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To elucidate the heat transfer phenomena for a package in a refrigerating room with upflow, we considered
a vertical-duct model in which one wall was isothermally heated and gas flowed upward through the duct in
the laminar-flow range. The velocity profiles, temperature distributions and the local and average heat
transfer coefficient were calculated numerically by fundamental equations.

The main fluid flow is drawn toward the heated wall in the range of low Re and becomes parallel to the axial
coordinate with increasing Re. The higher on the heated wall, the smaller is the local Nusselt number.
However, the average Nusselt number does not undergo much change with increasing Re and Gr. A correlated
equation for heat transfer was obtained under the operating conditions of this calculation.

To check these calculated results, the temperature distributions and heat transfer coefficient were measured
experimentally under the same operating conditions as those of the theoretical analysis. The calculated

temperature distributions agreed closely with the measured ones.

To compare the heat transfer coefficient of the downflow and the upflow, we found that the latter is about

twice that of the former.

Introduction

Generally, when a food package is put into a refrig-
erating room for storage the density of fluid near the
package wall is lowered by the temperature rise and free
convection is generated. The free convection promotes
heat transfer from the package wall to ambient fluid. In
the refrigerating room, cold fluid flows through the
space between the packages in the laminar flow range,
and free convection is combined with this laminar forced
convection.

In previous studies, downward forced convective
flow was weakened by the free convective flow, and a
stagnant flow arose in the low Reynolds number range
(Re = 300 — 1500) in such a room. It was proved that the
rate of heat transfer from the package wall in the refrig-
erating room decreased with increasing flow rate of the
cold fluid in the downflow. Therefore, it seems that in
the case of upward flow the heat transfer rate is larger
than that of downward flow.

Numerical studies of fluid flow in a normal room
have been reported!® '”, and many experimental and
theoretical approaches have been taken to the fluid flow
in a refrigerating room and to similar flow systems!"!>18),
However, there are few works concerning the problem of
combined free-forced convective laminar flow between
the packages> ®. Thus the combined convective heat
transfer from the package wall in a refrigerating room is
not yet established as to heat transfer coefficients under
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various operating conditions. Such information is impor-
tant for energy saving.

In this study, as basic research on the effect of
direction of cold fluid flow on the cooling of the
package, the temperature distributions and heat transfer
coefficients for a vertical duct wall at a constant temper-
ature were measured and solved numerically in the case
where only one side-wall of the duct was heated and gas
flowed upward through the duct in the laminar flow
range. This is a model of the package wall in a refriger-
ating room in which the temperature differences between
the package wall and the ambient cold fluid are the same
as those between a heated wall and a flowing gas of
normal temperature in the duct.

A correlative equation for the coefficients of heat
transfer from the isothermally heated wall in the duct
was obtained by taking account of the Reynolds number,
the Grashof number and the geometrical conditions of
the vertical duct for combined free-forced convective
laminar flow. Also, the heat transfer coefficients deter-
mined in this study were compared with those in the lit-
erature> # 12 and with those in the case of downward
flow> 6.

1. Fundamental Equations and Numerical
Calculations

From observation of the flow pattern (TiCl, tracer)
in a preliminary experiment, it seems reasonable to ana
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Fig.1 Coordinate system for a vertical duct

Table 1. Grid size and number of iterations

AX AY Number of iterations

0.0191-0.05 0.0326-0.18 200-2000

lyze the transport phenomena by considering two-
dimensional flow in the vertical cross section. Let us
consider the heat transfer phenomenon with combined
free and forced laminar convection in a duct, where a
part of one side-wall is heated and the other side-wall is
kept at a constant temperature, as shown in Fig. 1.

If it is assumed that the physical properties of the
fluid are constant and independent of temperature, that
the buoyancy is directly proportional to the temperature
difference, that the velocity derivatives in the direction of
depth is neglected, and that air feed into an entrance
region of the test section with a velocity profile of plug
flow and velocity component symmetrical to the axial
direction in an exit region, the dimensionless funda-
mental equations and boundary conditions are obtained
as follows:
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The dimensionless stream function y and vorticity &
were introduced to Egs. (1)-(4) and each equation was
written in a finite difference form by the “upwind
method”. They were then solved numerically by a relax-
ation method.

