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An extrapolating model provides values for the thermophysical properties when infeasible specifications (either
pressure or temperature) are recognized at a given iteration in a process simulator, applying an EOS technique.
The model has a considerable effect on the convergence characteristics, accuracy and robustness of a higher-level

simulation algorithm.

The present paper outlines a general approach for evaluating and comparing the abilities of different
extrapolation techniques: to promote the convergence of higher-level algorithms; to ensure for them a solution
that is accurate and not significantly inferior to the actual one. The latter could have been obtained using for

example a different thermodynamic model.

The approach is based on the classical fixed-point theory and its connection with the contraction-mapping

principle.

Introduction

High-level algorithms for steady-state simulation
and design, based on an equation of state (EOS)
technique, use a hierarchical structure of organization.
The lower level includes the EOS model, which
incorporates a very important routine. It solves the
EOS for the volume corresponding to specified
pressure and phase of interest. Then the EOS model
returns a valid volume value (and the derived
thermodynamic properties) to the higher-level algo-
rithm. During phase-equilibrium calculations, how-
ever, combinations of pressure, temperature and
composition may arise for which there is no valid
volume root according to the EOS used. If care is not
taken to circumvent this problem, it will lead to a
trivial solution for the algorithm. The trivial solution
interrupts the performance of simulation algorithms
and spoils their convergence. Such situations can be
dealt with either by higher-level algorithms or by the
EOS model.

The second approach has proved to be more
reliable. The EOS model is organized to allow for a
specified phase: to recognize infeasible specifications
(usually that of the pressure) and to supply values for
the volume and the derived properties under all
conditions. The latter is realized through a so-called
“extrapolating procedure”, interwoven in the struc-
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ture of the EOS model.

Examples of extrapolating models are extensively
discussed in the literature*¢-8:1214.15 t5 name just
a few references. A graphical representation of the
performance of one, suggested by Stateva ez al.'¥, at
infeasible pressure specification for the liquid phase,
is demonstrated in Fig. 1.

The extrapolated volume and derived thermo-
properties should satisfy the following requirements:
to follow the tendency of the real values for the phase
specified; to be continuous and differentiable; and to
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Fig. 1. P-v isotherm (—) simulated by the extrapolating
technique!® for the liquid phase at T<T,,. The infeasible
pressure specification (P,,,,) is transformed to a feasible one
for the EOS used
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improve the convergence characteristics of the
higher-level simulation algorithms®.

It is conceivable that satisfying this last requirement
is decisive for the robustness of higher-level simulation
algorithms. However, the papers that advocate new
extrapolating techniques provide little knowledge of
their strength and limitations in this respect. Hence,
a detailed examination of the problem is justifiable
and quite useful.

To facilitate it, a general approach, designed to
predict in a quantitative manner the influence an
extrapolating technique exercises on a higher-level
algorithm, is presented in this paper. Its performance
is demonstrated with an example of isothermal
two-phase vapor-liquid flash, which can be treated as
a simple higher-level simulation algorithm. It is
followed by a brief discussion of a bubble-point
temperature algorithm as an example.

The same analysis can be successfully applied
to other steady-state simulation/design calculations
where the above and analogous algorithms (like the
isenthalpic flash calculation, the bubble-point pressure
algorithm, etc.) are incorporated as constituent parts.

Outline of the Approach

The approach is based on the classical fixed-point
theory and its connection with the contraction-mapping
principle since the latter has the potential to give insight
into the convergence behavior of algorithms used for
steady-state simulation.

To make the explanation more readable, firstly
some general considerations will be given.

Any computational algorithm at all can be
represented as a mapping:

bD: x>y,

where xe R™, ye R" are the vectors of the input and
output values. The iterative calculations are re-
presented as @", where n must be equal to m.

Then if a fixed-point iterative sequence

XD = p(x®) (1)

is constructed, its points of accumulation satisfy the
equation

x*=@(x*) (1a)

where x* are the fixed points of the mapping ®.

To show that the fixed-point iteration defined by
Eq. 1 converges, the contraction mapping principle® is
applied.

Let M® be the Jacobian matrix of @ and 4,—an
eigenvalue of M@®. Then if the condition

max | L,(M®)|<1 (1b)

1<i<n

is satisfied, @ is a contraction mapping®.
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Table 1-A.

