PREDICTION OF VAPOR-LIQUID EQUILIBRIA BY USING EQUATIONS OF
STATE WITH ZERO-PRESSURE EXCESS GIBBS ENERGY MIXING RULES.
THE RKU2 MODEL FOR MODERATE TEMPERATURES

PETR KOLAR AND Kazuo KOJIMA*

Department of Industrial Chemistry, College of Science and
Technology, Nihon University, Tokyo 101

Key Words:  Thermodynamics, Phase Equilibria, Vapor-Liquid Equilibria, Mixing Rule, Equations of State

A zero-pressure mixing rule for the energy parameter in cubic equations of state has been developed. The
composition dependence of the mixture volume u = v/b at zero pressure is approximated by a two-parameter
Redlich-Kister expansion (RKU2). The RKU2 coefficients are determined from pure component parameters

of a cubic equation of state and activity coefficients at infinite dilutions.

The RKU2 mixing rule combined with the SRK equation of state has been tested for seven isothermal and
nine isobaric binary systems. At moderate temperatures the model performs comparably to the treatment
requiring an additional iterative procedure (Heidemann and Kokal, 1990). Extensions to ternary systems and
the importance of correct temperature dependence of the activity coefficient models used in the mixing rules

are discussed.

Introduction

Chemical engineering practice deals with a large
number of systems which can not be successfully
described by equations of state with conventional
mixing rules. Following the procedure of Huron and
Vidal'?, more flexible mixing rules can be obtained by
combining equations of state with excess Gibbs energy
(g®) models.

An advantage of the equation of state approach is
the possibility of predicting phase equilibria in a wide
range of conditions from a known gF correlation.

In the original suggestion'”, the excess Gibbs
energy expression from an equation of state is equated
with a g€ model at infinite pressure. Predictive capabili-
ties of the models are limited because the g¥ parameters
at infinite pressure are too remote from real conditions
and are not directly determinable.

Independent low-pressure activity coefficients
have been incorporated in the g£ mixing rules only very
recently® '3, Correct employment of the zero-pressure
standard state requires, however, an additional iterative
procedure for mixture standard-state volume.

Michelsen'® simplified the treatment with approxi-
mations yielding zero-pressure mixing rules with one or
two coefficients optimized for two parameter cubic
equations of state (the MHV models).

The objective of this work is to investigate another
approach for avoiding the iterative procedure in the zero-
pressure g mixing rules. Conceptually, at moderate tem-
peratures the equation of state should closely follow the
underlying excess Gibbs energy model with no need of
adjustment of parameters.

* Received September 14, 1992. Correspondence concerning this
article should be addressed to K. Kojima.
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1.  Zero-pressure g£ Mixing Rules

The excess Gibbs energy g is defined as a devia-
tion of the mixture Gibbs energy from the ideal solution:

¢ =g-g"= g—Zx;g;— RTZx Inx; (D)

The mixture molar Gibbs energy g can be
expressed from equations of state by means of the fol-
lowing thermodynamic relation:

=

g = J[P—RT/V] dv—RTin (Pyv/RT) +

+Pv+RTZxnx,+ RTEx,g; )

where the superscript * refers to the ideal gas state
at temperature T and pressure P,. When x; =1 and v = v;,
Eq. (2) gives a relation for the molar Gibbs energy of a
pure component, g;.

Combining Eq. (1) and Eq. (2) results in the gen-
eral expression for the excess Gibbs energy from equa-
tions of state:

¢ = J.[P—RT/V ] dv—z,x,.j [P—RT/v,]dv, -

—-RTZx,-ln(v/v,.) +PV—inPv,. 3)

The equation of state considered in this work is that
of Soave-Redlich-Kwong (SRK)'®:

P(v,T) = RT/ (v=b)—a(T)/ [v(v+b)] 4)
where a and b are the equation of state energy and size
parameters, respectively.