The optimum values of the relaxative condition
were found by trial and error for a given system of grid
points. Representative values of grid size and the itera-
tion number for good convergence are given in Table 1.

These calculations were performed over the ranges
Re =100 - 2500, Gr = 3.02 x 10° - 2.2 x 107, Pr=0.7
and L/D=5-15(D =5, 8, 10,12, 15 cm, L=75.0 cm).

2. Experimental Apparatus and Procedure

To check the calculated results, the temperature
distributions in the duct were measured.
Figure 2 shows a schematic diagram of the experi-
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Fig. 3 Streamline with Re = 300, 500, 1200 for t; =333 Kand L/D =7.5

mental apparatus. The ducts, main section of the system,
with a cross-sectional area of 38 x 15 cm?, 38 x 12 cm?,
38 x 10 cm?, 38 x 8 cm?, and 38 x 5 cm?, and 200 cm in
length including the entrance region, were made of
acrylic resin. The heating section was located in the
middle of the duct and its area was 38 (width) x 75
(height) cm?. The heating section consisted of a copper
plate in which nichrome wires were placed as heaters at
three locations and were heated individually to obtain
the isothermal condition. The opposite plate was not
heated, and a water jacket was attached to it to obtain the
isothermal condition. The sectional area of the duct was
changed by moving this opposite plate.

To measure the temperature in the test section, CC
thermocouples (0.5 mm ¢) were placed at nine points in
the heated wall and at three points in the opposite wall.

Thus, it was found that the wall temperatures of the
heated plate and of the opposite plate were nearly uni-
form. Furthermore, the wall temperatures of the opposite
plate except those of the water jacket were also mea-
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sured by thermocouples and it was found that the tem-
perature difference between the wall of the water jacket
and that of the opposite plate itself was negligibly small.

To investigate correctly the cross-sectional temper-
ature distribution in the boundary layer and the fluid in
the duct, gas temperature was measured by use of a
sheathed CA thermocouple probe of very small diameter
(0.2 mm ¢) and the cross-sectional spacing for measure-
ment was 0.5 mm in the boundary layer and 10.0 mm in
the ambient fluid.

Regulated air was fed into the test section from the
bottom of the duct and then the sheathed thermocouple
probe was traversed in the cross section by moving the
slider to measure the local temperature in the duct. The
flow rate of air was in the range of Re = 100 to 2500. The
experimental procedure was almost the same as that
described in the previous paper™> ©.
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3. Calculation Results and Comparison of
Calculated with Experimental Values

3.1 Streamline and velocity profile

Figure 3 shows some typical streamlines obtained
numerically in the vertical cross section through the duct
for the cases where the Reynolds numbers were 300, 500
and 1200 respectively for L/D =7.5 (D =10 cm) and 1ty =
333 K. The abscissa of the figure, X, represents the
dimensionless cross-sectional distance from the surface
of the heated wall, the ordinate, ¥, represents the dimen-
sionless longitudinal distance from the bottom of the test
section, and the thick solid line at the left side of the
figure represents the heated wall in the duct.

From Fig. 3, at Re = 300 and Re = 500, the bulk
flow is bent intensely from its own current path toward
the heated wall by the free convective flow. A similar
fluid motion was observed for the flow pattern of a TiCl,
tracer as well. From this figure, it is assumed that the free
convective flow generated near the heated wall is
stronger than the forced convective flow at Re = 300 and
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Fig. 4 Effect of Re on calculated axial velocity profile

500.

On the other hand, at Re = 1200 the bulk flow
becomes smooth and approaches parallel flow. It is
assumed that the intensity of the forced convective flow
becomes almost the same as that of the free convective
flow, and in this case it can be considered that there is no
effect of the free convective flow. The effect of Reynolds
number on the streamlines was observed at other valves
of Grand L/D.

Figure 4 shows some typical axial velocity profiles
at the middle point of the heated wall (y = y,,) for L/D =
7.5 and 1 = 333 K with Re as a parameter. In this figure,
the plus or minus value of the dimensionless velocity
component indicates the direction of this velocity.

From Fig. 4, it is seen that the axial velocity takes
its maximum on the side of the heated wall by the effect
of free convection. The effect of free convection upon
the velocity profile is notable at low Re. Since at Re =
500 the free convection is more intense than the forced
convection, a vortex with back flow arises near the
opposite wall.