1. Start with x; and y;.

2. Compute v-, v, In ¢F, In ¢/

3. Test for convergence ) (In(f*/f¥)) <A,
Yes—Stop
No—Continue with Step 4.

4. Calculate K;=exp(In ¢f —1n ¢}).

5. Solve the equation: f(a, K,, K, **
fraction a.

6. Compute x and y from:

-, Kyo)=0 for the vapor

Zy

= and y;=Kx;
K, —1)+1

Xi

and go back to step 2.

The equation f(«, K;, K,, - - - ,Ky.) =0 might be any of the known
formulations of the single-loop univariable methods for solving
the flash problem, as discussed by Ohanomah and Thompson'?®.
The accepted 4,,,=10"12,

Consequently, the iteration defined by Eq. 1
converges to a fixed point, as stated by the contraction
mapping theorem®, which can be found in many other
literature references.

The contraction-mapping principle can be applied
to any computational algorithm to establish whether
it converges. To elucidate the ideas, the well-known
isothermal vapor-liquid flash algorithm will be used as
an example of a simple higher-level simulation
algorithm in the present study.

The choice of the vapor-liquid (liquid-liquid) flash
algorithm is motivated by the following considera-
tions. Firstly, it is not only frequently used in
steady-state simulation, but is a constituent part of
other important higher-level algorithms; secondly, it
contains a volume-finding routine. As discussed
previously, it is where an extrapolating procedure
might be required.

Furthermore, the method of solution and organiza-
tion of the flash algorithm does not influence in any
way the generality of the ideas presented further on.
That is why the authors have accepted the univariable
single-loop organization'®, which has proved to be
the most widely used.

It is known that when the pressure-temperature
specification is in the two-phase region a physical
(“real””) solution of the flash problem exists. The
algorithm is given in Table 1-A, while the representa-
tion of its one iteration step as a mapping @ is
demonstrated in Table 1-B.

Let one mole of the feed be flashed and let /; be the
independent variables. The assumption that F=1 is
for simplification only and does not influence the
generality of the conclusions which follow. In that
case L=1—a and V=a.

It is convenient to represent the mapping @ of the
flash algorithm as a composition of two mappings (as
shown on Table 1-B) and its Jacobian matrix M® as
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Table 1-B.

ll’”'alNc Dys "7 75 Une
! ! ! 1
X1 " XNe Yis 7 Yhe
i 1
D, vk [
’ !
In ¢F In ¢¢
’ i |
K;
o f(o, K;, -+, Ky)=0
@, !
X1y 07 Xye Yis © 775 Vhe
! ! ! !
> ll’”"lNc Uy, ", Uy

a product of the Jacobian matrices of @, and @,
mappings:
DP=P,c®, and MP=M®P,xMP, 2)

The operation ‘“‘composition” is denoted by the
symbols o in the above expression.

@, : I - K is the mapping, where extrapolations
might occur;
@, K->, (IeR",KecR").

The Jacobian matrix of the first mapping is M@, =
(0K;/0l;), where

OK; _o(exp(in ¢F—1n §})) _ (a n ¢} 2ln ¢r>
a al; U A dv;

J J J

€)

The partial derivatives of the fugacity coefficients
are well-known and widely discussed analytical
expressions, e.g. in®.

The Jacobian matrix of the second mapping is
M®,=(01,/0K}).

Elements of M@, are given by:

— (] — _ Xy oo x:yi/z:(0f|0K;)
hy= el a)[( zK->5”+ a(l—a)af/a‘a} @

ifhj
Their derivation is demonstrated in Appendix I.
The elements of M®, take concrete form when the
specific formulation of f(a, K) is differentiated and
introduced in Eq. 4 (Appendix II). If, for example,
f(a, K) is the Rachford-Rice formulation:

mu:a(]_a)f"’_y_fl(_éiﬁx;yj'/zj') (42)
z; K; Sy
s =(—oy KD (4b)

[1+aK;—1)]*

Since the pressure-temperature specification is
assumed to be in the two-phase region, the isothermal
flash algorithm has a nontrivial solution and its
mapping @ must be contractive.
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Appendix III demonstrates that, in the case of
either the Rachford-Rice or Barnes-Flores formula-
tions of the single-loop univariable method, M® and
a matrix SV are equivalent.