At zero pressure, Eq. (4) can be written in an
equivalent form:

Z(u,0) = Pb/RT = 1/ (u—-1) —a/ [u(u+1)] =0 (5)

which gives a relation between the dimensionless energy

JOURNAL OF CHEMICAL ENGINEERING OF JAPAN



Table 1.  VLE calculations of isothermal systems by zero-pressure g mixing rules
model RKU2 Heidemann® MHV24 MHVI'Y
system T N, APP Ay Ayy AP/ Ay Ayy AP/P Ay  Ayy  AP/P Ay AYy  Ref.

K (x 100) (x 100) (x 100) (x 100)

Ethanol(1) 313 13 2.2 0.6 0.0 2.2 0.6 0.0 2.6 0.9 1.0 2.8 1.3 4.3 4
-Water(2) 343 13 1.0 0.4 0.0 1.0 0.4 0.0 0.9 0.4 0.2 1.0 0.9 2.9 4

423 17 2.1 1.5 0.0 2.1 1.5 0.0 1.9 1.2 0.8 2.0 1.5 0.9 2
Acetone(1) 333 9 1.9 0.9 0.1 1.9 0.9 0.0 23 1.0 0.7 5.4 1.8 6.7 4
-Water(2)
Methanol(1) 328 9 1.3 0.6 0.0 1.3 0.6 0.0 1.6 0.7 0.7 1.2 0.7 0.3 4
-Benzene(2)
Methanol(1)- 333 28 1.8 1.1 0.2 1.8 1.0 0.0 2.1 1.0 0.7 0.9 0.9 2.1 4
n Hexane(2)
Chloroform(1)
-Acetone(2) 323 15 0.3 0.1 0.0 0.3 0.1 0.0 0.4 0.2 0.2 0.2 0.1 0.2 5
Methanol(1)- 323 25 0.1 0.1 0.0 0.1 0.1 0.0 0.4 0.2 0.4 0.2 0.2 0.3 5
Chloroform(2)
Methanol(1)- 323 20 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2 0.2 0.1 0.2 04 5
Acetone(2)
Methanol(1) 323 42 0.2 0.4 0.0 0.2 0.4 0.0 0.3 0.4 0.3 0.2 0.4 0.3 5
Chloroform(2)
Acetone(3)

_ N al p
AP/P = (1/N)% | (P = PPy £ Pe|

parameter ¢ = a/RTb and the zero-pressure volume
reduced by the equation of state size parameter, u = vy/b.

For cubic equations of state at the zero pressure
standard state, the general expression for the excess
Gibbs energy of Eq. (3) can be conveniently written in
the form:

80/RT+Xx,n (b/b)) = Q- Ex,0, (6)

where Q is the dimensionless zero-pressure fugacity,

oo

Q= In(yp/RT) = [(z=1/wdu-tn@w -1 (D)

and Q; is the same quantity evaluated for a pure compo-
nent i.

For the SRK equation of state at zero pressure, Eq.
(7) becomes

Olu,a] =-In(u=1) —aln[(u+1)/u] -1 8)

At low pressures, the change in excess Gibbs
energy with pressure is very small. This allows the use of
the approximation g,f (zero pressure) = g¥ (low pres-
sure). Egs. (5), (6) and (8) can hence be combined with a
gF model with independently determined parameters and
solved iteratively for the mixture parameter u® '3. Back-
substitution to Eq.(5) then gives the required mixture
energy parameter .

2. Development of RKU2 Model

The idea followed in this work is to avoid the itera-
tive procedure in the gZ mixing rules by direct expliciting
the composition dependence of the mixture parameter u.
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Ay/y= (1/2Ny) -S4 50 [ (7S =40 /90

Figure 1 shows typical examples of the composi-
tion dependence of the deviation parameter Au,
U = XU+ XU+ Au 9

for isothermal binary systems at about normal boiling
points as calculated by the iterative method of Heide-
mann® with the SRK equation of state. This procedure
was taken as a standard since at low pressures the model
usually follows activity coefficient correlations with no
loss in accuracy (cf. Table 1).

