DROP BREAKUP AND INTERMITTENT TURBULENCE
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Recent studies on the fine structure of turbulent flow are applied to drop breakup in the inertial sub-range.
A multifractal method describes intermittency and the distribution of velocity fluctuations etc. For a given
drop size and a given time-averaged energy dissipation rate, a wide range of stresses acts to cause breakup.
These stresses and their relative frequencies are calculated. The most likely exponent on the Weber Number is
close to ~0.6. Smaller values (possibly as low as —0.93) arise from rare, but violent intermittent turbulence.
Such low exponents are likely after long agitation times and for small tanks.

Introduction

A bubble or drop, suspended in a continuous phase,
will break up if the stress exerted by motion in the con-
tinuous phase exceeds the stabilizing forces due to the
surface tension and the drop viscosity. For drops of low
viscosity, whose maximum diameter falls within the
inertial sub-range of the continuous phase turbulence
and whose volume fraction is so low that coalescence
does not occur, the following proportionality can be
derived theoretically”
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where o is the interfacial tension, € the rate of dissipa-
tion of turbulent kinetic energy, p the density of the con-
tinuous phase and d9,,, the diameter of the largest stable
drop, predicted by ignoring turbulence intermittency.
Expressed in dimensionless form this becomes

0
B o o

where D is a characteristic linear dimension and We is
the Weber Number, which will subsequently be treated
in more detail.

Many measurements of drop sizes e.g. see
Refs.> 1718 agree quite well with Eq. (2). It has also
been found that Eq. (2) may be extended to include
the influence of the drop viscosity> !> !® and that the
Sauter mean diameter is usually proportional to d,,,,,
so that dj3, is also correlated by Eq. (2).

Despite the usefulness of Eq. (2) in correlating
drop size measurements, some recent studies have given
smaller exponents than —-0.6. For example results from
three tank sizes'" followed Eq. (3)

dy~D S N6 (3)

where N is the rotational speed of a Rushton turbine. The
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exponents on N and D would be —1.2 and —0.8 in order to
be consistent with the exponent —0.6 on We. The results
in Eq. (3) imply exponents between —0.8 and —0.83 how-
ever. In another study® the exponents on We for different
impellers were close to —0.7. Although the Reynolds
Numbers were rather low, well-developed turbulence
should have existed near the impellers. In some experi-
ments the drop sizes neared the Kolmogorov scale,
although it seems this has no effect on the exponent'?,
{Well within the viscous sub-range the exponent should
become —1}. In a third case!? the exponent was —0.93
for low-viscosity drops. A mechanism applying when
dna = L, where L is the integral scale or size of the
energy-containing eddies, has been put forward'", which
results in an exponent —1 on We.

It is the purpose of this contribution to show that
the classical, inertial sub-range theory® can be modified
by including the effect of intermittency to yield expo-
nents smaller than —0.6 in certain circumstances and
equal to —0.6 in others. This unified theory can not yet be
regarded as validated by experiments and suggestions to
this end are therefore also included.

1. Intermittency

Intermittency refers to random variations in turbu-
lence properties at a fixed point in a turbulent flow. Here
fluctuations in the fine-scale properties—in particular the
energy dissipation rate, &—are central. Whereas inter-
mittency is an established experimental phenomenon, its
modelling still gives rise to difficulties. Kolmogorov'®
suggested that log € is normally distributed, but this is
inadequate for the high —¢ tail of the distribution. The S
model” attributes the whole dissipation at a particular
instant to active parts of the whole space, whilst the
remainder is non-turbulent. Thus € has either a constant
value or is zero. This has didactic value, is however
over-simplified. Application” to rapid drop breakup
yields exponents on We smaller than —0.6 and it is there-
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fore worth applying a more realistic intermittency model
to this problem. Whereas the -model rests on a single
(fractal) dimension for the fine structure, it is better to
work with a distribution of such dimensions, termed a
multifractal model, whose parameters have been care-
fully measured. An outline of the main results, relevant
to drop breakup, will now be given.

When the length and velocity vectors, r and v, the
time ¢ and the pressure P arising in the Navier-Stokes
equation are transformed according to

P = AF (€]
V=1 (5)
yoat-aly (6)
(5) =2 (5) 0

then the Navier-Stokes equation is invariant® 19, (The
inertial sub-range must include r and 7”).The exponent a
is arbitrary and its distribution of values has been deter-
mined experimentally'>).

The velocity difference v, between points separated
by a distance r follows from Eq. (5)

Vy _(rya/3

v, =(L) ®)
In this and all following equations, ¢ = 1 corresponds to
the classical, non-intermittent relationships for the iner-

tial sub-range. v; is the velocity fluctuation of the
energy-containing eddies. Now

(ey=v}/L &)

where <&> is the time-averaged energy dissipation rate.
Denoting over a domain of size r the energy dissipation
rate by &,, it may be expected that

&g,=vr 10y
Substituting from Eq. (8) and (9), Eq. (10) becomes

&=(@&(f)" (1D
Again o = 1 signifies no intermittency and a uniform
energy dissipation rate.