3.2 Temperature distribution

Figure 5 shows dimensionless temperature distri-
butions in the vertical cross section for the cases where
Re = 300 and 1200, respectively, and this figure can be
related to the streamlines shown in Fig. 3. The axes in
this figure are the same as those in Fig. 3, and the solid
lines show the temperature distributions calculated from
the fundamental equations.

From Fig. 5, as Re increases, the temperature gra-
dient near the heated wall is slightly increased, but the
shapes of temperature distribution are almost unchanged
within the limits of this operating condition. This fact
may be explained as follows. Since the effect of free
convection on heat transfer is quite large in this range of
Re, the shapes of the temperature distribution are not
much changed even if Re is increased.
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In Fig. 5, the plotted points are the dimensionless
local temperatures obtained by experiment under the
same conditions as those of this numerical calculation.
As can be seen from these values, the calculated temper-
ature is a sufficiently good approximation to the mea-
sured one.

Figure 6 shows some typical cross-sectional tem-
perature distributions at the middle point of the heated
wall (y =y for L/D =7.5, Re = 1200 and L/D = 15.0,
Re = 500. The abscissa of this figure represents the
dimensionless cross-sectional distance and the ordinate
represents the dimensionless temperature, 7. The solid
lines and the plotted points show calculated values and
experimental ones respectively. In Fig. 6 (a), the temper-
ature distribution represents one of those shown in Fig. 5
(b).

From Fig. 6, the temperature gradient becomes
steep near the heated wall and is nearly uniform in the
ambient fluid. It seems that the calculated values are in
sufficiently good agreement with the experimental ones.
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Such good agreement between calculated results and
experimental ones was also obtained in other cases.
3.3 Nusselt number

The local Nusselt number, Nu, and the average one,
Nu, from the heated wall may be obtained by the temper-
ature gradients near the heated wall as follows:

Nu = 9F) . (6)

X

and

— 1 Yp or
N = YB-YJYA [KLO‘” M

Figures 7 and 8 show the local Nusselt number on
the heated wall in the vertical duct with Re and Gr
respectively as parameter. The abscissa in these figures
represents the dimensionless longitudinal distance from
the bottom of the test section in the duct, the thick solid
line represents the heated wall, and each curve in these
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figures represents the calculated values. From Figs. 7 and
8, Nu becomes smaller with increasing Y.

In Fig. 7, the effect of Re on Nu became very small.
It seems that the effect of the forced convective flow is
very small for heat transfer in this case. This result was
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also obtained in other cases.

However, in Fig. 8, the effect of Gr on Nu is
noticeable, and Nu becoming larger with increasing Gr.
It seems that the heat transfer is affected very much by
the free convective flow, and that the stronger the free
convection the larger the heat transfer becomes.

4.  Effect of Operating Conditions on Heat Transfer
Coefficient

The relations between average Nusselt number
from the heated surface in the duct and Re, Gr and L/D
were investigated by numerical calculations.

Figure 9 shows the relation between Re and calcu-
lated Nu with Gr as a parameter. From Fig. 9, as Re is
increased, Nu slightly increases. This means that the
effect of forced convection on Nu is very weak. From

these calculated results, Nu was proportional to about
Re0055.
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Figure 10 shows the relation between L/D and Nu
with Gr as a parameter. From Fig. 10, when L/D is
increased, Nu decreases. This means that Nu is affected
sensitively by L/D and also decreases with decreasing D.
This tendency was also obtained in other cases. From
these calculated results, Nu was proportional to (L/D)~
062 Furthermore, Nu was also affected by Gr and was
proportional to Gr%18,

Figure 11 shows the relationship between Gr and
Nu (Re)09%55 (L/D)*%2, From Fig. 11, the following corre-
lated equation was obtained within a difference of +5 %
at the most for the heat transfer coefficient in a vertical
duct with an isothermal heating section and upward
forced-convective flow.

0.18 -0.62

Nu =43(Re)"Gr*"(LID) (8)

In Fig. 11, the plotted points show experimental
values from the present study and some previous results>
4 for Nu for a vertical heated surface in a flow system
similar to that used by the authors.

