FAULT DETECTION IN A BATCH PROCESS USING A BAYESIAN MODEL
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Application of Bayesian dynamic modeling to fault detection is developed for a nonstationary batch process.
In the modeling, the observed time series are expressed in several specific components such as local
polynomial trend, observation noise and globally stationary autoregressive component.

To illustrate the method, detection of a fault in an operation of a stirred vessel with a heater is
presented.From the sequential probability ratio test of the model estimation error, the fault can be detected

successfully with high sensitivity.

Introduction

To ensure safe operations in chemical plants, early
detection and diagnosis of faults are required. For that
purpose, numerous kinds of computer-aided systems
have been developed and applied to plants with varying
success. Most of the systems are for continuous-process
plants, and are not easily applicable to batch processes.
There are several approaches to solving this problem.
For the sake of fault detection and diagnosis by com-
puter, a dynamic model of a process should structurally
represent the system as accurately as possible. In tradi-
tional chemical engineering practice, a physical model
of the process is derived from balance equations and the
like.

Park and Himmelblau'" proposed a method for
fault detection and diagnosis for a continuous stirred-
tank reactor. Dalle Molle and Himmelblau® described a
system for a heat exchanger. In their works, the extended
Kalman filtering algorithm was used to estimate state
variables and system parameters.

But for some batch processes it is difficult to con-
struct a physical dynamic model. Thus an experimental
approach such as the black-box model or pattern recog-
nition is needed.

Kutsuwa et al®'® used a pattern recognition
approach to the problem of fault diagnosis of a batch
process.

In our work, a method of real-time fault detection
was developed by use of the technique in a time series
analysis. Since most measured variables of a batch pro-
cess have trends, analysis of nonstationary time series is
necessary to build models of the system.

Here, a Bayesian model developed by Kitagawa
and Gersch® , is applied to the modeling of normal oper-
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ation of processes. Statistical testing for the residual
sequence of the model estimation error can indicate the
occurrence of a fault. As an experimental example to
confirm the method, fault detection is illustrated for a
stirred vessel with a heater is described.

1. Theory

1.1 Bayesian model

Bayesian modeling has applied mainly in the anal-
ysis of time series in the field of economics. Bayesian
modeling is based on Bayesian statistics®, which uses
Bayes’ theorem for analysis or inference. When the
probability distribution for a parameter prior to the data
and the likelihood of it are given, its probability distribu-
tion posterior to this data is proportional to their product.
That is,

posterior distribution

oc likelihood X prior distribution

The Bayesian approach that we adopt in the non-
stationary time series analysis has been used for solving
the smoothing problem.

The original paper about this problem was written
by Whittaker!?. He suggested that smoothed time series
data were obtained by balancing a tradeoff between infi-
delity to the observed data and infidelity to a difference-
equation constraint of the smoothed data, but an investi-
gator had to choose the value of the trade-off parameter.
Akaike? ¥ suggested that the choice of trade-off param-
eter be made by maximizing the posterior density of this
parameter of a Bayesian model, and proposed a method
of trend estimation and seasonal adjustment of nonsta-
tionary time series by this model. Kitagawa and Gersch®
developed a modified model by use of the state space
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representation and Kalman filtering.

In this paper we use their model, and will describe
that model here. In their Bayesian model, an observed
nonstationary time series is assumed to be decomposed
into local polynomial trend, seasonal, globally stationary
autoregressive, trading day effect, and observation noise
components. Their model is intended to apply to the eco-
nomic situation and including the trading-day effect
component, which is used to adjust for the different
number of trading days (for example Sunday) of the
week per month. But we do not need this component. So
the form of the model is

yn)=1() +v(n) +s(n) + &) (1)

where y(n) denotes the observed time series, #(n) the
local polynomial trend, s(n) the seasonal, v(n) the glo-
bally stationary autoregressive and &£(n) the observation
noise components at time #.

Each component has its respective prior informa-
tion.

1) Local polynomial trend component This compo-
nent represents the trend and satisfies the kth-order sto-
chastically perturbed difference equation

Vi =w () 2)

where wi(n) is an independently and normally distrib-
uted noise with zero mean and variance 1'12 and Vis the
difference operator, defined as Vi(n) = #(n) - ¢(n-1) . For k
= 2 this component is given by the following equation.

tn)=2t - 1)—tr -2)+w () 3)

2) Globally stationary autoregressive component This
component represents the stochastic trend and satisfies

an autoregressive (AR) model of order p. That is,

vin)= o vin-1)+ o,y -2).
+ apv(n ~p)+w,n) 4)

where w,(n) is an independently and normally distrib-
uted noise with zero mean and variance ‘zg

Gersch and Kitagawa” showed that good perfor-
mance was achieved by addition of this component in
state estimation and prediction.