The derivation of the maximum stable drop size,
d,.. now parallels exactly the non-intermittent
case> % 17, The turbulent stress acting upon a drop of
size r, where r is in the inertial sub-range, is

t(r)~pvi~ple) 1 ()" (12)

after substituting from Eq. (8) and (9). This stress will be
just equal to the stabilising stress 6/d,,,, when r = d,,,,,,
so that from (12)

dmax N[%’]l/(l +2a/3) 8_2/3<1 +20/3} L—Z((l—a)/3)/(1 +2a/3) (13)

Comparing with Eq. (1), Eq. (13) reduces to the well-
known result when o = 1, but otherwise there will be an
effect of scale, since L is proportional to linear size e.g.
for a Rushton turbine L = 0.1 D, where D is the turbine
diameter. For a stirred tank We is defined by
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We=N’>D’p/ o (14)
and Eq. (13) may be re-arranged to give

A ax _06a 15
D ~ We (15)

a=[1-04(1-a)" (16)
a is a distributed quantity. Referring to Eq. (8), this
means that for a given separation (or drop size) r, the
velocity difference or increment, v,,is also distributed,
whereas in the classical case of no intermittency, v, takes
just one value. In Eq. (12) 7 (r) also possesses a distribu-
tion, and so does d,,,,. The probability density function
for o, P (00), is in general given by'®

P(a]N[%)dI—f(a) an

where d; is a space dimension and f (&) is the multi-
fractal spectrum, whose measurements for d; = 1 in the
range 0.51 < a < 1.78 have been correlated by'> 19

(- ag)?
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In Eq. (18) Dy =1 and o = 1.117 giving
P(a]“'(f]z'm”a—l.lw)z (19)

The low - o tail of the P (o) distrbution has been approx-
imated by a square-root-exponential relationship'.
Since (#/L) < 1, P (&) has a maximum when o = 1.117,
whereas when o << 1, P (@) is much smaller. From Eq.
(11), such low values of « correspond to peaks in &,
where € >> <&>, but such violent events are rare i.e. P
(@) is small. Because the width of the inertial sub-range
increases with rising Reynolds Number, e.g. when
scaling up at constant power per unit volume (<& =
constant), the bursts of high £ become more violent, but
also less frequent. This corresponds to the experimen-
tally well known “spotty” distribution of the energy dis-
sipation rate.

2. Application to Drop Breakup Experiments

Depending upon the value of «, Eq. (12) expresses
the range of stresses acting upon a drop of diameter r in
the inertial sub-range. Eq. (17) gives the probability of a
particular « value (all possible o values occur in the tur-
bulence at all times). The weighted stress in a given tur-
bulent flow when « is close to 1 is therefore

p[v,{r, a)]zp(a} ~'[%](2&/3)4-2.137(:1-1.117)1 (20)
The most likely weighted stress corresponds to. the
smallest exponent in Eq. (20) since (/L) < 1, which
gives o = 0.961. From Eq. (15) and (16), maximum as
well as Sauter mean diameters should often be correlated
by

dmax (OI' d32) —0.61 (21)
—p ~We
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The result means that, when taking turbulent intermit-
tency into consideration, the most likely result is nearly
equal to that neglecting intermittency (-0.6) and has fre-
quently been obtained by experimentalists.

The smallest value of o consistent with known
experimental results' is 0.12, which predicts

dmax (OI' d32)

D ~ We™ 093 (22)

which has also been obtained from drop breakup experi-
ments'? '3, This value of & corresponds to violent, but
relatively rare bursts of energy dissipation. The ratio of
maximum drop size to the integral scale of turbulence in
these experiments!!: '¥ was on the order of 0.001 + 0.01.
From Eq. (17) the ratios of the probabilities of the least
likely and most effective o values (0.12 and 0.961) gives

P(a=0.12) _ _S{d_m_x__ }
———P(azo_%l)_leo 72 =0.01
and3x107° {d% = 0.001} (23)

Because violent turbulence is rare —see Eq. (23)—
exponents as small as —0.93 are likely to be influential
only after long periods of time and for small tanks (d,,,, /
L not too small, remembering that L~D). Short contact
times on the order of seconds characterise turbulent
flows in pipes® and static mixers? where drop sizes are
consistent with an exponent of —0.6 on We. In stirred
tanks, drop breakup occurs near the Rushton turbine!?,
e.g. in the trailing vortices, where <&> is higher than
elsewhere. All drops to be broken need to pass through
this region, whose volume fraction (active volume / tank
volume) is denoted by X. The mean circulation times for
Fig. 3 and Fig. 4 of reference 11) were at most around 8 s
and 2 s respectively. Circulation times of individual fluid
elements have a log normal distribution®, and some fluid
might have needed an order of magnitude more time than
the mean circulation times. Significant reductions in drop
size continued to take place between 1/2 h and 5 h in Fig.
3 and between 1 h and 5 h in Fig. 4. These long times can
hardly be explained by the circulation times, but prob-
ably reflect the slow shift in drop sizes from those corre-
sponding to the most effective turbulence to those
determined by more violent, but less frequent events.
Seen in the light of intermittent turbulence, a gradual
decrease in drop size (following the initial formation of a
dispersion) together with a decrease in the exponent on
We from -0.61 to —0.93 are to be expected. For scale-up
at constant power per unit volume in order to attain given
values of d,,,, and djs,, it is less probable that the asymp-
totic drop sizes and exponents will be attained in large
tanks —compare Eq. (23)— within the duration of an
experiment.