The matrix S is:

Oln K+
VT 9In K "ol K

_ i (6ln¢i"+6lnd)i"> ol,
on,, on, )olnKk;

(In ¢{—1In ¢;)

)
m=1
Michelsen!?) has shown that the largest modulus
eigenvalue of § is less than one in the domain of
vapor-liquid phase coexistence. Since matrices .S and
M® are equivalent, they share the same eigenvalues.
Hence, the largest modulus eigenvalue of M@ is less
that one as well. Consequently, the mapping @ is
contractive.

Analysis of the Convergence Behavior of the Isothermal
Flash Algorithm after an Extrapolating Procedure is
Applied

This section demonstrates how the contraction-
mapping principle can be used to analyze the
convergence behavior of a higher-level algorithm after
an extrapolating procedure has been applied at some
iteration. In particular, to clarify whether an extrap-
olating model is:

1) suitable, i.e. promotes convergence; i) reliable,
i.e. ensures for a higher-level simulation algorithm a
solution, which will be accurate and not significantly
inferior to the “‘real” one. The “real” solution of the
algorithm is its fixed point. It might be obtained either
applying a mixed thermodynamic model (e.g. 7—¢
method) or using a wisely chosen set of initial estimates
(e.g. obtained from stability analysis of the system
to be flashed).

The primary implication of the discussion in the
previous section is that any extrapolating procedure
can be represented as a mapping. Furthermore, it
could be included as a constituent part in @, instead
of the volume-finding routine. Thus, @, will be
transformed to @F. The paradigm of the new
composite mapping @* is shown on Table 1-C.

In the language of the information flow organiza-
tion of a higher-level algorithm, the above transforma-
tion reflects the following situation: At a given
iteration step k, for example for the current values of
x/I®_ the volume-finding procedure fails to find a root
of the EOS, corresponding to the equilibrium liquid
phase. Then the extrapolating technique is triggered.
It provides values for the pseudovolume v** and the
pseudofugacity coefficients In ¢**. They are then
returned through the volume-finding routine to the
higher-level algorithm. It uses them further on to
estimate K®, o, I**Y. However, it is not known
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Table 1-C.

s 0 Iy vy, D
! 1 1 !
Xy, " XNe Y15 "7 Ve
! !
[ 2y e v
1 !
In ¢f In ¢
@ | |
K

a: f(aa Kl, o 'sKNr)=0
D, !
Xis "7 XNe Vi "7 Ve

\ ! | |

I

l"”’lNc Uy, "7 Un

beforehand whether this will return the algorithm to
its normal pattern of convergence, i.e. whether its
mapping will be contractive.

The mapping @* will be contractive if the largest
modulus eigenvalue of its Jacobian matrix M®*=
M®,« Md¥ is less than one. However, if the applied
extrapolating technique is suitable, in the sense that
it ensures and promotes convergence of the algorithm,
@D* has to be a contraction mapping. To verify this,
the following two-step analysis is suggested:

1. Form the Jacobian matrix M®*:

all(k +1)
a1%

(e Nar)
\ ok, N\aw)’

where the elements of the matrix M®, (Eq. 4) are
calculated after the extrapolating procedure has been
introduced; —the elements of the Jacobian matrix
M®* (Eq. 3) are calculated, using [®, v, the
“pseudovolume” v™* for the liquid phase and the
vapor-phase volume v".

2. A standard procedure for calculating M@ *
eigenvalues is applied.

If the largest modulus eigenvalue of M@ * is greater
than one, @ * is not contractive. This means that the
algorithm will not converge since the iterates move
away from the existing fixed point. Consequently, the
extrapolating technique applied is not suitable. It
influences in an unacceptable way the convergence
pattern of a previously convergent algorithm and it is
recommended to reject it. A simplified graphical
representation of the possible patterns of convergence
of an algorithm, before and after extrapolations are
applied, is given on Fig. 2.

