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Introduction

The axial dispersion model originated by Taylor”
provides a useful technique for process control and pro-
cess design in complex convective diffusion systems.
One of the authors has derived extended Taylor disper-
sion equations in systems including heterogeneity in the
radial direction by an averaging method based on the
projectionoperator technique®. Theresulthasbeen fur-
ther extended to systems involving linear reactions”.
Extended Taylor dispersion equations involving linear
reactions or adsorption have been derived by various
averaging techniques' ?. However, it is difficult to
extendtheTaylordispersionmodeltononlinearsystems.
In this paper, we derive an approximate Taylor disper-
sionequationforsystemsinvolving weak nonlinearirre-
versible reactions.

1. The Basic Equations

We consider unsteady mass transfer in a circular
tube surrounded by an impermeable wall of radius R.
The system may be composed of multiple axi-symmetric
strata of fluid and solid phases. The reaction is assumed
to take place in strata containing catalysts. The concen-
tration of reactant C (7, z, t) at radial distance r, axial dis-
tance z and time ¢ is determined by the following mass
balance equation.
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where the partition coefficient S, the diffusioncoefficient
D, the axial flow velocity v and the catalyst distribution
function p are functions of the radial distance r. The
reaction rate K is an arbitrary nonlinear function of the
concentration. The linear operator L, indicates radial
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sorption and diffusion. The operator M, stands for axial
diffusion and convection, and nonlinear reaction. The
expressions K [C] and M, [C] denote operations non-
linear to C. The basic Eqgs. (1)-(4) are similar to that
treated in previous papers*>, except for the nonlinear
reaction term.

The Taylor dispersion model is valid under the
condition that the radial diffusion rate is much faster
than the axial mass transfer rate. We assume that Lyisa
primary operatorin Eq. (1) and that M, canbe treated as
a small perturbation; the reaction rate is assumed to be
sufficiently small. Explicit conditions for the perturba-
tion approximation have been obtained in work
described in previous papers* . The concentration C
approaches the equilibrium distribution of L:

S

where <> denotes the area average in the cross section:
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We define a projection operator* > P as follows.
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Equation (7) shows that PCis the asymptotic concentra-
tion distribution indicated in Eq. (5). The projection
operator decomposes the concentration into two parts:

C=PC+(1-P)C ®

Under the approximation condition, (1-P) C is a suffi-
ciently small term in comparison with PC. Then the
reaction rate can be approximated up to the first-order
term as follows.

K[C]:K[PC]+%[PC](1—P)C ©)
Substituting Egs. (8) and (9) into Eq. (1), we derive
L -m, [PC]+{L0+ aanél [PC]}(I ~P)C (10)
where
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To derive Eq. (10), we used the following identity® »:
PLy=LyP=0 (12)
The approximate mass balance Eq. (10) reduces to a
quasi-linearequation for (1-P) C.Then we can apply the

projectionoperatortechniqueto Eq. (10) asdescribedin
the following section.

2.  The Dispersion Equation

Applying P and (1-P) to Eq. (10), we derive a
couple of equations for PC and (1-P) C:

%Q=PM1 [PC]+PaaAé‘ [PC|(1-P)C (13)
8(_1(—9tP)QC=(1 -P) {L0+ agé‘ [PC]}(I -P)C
+(1-P) M, [PC] (14)

Equation (14) can be simplified by neglecting dM,/dCin
comparison to L, Then the solution of Eq. (14) is
approximately expressed as®

(1 —P]C:J—l exp[Lo (i~ 7)) (1 - P) M, [PC(¢#)] df’
+exp[Lyt](1-P)C(r,z0) (15)

The second term in the r.h.s. of Eq. (15) is a transient
term that is eliminated when the time ¢ is sufficiently
longerthantheradial diffusionrelaxationtime 7.Wecan
simplify the integral in the r.h.s. of Eq. (15) by the adia-
batic approximation method*¥, noticing that PC()is a
sufficiently slowly varying function in comparison with
exp [Lyt], which decays rapidly. As a result, the fol-
lowing expression is obtained for ¢ >> 7.

(1-P)c=( [ explLorlar|(1-P)ut (PC0)
=—L3' (1-P)M,[PC(r)] (16)

InEq. (16), we defined the inverse of L operating to any
function (1-P) f(r) under the boundary condition (4) as
follows.

F(r)=Ls' (1-P) f(r)e(1-P) f(=L,F(r) (A7)

Substituting Eq. (16) into Eq. (13), we obtain a
closed equation for PC.
%Aé—‘[PC]Lgl(l—P)M,[Pc] (18)

The above equation is an abstract form of an
extended Taylor dispersion equation. Equation (18) is
transformed to the equation for the average concentra-
tion <C> by a simple algebraic manipulation* . In the
following, we assume for simplicity that axial diffusion
is negligible in comparison with axial convection, and

8_§[Q =PM, [PC]-

VOL. 27 NO. 3 1994

thatthe partitioncoefficientofthestratacontainingcata-
lysts is constant. Then Eq. (18) is transformed to

C) _,, (0 9<C>
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where §, is the partition coefficient of the catalyst phase.
In the above expressions, we defined a binary form?® for
arbitrary functions f(r) and g (r) as

[f,8]=—(f Lg' (1-P) Sg)
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Equation (19)isanextended Taylor dispersionequation
for systems involving nonlinear irreversible reactions.
When nonlinear reactions are not involved, Eq. (19) is
shown to be reduced to the previous results* >, The
effective diffusion coefficient D,, given by Eq. (20), is
an extended form of the Taylor diffusion coefficient™. It
is noticed that the effective quasi-flow velocity v,* given
by Eq. (21) depends on the concentration <C> when
nonlinear reaction is involved. The effective reaction
rate K, is transformed fromthe basicreactionrate by Eq.
(22). Equation (19) can be used as a process model of
sorptionbedsinvolvingnonlinearirreversiblereactions
or adsorption.

Nomenclature

C = concentration [molﬂm‘3]
D = diffusion coefficient [m%s™1
K = reaction rate [mol~m‘3-s“]
R = radius [m]
r = radial distance [m]
S = partition coefficient [-1
t = time [s]
v = flow velocity [m‘s‘l]
z = axial distance [m]
p = catalyst distribution function [-]
T = radial diffusion relaxation time [s]
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