From Fig. 11, it seems that the experimental values
can be explained well by this correlated equation, and
that Eq. (8) is a fairly good approximation.

The applicable ranges of Eq. (8) are from 100 to
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2500 for Re, 3.09 x 10° to 2.2 x 107 for Gr and 5.0 to
15.0 for L/D.

5. Discussion

Figure 12 shows some typical relationships
between Nu and the free-forced convective flow rate.
The abscissa of the figure represents Gr/Re’ and the
ordinate represents Nu.

From Fig. 12, Nu increases slowly with increasing
Gr/Ré? in the whole range. Figure 12 also shows some
previous results for Nu for a vertical heated surface in a
flow system similar to that used by the authors. From
this figure, there is a reasonable correlation of values of
Nu between the upflow systems of Sewin!?, El—
Shaarawi et al.¥ and Hanzawa et al. and the present
one.

In this system, the free convective flow generated
near a heated wall is upward and is reinforced by forced
convective flow in the same direction in the laminar
flow range. Therefore, it is assumed that the heat transfer
rates increase by reinforcing flow which is combined
with these two flows in the case of upflow.

Figure 13 shows typical comparisons of Nu in the
upflow system and the downflow system in the previous
study®> © for L/D = 15.0 and Gr = 8.3 x 10°. From Fig.
13, it appears that Nu in the downflow system is consid-
erably smaller than that in the present upflow system,
and there is a reduction by half in the value of Nu
between the downflow system and the present one in the
range of about Re = 300 — 1500.

Conclusions

As basic research on the effect of the direction of
cold fluid flow on the cooling of the package, velocity
and temperature distributions were investigated for the
case where one wall of the vertical duct was isother-
mally heated and gas flowed upward through the duct in
the laminar flow range as a model of the package wall in
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a refrigerating room. The fundamental equations were
solved numerically to analyze the heat transfer in the
duct. To check these calculated results, the temperature
distributions were measured experimentally under the
same operating conditions as those of the theoretical
analysis. The following results were obtained.

(1) Free convective flow generated near the heated
wall is reinforced by the upward forced convective flow.

(2) Calculated streamlines and temperature distri-
butions agreed closely with visualized streamlines and
measured temperature distributions.

(3) The local Nusselt number near the heated wall
increased rapidly near the bottom of the heated wall and
decreased gradually with increasing axial distance.

(4) A correlated equation for the heat transfer coef-
ficient in a vertical duct (with an isothermal heating sec-
tion and upflow) was obtained within the limits of this
investigation.

Nomenclature

C, = heat capacity at constant pressure [J/g-K]
D = plate spacing [cm]
Gr = Grashof number (= gf8D? (ty — to)/V2) -]
g = gravitational acceleration [cm/s?]
H = height of duct [cm]
h = local heat transfer coefficient [W/cm?K]
L = height of heated wall [cm]
Nu = Nusselt number (= h-D/A) [-]
P = pressure [Pa]
Pr = Prandtl number (= C,-/A) -1
Re Reynolds number (= D-v/v) [-]
T = dimensionless temperature (= (t — to)/(ty — ty)) [-]
t = temperature [K]
U = dimensionless velocity in X-direction (= u-D/v) [-]
u = velocity in x-direction [cm/s]
\%4 = dimensionless velocity in Y-direction (= v-D/V) [-]
v = velocity in y-direction [cm/s]
X = dimensionless horizontal distance (= x/D) [-1
X = horizontal coordinate [cm]
Y = dimensionless horizontal distance (= y/D) [-]
Yy = dimensionless height of duct (= H/D) [-]
y = axial coordinate [cm]
B volumetric coefficient of expansion of fluid [K1]
& = dimensionless vorticity [-]
AX = dimensionless grid size in x-direction [-]
500

AY = dimensionless grid size in y-direction [-1
A = thermal conductivity of fluid [W/cm-K]
u = viscosity of fluid [Pa-s]
v = kinematic viscosity of fluid [cm?/s]
P = density of fluid [g/em?]
73 = dimensionless stream function [-]
<Subscripts>

A = lower end of heated wall

B = upper end of heated wall

H = heating zone

M = middle point of heating zone

w = wall

0 = inlet zone

<Superscripts>

— = average
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