From Fig. 1 it can be seen that the A u composition
dependencies exhibit rather regular behaviour. This
observation can be viewed as a consequence of the
common use of the linear mixing rule for the size param-
eter b in the g€ mixing rules, i.e. b = x;b; + x,b,. As
reported elsewhere, the equation of state is unable to
describe strong variations in mixture liquid volume if the
binary interaction parameter in the covolume mixing
rule has a zero value”.

It therefore appears that the A u composition depen-
dence could be sufficiently approximated by the
Redlich-Kister expansion'® with two coefficients
(RKU2):

Au = xx, [ (c+d)x; + (c —d) x,] (10)

The RKU2 coefficients ¢ and d can be conve-
niently determined from pure-component parameters a;,
b; and activity coefficients by applying the conditions for
infinite dilutions in binary systems. (Details of the deri-
vation and the expression for fugacity coefficients can be
found in the Appendix.)
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Fig.1 Composition dependence of mixture parameterAu. 1 -
ethanol(1)-water(2) at 343 K, 2 - methanol(1)-
benzene(2) at 328 K, 3 - acetone(1)-water(2) at 333 K.

The RKU2 coefficients ¢ and d are obtained by
solving the following linear equations:

c—d = (1/hy) [(Q,-0Q,) +Iny, —In(b,/b,) +
+by/by =11 = (u,—uy) an
c+d = (1/h) [Qy— Q, +Iny; —In(by/b)) +

+by/by =11+ (1, —uy) 12)
where Q; for the SRK equation of state is defined by Eq.
(8) and

ho= —[(ur=2u,— 1)/ (u;= D1 In [ (u;+ 1) /u]  (13)

The resulting mixing rule for the energy parameter
a of the SRK equation of state has the form:
a={-1/In[(u+1)/u] } - [In(u-1)

+x,(Q,=1nb, ) —x,(Q,—1nb,) +g5/RT+1Inb+1](14)
with u given now explicitly by Egs. (9) and (10).

3. Calculated Results and Discussion

3.1 Binary systems

The RKU2 model combined with the SRK equa-
tion of state was applied to a variety of binary systems at
conditions of about normal boiling points. Pure-compo-
nent critical parameters used in the calculations with the
equation of state were taken from Reid et al'”. The
acentric factor in the Graboski-Daubert modification® of
the Soave expression'® was adjusted so to give correct
values of saturated vapor pressures for pure components.

In selecting the input data an attempt was made to
include only complete data sets which would success-
fully pass the Overall Thermodynamic Consistency
Test!D. Calculations with the g mixing rules were based
on the Wilson equation®” with parameters evaluated in
the Dechema Series?. In case of systems containing
chloroform or showing liquid immiscibility (2-butanone-
water) the Redlich-Kister equation'® was used instead.
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Fig. 2 Composition dependence of deviations in predicted
mixture ¢ from the iterative method® for MHV?2 and
RKU2 mixing rules. Aa= a— o,
1 - ethanol(1)-water(2) at 343 K, 2 - methanol(1)-
benzene(2) at 328 K, 3 - acetone(1)-water(2) at 333 K.

Parameters of the equation were taken from the litera-
ture> 19,

In Table 1, the RKU2 results for isothermal sys-
tems are compared with the iterative method of Heide-
mann® and the MHV models'®. The activity coefficient
deviations Ay/y listed in Table 1 are defined as relative
differences of the activity coefficients calculated by an
equation of state and those given by the Wilson or
Redlich-Kister equation at the experimental points. The
activity coefficients of the RKU2 model and a g% corre-
lation are nearly identical, with deviations usually well
below 0.1%. The MHV models produce the deviations
of about one order higher.

Figure 2 shows details of the comparison reflected
in deviation of the calculated mixture energy parameter
o from the iterative method®.