3) Local polynomial seasonal component This
component represents periodical data and satisfies the
following equation.

s(n)+s(n-1)+...+s(n—L+l)=w3(n) (5)

where L is the number of period and ws(n) is an indepen-
dently and normally distributed noise with zero mean
and variance 17_%

4) Observation noise component This component
represents measured error, is independently and normally
distributed with zero mean and variance %, and is
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always included in the model.

These components and the observed time series are
also expressed in a state space model. For example,
when an observed time series has a second order-local
polynomial trend (k = 2), a first-order autoregressive
component (p = 1) and a seasonal one with period 2 (L =
2), the space model is expressed in the following form.

tn) 2-10 0ftm-1)
z‘(n-l)= 1 00 0|tn-2)
v(n) 0 0a 0jve-D
s(n) 00 0Q-1|s-1
jogl e
+ 010 w,(n)
00 1] w0
tn)
y(n):[lOll]t(’:(;)l) + &n)
sn)

Generally, the space model for an observed time
series is

x(n)y=Fx(n-1)+Gwrn)
y(n)=Hx(n)+ &n) (6)

where F, G, H are matrices whose number of row and
column is M x M, M X L and 1 x M respectively. x(n) is
the state vector, and w(n) the process noise.

When the dimensionality of state space (k, p, L) are
defined, and the initial state and the values of parameters
(‘L’%, ‘vf ‘E§ &, a,..., a,,) are given, the components are
calculated by using the Kalman filter recursively in real
time. The best model is selected by calculation of AIC"
for normal data according to Kitagawa and Gersch’s
method.

AIC = (-2)log (maximum likelihood)
+ 2 (dimensionof F @)
+ number of estimated parameters)

where the likelihood of a model is calculated by the fol-
lowing equation.

o N -2 —r(n)’
Likelihood= 11 (27r (nln - 1)) CXP(W_U) ®)

where r(n) is the innovation and r(nln-1) is the condi-
tional variance of r(n) at time n. The selected model for
the normal situation has a minimum value of AIC.
1.2  Fault detection

According to the Kalman filtering theory, the nor-
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Fig.1 Experimental apparatus

malized residual of one-step-ahead prediction has an
independent and normal distribution with zero mean and
variance one. The error residual does not have a not stan-
dard normal distribution; it is considered that the batch
process is in abnormal situation. In this work, the fault
detection is calculated by SPRT? (sequential probability
ratio test) based on the error residual. The sequential
probability ratio A(rn) is computed recursively by use of
the following equation.

p(n@)H,)

Am)y=An-1)+ log—P(Tl(n)lHo) 9

where 1(n) is the error residual at time n, and
P(n(n)lHy) and P(n(n)lH,) are the probability density
functions of normal (H,) and abnormal (H;) situation
respectively. In the case where the value of A is greater
than a given upper threshold, the process is regarded as
an abnormal situation. When there is an abnormal situa-
tion, the mean must be changed, and Eq.(9) is expressed
by the following equation.

An) = Atn - 1)+ma{n(n)—%} (10)

m, is the mean under an abnormal situation. In that
situation a change of variance occurs and Eq.(9) is
expressed by the following equation.

nm)’

Am)=An-1)- 2

L-D-Jiogw,) (11)

a

v, is the variance in an abnormal situation.

Experiment

2.1 Modeling

As an example of the procedure’s application of the
procedure, a simple temperature control process was
examined. The experimental apparatus is shown in

VOL. 26 NO. 51993

Temperature

14 Il | | | |

0 100 200 300 400 500 600
Time [s]

Fig.2 Observed time series y(n) (normal)

Table 1. Comparison of AIC

TREND (k) AR (p) SEASONAL (L) AIC

2 0 0 -2098
3 0 0 -2049
4 0 0 -1997
2 1 0 -2175

Fig.1. Three liters of water in a Dewar vessel was heated
by a 500-watt heater, the power of which was controlled
to keep the temperature following the scheduled rise.
The temperature in the vessel was measured by a ther-
mistor and sampled by a digital data logger and a per-
sonal computer every two seconds. Typical operation
data of temperature are shown in Fig.2. For this process,
the best Bayesian model was selected as follows.

The nonstationary nature of batch process data is
caused by the existence of trends. In this experiment it
was thus assumed that the observed time series y(x#) con-
sisted of three components: local polynomial trend #(n),
globally stationary autoregressive v(n) and observation
noise components &n).