A suitable extrapolating technique, however, could
still be either reliable or wunreliable. Reliability
guarantees that the solution (obtained after extrapola-
tions have been introduced) is accurate and not
significantly inferior to the real solution of the

qu*:( ):MQZ*MQ;“
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Fig. 2. A simplified graphical representation of the possible
patterns of convergence of an algorithm, after an
extrapolation is applied

FP,—the true solution; FP,—the trivial solution or any other
solution (fixed point) which does not satisfy the physical
requirements of the problem solved; ——, an iteration without
extrapolation —-—, a suitable and reliable extrapolation;
——, an unacceptable extrapolation

algorithm, or is in the domain of its fixed point (Fig.
2).

To establish whether an extrapolating model is
reliable the following criterion is used:

A=8*— 6" <e (6)

8" represents the value of the “real” step, which
could have been realized by the algorithm if a solution
of the EOS for the volume of the phase specified had
existed; 6** is the value of the iteration step, calculated
after an extrapolating procedure has been used.

The value of 6* can be estimated through a linear
approximation, for which the following holds:

oD(x* 1)
0

XD = p(x®) = k4 (x%0 — x®= D) 4 p

O

For the simple example of an isothermal flash
algorithm, which on the k-th iteration requires an
extrapolating procedure for the liquid phase, the
iteration step on the independent variables / is given
by:

5’1‘*==Al=l(k+ n__ k) 8)

The “‘real” step, applying Eq. 7 and neglecting the

rest of the Taylor series r, can be estimated as: '

op*— Y

st ot
ol

rea

=1k D g

real

(l(k) Iy (G 1)) (9)

where the partial derivative of the mapping @ is taken
before the extrapolating procedure is used.

The criterion then acquires the form:
A= =8 = 10— o)

real

where |[/|| =max; .; . n.(}).

JOURNAL OF CHEMICAL ENGINEERING OF JAPAN



It is applied only once, right after an extrapolating
procedure has been required by the volume-finding
routine. Then:

If:

A<e (10a)

the extrapolating procedure studied is classified as
reliable. However, if:

A>¢ (10b)

it is recommended to reject the procedure, because the
deviation of the solution (obtained at convergence)
from the fixed point is not in the range of acceptable
tolerance.

The upper bound ¢ is calculated accordingly:

e=(1= Az, Dx [P — 1% 1) (11)

where [ A%, | is the maximum modulus eigenvalue of
Mo*,

In the cases when the calculated |A*, | is
considerably less than one it is expected that the
higher-level simulation algorithm is not that sensitive
to volume extrapolations. In other words, even

“rough” models can do the job.

To confirm or to dismiss this conjecture, flash
calculations for different multicomponent systems
were tried. They were carried out at temperatures
below the pseudo-critical of the equilibrium liquid/
vapor phase, where the P(v) relationship is of the van
der Waals type. It was supposed that in such cases
the convergence of the calculations would not be
influenced in a drastic manner by the type of the
extrapolating technique applied.

A procedure adopting the volume corresponding to
the minimum/maximum of an isotherm, as suggested
by Gundersen®, Jovanovich et al.?, Mills et al.'?—to
name a just a few, is considered. It is one of the most
widely used and the easiest possible to implement,
since any second-order volume finding routine, at an
infeasible pressure specification, stops at vp;,/Vmax >
Furthermore, these values can be calculated directly
from the EOS, as suggested in®.

Here, for the sake of illustration only, the example
of a flash calculation for an ethane-n-heptane mixture
(mole fraction C, =0.85), run at 422 K and P =50 bar,
will be briefly presented.

Firstly, the calculations are run uninterruptedly till
the algorithm converges. Whenever an infeasible
pressure specification is identified at an EOS level
(ether for the liquid or vapor equilibrium phase) values
for the volume and the fugacity coefficients are
required from the extrapolation model. It provides
either v*f=v_;, or v*Y=v_,,. At convergence the
following results are obtained: a=0.9771; K, =2.037,
K,=0.2421; v£=175.73cm3/mol; v¥' =537.98 cm?/
mol.
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Table 2.
Given P, I, a=0, estimate T*, K}
)
11,"‘,1,% T U, T, Une
RN£+1 l l l l
xl»”]:stc yls“'ach
the liquid ok I
param. ! l
estimated In ¢f In ¢}
once at
@* | current T
K,
f(T’ Kl’ KZ’ T KNC)=0
!
X5 "t XNe yl""vch
! 1 1 !
Doy Iye Vs "7 Une
RNc+1
t=(v, T)

where t is the vector of the independent variables.