Calculations by the RKU2 mixing rule were
extended to isobaric systems (Table 2). Figure 3 pre-
sents an example of the performance of the gf mixing
rules for a system with a limited liquid miscibility'®.

In the case of isobaric systems the only expense for
the RKU2 model is to reevaluate the activity coefficients
at infinite dilution when the temperature changes. The
computational excess is only moderate since local com-
position gf models provide simple expressions for the
activity coefficients at infinite dilutions in binary sys-
tems.

3.2 Ternary systems

Because of the observed regularity of A u composi-
tion dependencies in constituent binary systems,A u for
ternary systems was approximated by the following
expression:

Auypy = Aupy+ Auyy + Auy, (15)

Table 1 shows results of isothermal calculations of

the system acetone-methanol-chloroform exhibiting a
saddle-type ternary azeotrope”. It can be seen that the
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Table 2. .VLE calculations of isobaric binary systems at 101.3kPa

model RKU2 Heidemann® MHV2!4 MHV1'®
system T Ny AT/T Ay Ayy AT/T Ay Ayly AT/T Ay Ayly AT/T Ay Ayy

K (x 100) (x 100) (x 100) (x 100) Ref.
Ethanol(1) 351 15 0.2 0.8 0.0 0.2 0.8 0.0 0.2 0.8 0.4 0.4 09 2.4 4
-Water(2) 373
Acetone(1) 329 19 1.0 1.1 0.1 1.0 1.1 0.0 0.9 1.1 0.5 0.9 0.8 49 4
-Water(2) 373
2-Butanone(1) 347 33 0.3 0.6 0.0 0.3 0.6 0.0 0.1 0.7 0.7 1.8 3.0 6.8 15
-Water(2) 373
Methanol(2) 338 13 0.2 0.8 0.0 0.2 0.8 0.0 0.2 0.9 0.2 0.8 1.3 24 4
-Water(2) 373
Acetone(1)- 329 23 0.4 0.3 0.0 0.4 0.3 0.0 0.4 0.3 0.3 0.4 0.3 0.2 4

Methanol(2) 338

Cyclohexane(1l) 348 21 0.09 1.1 0.1 0.09 1.2

-1-Propanol(2) 370

0.0 0.12 1.1 0.4 0.18 14 0.5 4

Benzene(1) 350 23 0.4 0.6 0.0 0.4 0.6 0.0 0.5 0.6 0.3 0.3 0.7 0.4 4
-1-Propanol(2) 370
Benzene(1) 348 29 0.05 0.1 0.0 0.05 0.1 0.0 0.06 0.1 0.1 0.04 0.1 0.3 1
-Cyclohexane(2) 350
Methanol(1) 338 18 0.3 0.4 0.0 0.3 0.4 0.0 0.4 0.5 0.5 0.3 0.4 0.4 4

-Benzene(2) 350

AT/T = (1/N) zj,"; | (@ =1y £ (16 - 273.15) |

simple RKU2 model extends favourably to even this
complex multicomponent case.

Partial difficulties may, however, arise when the
model is extended to isobaric multicomponent systems
with varying temperature described by not fully adequate
local composition g£ models.

An example of such a situation is presented in Figs.
4a, b, which show the temperature dependence of the
activity coefficients at infinite dilution prescribed by
Dechema Wilson parameters for the ternary system ace-
tone-methanol-water at 101.3 kPa®. It appears that the
ternary Wilson parameters were rather overcorrelated,
causing incorrect temperature dependence of the activity
coefficients at infinite dilution (Table 3).

3.3 gftemperature dependence

The importance of inserting proper temperature
dependence in an activity coefficient expression is quite
general for all kinds of g€ mixing rules. It is particularly
significant in an extrapolation outside the range of condi-
tions where the parameters were evaluated.

