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Introduction

In previous papers" 2, the concept of a policy- and
experience-driven neural network (PENN) was proposed
to provide adaptive and self-tuning features for process
control. Rule-based global policies give general control
information covering the whole control space, whereas
local experiences achieved by previous runs give
detailed information about the process features. There
the setpoint was assumed to be constant.

In this paper, the case where the setpoint is
changing with time is discussed and a very simple net-
work is proposed. The results for a level-control experi-
ment by simulation show that this method has high
potential for wide application.

1. Controlled Process and Control Strategy

1.1 Controlled process and PENN controller
The controlled process is shown in Fig. 1 (b). The
cross-sectional area of the vessel is expressed as

a=mri=nxly tan (¢/2)) (1)

The relation between the exit flow rate ¢g,,, and the water
level y is

Gour = Q)Y @)

We set the parameters ¢ =60° and a = 60 cm>?/s. We
assume a constant time delay of 10 seconds, i.e., d = 1
for the sampling interval of 10s.

The PENN controller is shown in Fig. 1(c). It has a
simple 2-input and 1-output structure. The input is dy,,,
the difference between y at present and that at the pre-
vious sampling time, and dy,, the difference between the
expected setpoint y,,,., in the next specified future and y
at present. The output is du, the difference between the
controller output « to be obtained and the previous one.
They are given as dimensionless values defined as fol-
lows:
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Y]"_‘yj/ymax
dy,=dY;=Y,-Y,_,
dede}i»k:Ylarget.j*»k‘Yj (k2d+ l)

dU;=(uj= w1}/ s, ; 3)
where j denotes the present time, and m and p, respec-
tively, denote —, i.e., past, and +, i.e., future. A feature of
PENN control is that the expected change of y is used as
one of the control inputs. A new feature of this network
is that the present error, y,,,,,, ; — ¥;» is excluded from the
input layer of the network.

1.2 Global policies and local experience

Another feature of PENN control is that both
global policy and local experience are used to train the
network. Based on some knowledge in advance, we
make the following rules:

(1) IF dY,, = 0 and dY, = 0, THEN dU = 0.

(2) IF dY,,= 1 and dY, =0, THEN dU = -1.

(3)IFdY, =0anddY,=1, THEN dU = 1.

(4)IF dY, =-1 and dY,=0, THEN dU = 1.

(5) IF dY,, =0 and dY, = -1, THEN dU = -1.

Rule (1) specifies the steady state. Rules (3) and (4) rep-
resent the cases when dU,,,, is outputted, and rules (2)
and (5) are the inverse cases of rules (4) and (3). These
global policies will contribute to the result in which the
output dU; is calculated in the network not by extrapola-
tion but by interpolation of learned knowledge.

The following latest data are utilized as local con-
trol experience to train the network about the specific
feature of the process:

INPUT: dY,,=Y; ;~Y, ;_anddY,=Y,- Y,

OUTPUT: dU = (tj_ g — tj _ - W thpax, j— i
Since the term Y., ; +  — ¥; is an input unit, the value
of ¥; can be used directly to specify the value of @¥), in
the learning stage; hence effective learning can be
achieved. The value of k is equal to or greater than 2,
since the time delay is 10 s (d = 1). In this study it is set
as 3. The effect of k will be demonstrated in detail in
another paper.
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Fig.1 Scheme of control system and process

2.  Execution of Control with On-Line Learning

2.1 Desired trajectory

The above control scheme was examined by simu-
lation of water-level control when the water level is to be
changed from 80 cm to 40 cm by the following path.

Ymar =80 cm
Yirgr =1 for t <100s.
Yigrger=1-0.001 (1~ 100)  for 100s<1<600s
Yiurees = 0.5 for 1 <600s. )

target —

Hence the target water level decreases linearly during
the period between 100 s and 600 s.
2.2 Control results

Figure 2 shows the result when control was exer-
cised by setting the assumption that u,,,,, ; is proportional
to the cross-sectional area of the conical vessel, i.e.,

2
ulmu', J = (umwr. J at Ymux) X (yj / ymax) . (5)

The value of u,,, ; at Y,, was chosen as 600 cm?/s.
Before the first run, the five global rules above were
taught 80 times in advance. Then global learning of one
of the above five rules and experience learning were per-
formed for each sampling period. The sequence of the
choice of rules for global learning was: 1,2, 1, 3, 1, 4, 1,
5, indicating that the first rule for the steady state was
taught frequently.

The results for the first, the Sth, the 10th and the
40th runs are shown. Even for the first run, the water
level changed along the target trajectory. For the 5th run,
the control is already quite satisfactory. It is found that
the height y after the 10th run followed the given trajec-
tory excellently.

Figure 3 shows the applicability of the same net-
work to a different trajectory. After the 20th run in Fig.
2, the properties of the neural network were saved. By
using this saved network, a run was executed without
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Fig. 3 Applicability of the same network to another trajectory

on-line learning. The result, shown as A in Fig. 3, is of
course nearly identical to the 20th run in Fig. 2. Then the
desired trajectory was changed to

Yirger =1 for 1< 100s.
Yigrger = 1 = 0.0005 (1 — 100) for 100s<r<1100s
Y = 0.5 for 1< 1100s. (6)

target
The result obtained by using the saved network without
further learning is shown as B in Fig. 3. It is found that
the saved network can cover the control for a new trajec-
tory which has not been experienced.

3. Discussion and Conclusions

The proposed method is very straightforward. First
the future value of the target controlled value is used to
obtain the increment of the manipulated variable. This
term is used quite effectively for local learning. Second,
the global learning supports control when the process
proceeds along the new trajectory. The advantage of the
present method is application of the smallest network
containing only the key variables as inputs and output
and usage of the PENN (Policy- and Experience-driven
Neural Network) concept. Then excellent control is
achieved. The value of Upay, 18 given by Eq. (5) rather
arbitrarily. This problem will be discussed in another
paper.
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