To evaluate some models, the values of AIC for
each models were calculated by Egs. (7) and (8) as
shown in Tablel. The numbers in the table are values of
order (k, p) of the local polynomial trend #(n) and the
globally stationary autoregressive component v(n), the
period (L) of the local polynomial seasonal component
s(n), and the AIC for each model. The values of AIC for
the models, which had local polynomial trend £ =2, 3, 4
and observation noise components p, L = 0, indicated
that the optimal order of the trend component #(n) was
second one (k = 2). Besides, by comparing the values of
AIC for the models with and without autoregressive
component v(n), the best model was estimated in the
case of second-order local polynomial trend (k = 2) and
first-order autoregressive component (p = 1) .

The trend #(n) and autoregressive v(n) component
of the model are shown in Figs.3 and 4 respectively. The
calculated trend component (Fig.3) was in good agree-
ment with the observed time series (Fig.2). The error
residual n(n)is shown in Fig.S rather than the observa-
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Fig. 5 Error residual 7(n) (normal)

tion error component &().
2.2 Fault detection

To demonstrate the application of Bayesian-model-
based fault detection for the residual 7(n), an abnormal
situation was simulated (Fig.6) with the same experi-
mental apparatus. In this experiment the stirrer was
stopped at 400 seconds (n = 200) after the start of the
experiment. These data have been decomposed into trend
t(n), autoregressive v(n) and observation error compo-
nents &) by the above-mentioned Bayesian model.

The trend #(n) and autoregressive v(rn) components
of the model are shown in Figs.7 and 8. The trend com-
ponent (Fig.7) was smoother than the observed time
series (Fig.6), but the autoregressive component (Fig.8)
in the abnormal situation did not differ much from
normal one (Fig.4).

The error residual n(n) is shown in Fig.9. In the
case of the abnormal error residual a rapid change
appeared immediately after the occurrence of the fault.
SPRT was able to detect the fault at 422 seconds (n =

468

Temperature [°C)

14 ! 1 | 1 I
0 100 200 300 400 500 600

Time s]

Fig. 6 Observed time series y(n) (abnormal)

32 I T I T T

Temperature [°C]
S
T
1

14 1 I 1 | 1
0 100 200 300 400 500 600

Time [s]
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Fig. 8 Autoregressive component v(n) (abnormal)

211) by Eq.(10) when the probabilities of false alarms
and miss alarms were assumed to be 10? and the vari-
ance in the abnormal situation was 3.

The vertical line in Fig.7 shows the detection time.

Since the values of parameters were not set to ring
false alarms, the required time until detection became
somewhat long. But this time seems to be shorter than in
the case of operators’ monitoring, as shown in Fig.9.
Thresholds of parameters between normal and abnormal
situation must be set. These values were set on the basis
of SPRT calculation in the normal situation, and had to
be adjusted by experiment. Although the detection of a
fault by SPRT is the fastest of all sequential tests in the
case when the parameters under the abnormal situation
are known, another test may be better to use.

But we think this result indicates the usefulness of
the Bayesian modeling.
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Conclusion

A nonstationary batch process is modeled by a
Bayesian dynamic equation, where the observed data are
decomposed into three components. The model order of
each component is determined by means of AIC. Based
on the model, a fault can be detected by a sequential
probability ratio test of the error residual. An example of
a stirred vessel with a heater is is shown to confirm suc-
cessfully the fault detection method.

The model adopted in this work is expressed by a
linear and Gaussian state space model. Modeling with
nonlinear filters may be needed for strongly nonlinear
processes. Detailed evaluation of practical processes will
clarify the usefulness and limitions of this method.
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Nomenclature

F,G H = matrices of state space

k = order of difference equation [-]
L = number of period [-]
my = mean in an abnormal situation

n =time

N = number of data of a time series [-1
4 = order of autoregressive model [-1
r(n) = innovations at time n

r(nln-1) = conditional variance of r(n)
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s(n) = seasonal component at time n
t(n) = local polynomial trend component at time »n
Va = variance in an abnormal situation
v(n) = globally stationary autoregressive component at time n
w; = stochastic variable (i = 1, 2, 3)
w(n) = process noise vector at time »
x(n) = state vector at time n
y(n) = observed time series at time »
o, = n-th constant of autoregressive model [-]
&n) = observation error component at time n
n(n) = one-step-ahead output prediction error
Mn) = probability ratio at time n [-1
o = variance of €
112 = variance of w; (i=1, 2, 3)
<Subscripts>
1 = local polynomial trend component
2 = globally stationary autoregressive component
3 = seasonal component
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