Figure 5 gives an example of the temperature
dependence of the activity coefficients at infinite dilution
in the system ethanol-water, showing the maximum
between 70-100°C. Figure 6 presents calculations of the
azeotropic line in this system. Apparently, any extrapola-
tion with temperature-independent Wilson parameters
determined at atmospheric pressure can yield incorrect
results. Alternatively, the Wilson parameters with qua-
dratic temperature dependence evaluated between 30-
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N 1
Ay/y = (1/Ny 'Eji1|y§f1j“yff

150°C may in extrapolation beyond the critical point of
ethanol lead to highly erroneous results.

Conclusion

A model based on an approximation of composi-
tion dependence of mixture zero pressure reduced
volume u by a two-parameter Redlich-Kister expansion
(RKU2) has been tested. The RKU2 mixing rule is
suited for moderate temperatures and may be useful for
predicting phase equilibria at elevated pressures.

Appendix

RKU?2 parameters ¢ and d at infinite dilutions
For the SRK equation of state at zero pressure the
following formula can be derived from Eq.(8):

h = dQ/du = (3Q/9a )do/du (A1)

where
(00/3a) = —In[(u+1)/u] (A2)
do/du = (¥ =2u-1)/(u—-1)> (A3)

The composition derivative of function Q follows
from Eq. (6),

Qi = (3Q/9x;) = (dgg/x;) —Inb;+
+(3b/9x;) - (1/b) —Q;  (A4)

Typically, the linear mixing rule is assumed for the equa-
tion of state size parameter b, i.e.
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Fig. 3 Experimental and calculated x-y diagram for 2-
butanone(1)-water(2) at 101.3 kPa.

b = Zxb, (db/0x;) = b,.
For binary systems, the deviation functionAu of
Eq. (9) is approximated in this work by the Redlich-
Kister expansion with two coefficients, Eq. (10). The
RKU2 coefficients ¢ and d can be determined by
applying the following relations valid at infinite dilu-

tions in binary systems:

(Au/xx, )x1=0 = (dAu/dx, )x,=0 =c-d (AS)
(A”/xlxz)x2=o = (dAu/dx, )12=0 =c+d (A6)
with
(dBu/dx,), _o = (du/dx), _o=(u=u) (A7)
(dAu/dx, ))(2:0 = (du/dx, )x2=0+ (u; —uy) (A8)

The composition derivatives at the terminal points
(du/dx;), _ o can be found by differentiating Eq. (A9),
which defines a relation between the excess Gibbs
energy and an equation of state at zero pressure in binary
systems:

8o/RT+Inb = Q—x,(Q,~Inb,) —x,(Q,—Inb,) (A9)
In Egs. (A10), (A11) these derivatives are expressed by

means of the differential quantities defined by Egs. (A1),
(A4):

(du/dx, )x‘ o= (1/hy) (él _é2)x1=0

= (1/hy) [Q, - Oy +In¥] —In(b,/b,) +b,/b,— 1]
(A10)

o= (1/h) (Q2= Q1) =0

(du/dx, )x
,=
= (1/hy) [Q,~ Q, +In¥, —In(b,/b)) +b,/b, — 1]
(A1l)
where h; = dQ,/du;.

Expression for Fugacity Coefficients

Fugacity coefficients are calculated from the SRK
equation of state and zero pressure g€ mixing rules by
the following relation:

170

]
c
© 2.0 T T T
»
@ (a)
©
«
1.6 | ]
= 2
o 1 2 4
c
©
£
-
° 0. 8 F 1
£
1 -
£ g
8 -
= 0.4 L .
s @ Tochigi (1976)
0.0 L 1 s L
2. 4 2.6 2. 8 3.0 3. 2 3. 4
1/Tx10°® [1/K]}
o 4.0 . . ;
c
. (b)
<
-
e 3.0 -
€
= 0 O
= 2.0} 1 o__o__—— .
- -
c
]
+ 1 0+ .
o 2
8]
©
8 0. 0} 4
= @ Tochigi (1976)
S
—~ -1 0 1 L 1 1

1/Tx10°® [1/K]

Fig. 4 Temperature dependence of activity coefficients at
infinite dilution.
a) Methanol in acetone
b) Acetone in methanol
1 - prediction by Wilson parameters for methanol-
acetone at 101.3 kPa¥, 2-prediction by Wilson
parameters for methanol-acetone-water at 101.3 kPa®.
Experimental data by Tochigi et al. (1976)' for
methanol-acetone at 101.3 kPa.

