OF JAPAN

Fig. 7 Tracking reference trajectory from blending tank
to CDU (example 1(a), (b)). Dot line: reference tra-
jectory,  real line: tracking trajectory, dash-dot line:
original MILP trajectory

Fig. 8 Tracking reference trajectory from blending tank
to CDU (example 1(c), (d))

Fig. 9 Tracking reference trajectory from blending tank
to CDU (example 2(a), (b))

Fig. 10 Tracking reference trajectory from blending tank
to CDU (example 2(c), (d))
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antee the global optimum, the solution time is remark-
ably reduced.

Conclusion

The short-term scheduling problem arising in re-
finery processes has been addressed in this paper. A
new scheduling algorithm based on the optimal con-
trol theory is proposed. The LP-based branch and bound
method was applied to the model with two-level hier-
archical method. Three examples of large-scale refin-
ery processes are presented to show the performance
of optimal control approach. While the proposed algo-
rithm cannot always guarantee the global optimal so-
lution, it reduces computational time by an order of
magnitude as shown in the examples.
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Nomenclature
C

inv_ST,i
, C

inv_BT,j

= inventory cost of storage tank i  and inventory cost
of blending tank j  per unit time interval

C
setup,j ,j ′ ,l = changeover cost for transition from crude mix j to

j ′  in CDU l

Fig. 13 Tracking reference trajectory from blending tank
to CDU (example 3(e), (f))

Fig. 11 Tracking reference trajectory from blending tank
to CDU (example 3(a), (b))

Fig. 12 Tracking reference trajectory from blending tank
to CDU (example 3(c), (d))
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C
unload,v

, C
stay,v

= unloading cost of vessel v and sea waiting cost of
vessel v per unit time interval

CF
BC,j ,l ,t

= cumulative flow amount from blending tank j to
CDU l  at time t

CF
SB,i ,j ,t

= cumulative flow amount from storage tank i  to
blending tank j  at time t

D
j ,l ,t

= binary variable to denote if crude oil mix in blend-
ing tank j  charges CDU l  at time t

DEMAND
j

= min. demand of crude mix j  by CDU’s during the
scheduling horizon

DURATION
v
= min. unloading dutation time for vessel v

F
BC,j ,l ,min

, F
BC,j ,l ,max

= min. and max. crude oil blending rate from blend-
ing tank j  to CDU l

F
SB,i,j,t

, F
BC,j ,l,t

= volumetric flow rates of crude oil from storage tank
i to blending tank j  and from blending tank j to
CDU l  at time t

F
SB,i ,j ,min

, F
SB,i ,j ,max

= min. and max. crude oil transfer rate from storage
tank i  to blending tank j

F
VS,v,i ,min

, F
VS,v,i ,max

= min. and max. crude oil transfer rate from vessel v
to storage tank i

f
SB,i ,j,k,t

, f
BC,j,l,k,t

= volumetric flow rates of component k from stor-
age tank i to blending tank j and from blending
tank j  to CDU l  at time t

PENT
D
, PENT

XF
, PENT

XL

= penalties for deviating from the tracking curve D
j ,l ,t

,
X

F,v,t
, and X

L,v,t

PRICE
j

= turnover of crude oil from blending tank j
T

ARR,v
= crude vessel v arrival time around docking station

V
B,j ,min

, V
B,j ,max

= min. and max. mixed crude oil volume of blending
tank j

V
V,v,0

, V
S,v,0

, V
B,j ,0

= initial volumes of crude oil in crude vessel v, stor-
age tank i and blending tank j

V
V,v,0

, V
S,i ,max

= min. and max. crude oil volume of storage tank i
V

V,v,t
, V

S,v,t
, V

B,j ,t

= volumes of crude oil in crude vessel v, in storage
tank i  and blending tank j  at time t

v
B,j ,k,t

= volume of component k in blending tank j  at time t
X

F,v,t
, X

L,v,t
= binary variables to denote if vessel v starts unload-

ing and if vessel v completes unloading at time t
X

W,v,t
= 0–1 continuous variable to denote if vessel v is

unloading its crude oil at time t
Z

j,j ′ ,l ,t = 0–1 continuous variable to denote transition from
crude mix j to j ′  at time t in CDU l

ξ
S,i ,k

= concentration of component k in crude oil of stor-
age tank i

ξ
B,j,k,min

, ξ
B,j ,k,max

= min. and max. concentration of component k in
crude mix of blending tank j

ξ
B,j ,k,0

= initial concentration of component k in crude mix
of blending tank j

<Subscript>
i  = 1, ..., I = crude oil storage tank and the crude oil in it
j , j ′ = 1, ..., J

= crude oil blending tank and the crude oil mix in
the blending tank

k = 1, ..., K = key component of crude oil
l  = 1, ..., L = crude distillation unit
t = 1, ..., T = time interval
v = 1, ..., V = crude vessel
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