Eq. (13) was derived by balancing the disruptive
and cohesive stresses, without any reference to time: it is
a quasi-steady state balance. The time evolution of the
drop size distribution can be calculated by solving the
population balance, incorporating appropriate breakage
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relationships'¥. The influence of intermittency can be
deduced semi-quantitatively as follows.

The product of number of passes of the dispersion
through the active zone during a given period and the
residence time in this zone is independent of stirrer
speed and scale. It follows that the frequency of such
passes multiplied by their duration equals X. Eddies of
size r have a mean frequency (inverse of lifetime or turn-
over time) of <&>!3 ¥%3, but only a fraction can cause
drop breakup. Such vigorous eddies have « values below
o/, which can be found from Eq. (13)

_25log{L1d0,}

og(Lld) 15 (24)

The fraction of sufficiently active eddies is then

o
F(asw)=fp(a)da (25)
which may be evaluated using the distribution in Eq.
(17). Finally the breakup frequency, &,, is given by

24

ky~X (8P d f (4" a4 (26)
This derivation is in some ways similar to an earlier
analysis'V of the effect of a distribution of the relative
velocities over a given distance, d,,,,. The multifractal
description of the distributed characteristics of the iner-
tial sub-range should be superior to the assumed Gaus-
sian distribution of v, It should be noted that Eq. (26)
contains an influence of scale through L.

Maintaining geometric similarity and constant
mean energy dissipation rate, <€>, drops of a particular
size formed faster as the tank size increased'". An inter-
pretation and a two-zone model have been given'V. Tur-
bulent intermittency, expressed by Eq. (26), offers an
alternative explanation. For example for the following
values: <> =1.6 m?>s>, 7, =0.128 m, L, = 6.4 mm, T,
=0.30 m, L, = 15 mm, d = 0.2 mm, where the suffices 1
and 2 refer to small and large scales, Eq. (24) gave ;" =
0.23 and o,” = 0.38. This signifies that in the large tank
less energetic eddies could also break drops. From Egq.
(25) the cumulative fractions of dispersive eddies were
F; (@<0.23)=2.6x10*and F, (< 0.38) =7.2 x 10
This implies that nearly three times more eddies were
effective in the larger tank, which is a possible reason
why drop breakup occurred faster in this tank.

Conclusions

The widely used theory of drop breakup in the iner-
tial sub-range of turbulent flow, leading to an exponent
of —0.6 on the Weber Number, ignores intermittency and
employs the time-averaged energy dissipation rate. This
and other turbulence characteristics exhibit, however,
distributions, which may be represented using multifrac-
tals. Rare, but violent bursts influence drop sizes and,
given sufficient time, the exponent on We may be as
small as —0.93. Values in the range —-0.93 to —0.61 are
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predicted using multifractals and are consistent with
experimental results. Maintaining geometric similarity
and keeping the time-averaged energy dissipation rate
constant, consideration of intermittency using multifrac-
tals introduces a scale-dependency into various proper-
ties of dispersed drops, which is absent in the classical
approach, e.g. the final drop size should be smaller in a
larger tank. A more unified theory of drop breakup, floc-
culation etc seems to be attainable when intermittency is
included. Further work in this direction, including
careful comparison with experiments, is believed to be
worthwhile.

Nomenclature

a = exponent [-]
d = drop diameter [m]
ds; = Sauter mean drop size [m]
e = maximum drop size [m]
d%,. = value of dmax when neglecting intermittency [m]
d = space dimension [-]
D = impeller diameter [m]
D, = constant [-]
F = cumulative probability [-]
flo) = function of & [-]
ky, = breakage frequency of drops of size d s
L = integral scale of turbulence [m]
N = impeller speed s
P = pressure [Pa]
P(o) = probability density function of & [-]
r = distance between two points in turbulent flow [m]
t = time [s]
T = tank diameter [m]
v = velocity [ms™h
173 = velocity difference over a distance L [m-s™]
v, = velocity difference over a distance r [m-s™]
X = volume fraction of zone where breakup occurs [-1
Re = impeller Reynolds Number (N szly) -1
We = Weber Number for stirred tank (N2 D3 plo) [-1
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a = multifractal exponent [-]
£ = turbulent energy dissipation rate

per unit mass [mz-s“3]
<& = time-average of £ over whole domain [m?s73]
£, = average of € over domain of size r [m?s73]
A = scale factor [-]
u = continuous phase viscosity [kg-m's71)
P = continuous phase density [kg:m™]
o = interfacial tension [kg-s‘z]
T = stress [kg~m’1-s‘2]
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