In(f/x,P) = (b;/b) (Pv/RT+1) —In[P(v-b)/RT]
—[0(ne) /9n; 1in[(v+b)/v] (A12)
The composition derivative of the combined mix-

ture parameter & in the RKU2 mixing rule can be again
found by using Eq. (A4):

3 (na) /3n; = o+1/(3Q/30.) - [Qi— Zx, 4]
with (dQ/d o) defined by Eq. (A2).

(A13)

Nomenclature

a ° = equation of state energy parameter [Pa(m*/mol)?]
b = equation of state size parameter [m?/mol]
b; = pure component value of b [(m*/mol]
¢ d = parameters of RKU2 model [-1
f = fugacity [Pa]
g = molar Gibbs energy [J/mol]
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Table 3. VLE calculations of isobaric binary systems at 101.3kPa

model RKU2 Heidemann® MHV2!% MHV1!4

system T Ny AT/T Ay Ay/ly ATT

K (x 100) (x 100

Ay/ly AT/T Ay  Ay/ly AT/T Ay Ay/y Ref.
)

(x 100) (x 100

Acetone(1) 329 36 0.9 1.3 1.1 0.9
Methanol(2) 373
Water(3)

0.0 0.8 1.3 04 1.1 1.2 3.0 4

Benzene(1) 347 56 001 04 0.2 0.01
Cyclohexane(2) 354
1-Propanol(3)

0.0 001 04 04 0.03 04 0.3 4,9

Benzene(1) 347 69 0.5 1.4 0.5 0.6
Cyclohexane(2) 371
1-Propanol(3)

0.0 0.5 1.3 04 0.6 1.3 0.3 1

N, 2 1
Ay = (172 Ny) -4 5 Yii =Yii

o400 T : . .
o Legendre polynomials
s | e Wilson eq. (ref. 12)
4 3. 0 """ Wilson eq. (Dechema)
o
-
—_ _ -
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Fig. 5 Temperature dependence of the infinite dilution activity
coefficient of ethanol(1) in water(2).
NBT(1)-normal boiling temperature of ethanol (351 K),
TC(1)-critical temperature of ethanol (516 K).

8 = pure component value of g [J/mol]
& = molar excess Gibbs energy [J/mol]
h = function defined by Eq. (A1) [-]
h; = pure component value of h [-1
Ny = number of data points [-]
n = mole number [mol]
P = pressure [Pa]
[0} = dimensionless zero-pressure fugacity, Eq. (7) [-]
Q; = pure component value of Q [-]
0; = derivative of Q with mole fraction [
R = gas constant [J/(mol K)]
T = temperature [K]
u = reduced molar volume vy/b at zero pressure [-]
u; = pure component value of u [-]
v = molar volume [m>/mol]
v; = pure component value of v [m3/mol]
x; = mole fraction of component i [-1
z = Pb/RT, Eq. (5) [-]
a = combined parameter of equation of state,

o= a/RTb -]
o = pure component value of & [-]
¥ = activity coefficient of component i [-]
Au = deviation function of u, Eq. (10) [-]
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Fig. 6 SRK calculations of the azeotropic line for ethanol(1)-
water(2) based on different gf models.

<Subscripts>
1,2,i,k = component index
= standard state
<Superscripts>
* = ideal gas property
oo = at infinite dilution
cal = calculated by equation of state
exp = experimental value
IS = ideal solution
mod = model value, from a g correlation

of experimental data
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