Afterwards, the steps of the analysis are followed.
The extrapolating model is proved to be suitable and
reliable since in all cases the calculated | A,,,| does
not exceed 0.238.

On the other hand, when |4,,,|—1 (as in the
vicinity of the true critical point, where the
convergence of the algorithm is very slow), the
higher-level algorithm seems to be quite sensitive to
the reliability of the extrapolating model applied.

To test the premise, flash calculations are run again,
this time at temperatures at which the P(v) relationship
for the liquid phase were not of the van der Waals
type. (Liquid phase extrapolations are studied since
they demonstrate a more pronounced effect on the
convergence of the flash algorithm). The “rough”
extrapolating strategy that is employed uses the only
real root that the EOS has at the specified pressure>.
In all cases the calculations converge either to the
trivial solution or do not converge at all.

The Bubble Point Temperature Algorithm

The analysis outlined in the previous section can be
applied successfully to study the influence exercised
by an extrapolating technique on the convergence
characteristics of other higher-level simulations
algorithms, based on an EOS technique. It will be
demonstrated below how that could be done for the
bubble point temperature algorithm.

The paradigm of the mapping of the algorithm (the
inner loop on the K; is included, but at T=const) is
given in Table 2.

The Jacobian matrix of the mapping @ * at the k-th
iteration, where an extrapolating technique is
required, is given:
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Table 3.

k4 1(k+ v l}:a“l‘ v Iccmvcrged xconvg Kconvg
N, 0.014 2.9419-1073 2.1573-1073 3.25-10°° 0.003125 4.5155
C, 0.943 5.827671-10°3 5.629238-1073 6.2468-1073 0.600657 1.5759
C, 0.027 7.55545-10~4 6.13921-107% 2.8767-10" % 0.075738 0.3497
C, 0.0074 5.79943-10°4 6.88113-1074 5.9575-107* 0.057284 0.1200
nC, 0.0049 9.62287-1074 9.18990-10" 4 9.7488-10"* 0.093739 0.0423
nCs 0.0027 1.109944-10°3 1.083512-1073 1.1127-1073 0.106995 0.0149
nCg 0.001 6.50674-10"4 491180-1074 6.4960-10~* 0.062462 5.6-1073
k=4; 0conyg = 0.9896; total number of iterations=9.
I value are given in mole numbers, x—in mole fractions.
Table 4.
z I(K+ Y ,r(’ec;l- D xcanvg Kconvg
N, 0.014 2.16477-1077 2.16452-1074 0.009470 1.5998
C, 0.943 2.6261023-1072 2.6261023-1072 0.903721 1.0545
C, 0.027 1.786898- 103 1.786852-10 3 0.043426 0.5256
C, 0.0074 8.77231-107* 8.77252-1074 0.016371 0.3127
nC, 0.0049 9.81613-10"4 9.81613-10"% 0.013887 0.1883
nCsy 0.0027 8.60667-10" 8.60593-10"4 0.009236 0.1124
nCeg 0.001 4.55975-1074 4.55991-10"4 0.003889 0.0683
k=9; teonyg=0.7972; total number of iterations=38.
|
QD | ool P (atm)
K| ) 30
ov; | 0OT 80
Md*= : (12) 70
Fhalagy : oT¥+ 1 60
|
aw® 1 oT®  |pa=o 50 CP
| 40 T=20313K
The partial derivatives can be determined analyti- 38 [ P&S811atm
cally: dvf**D/ov%, discussed in the first part of the

paper in the form of its analogue d/**V/0I{®;

ovkt Y [ ov;\ [ OK;
(9% 0. 12
or® (M)( ) (12
£=<£><5Ki> (12b)
ov; 0K; J\ 0v; /. p
ET_:_@)/(L&):_%_ (12¢)
0K; 0K; oT) Y z,(0K,/0T)
0K;/0T is a well-known expression;
oT*+ 1 oT \/ 0K,
= m 12d
a2l ) o

In the case where T'=const in the inner loop on X;,
the relations applied are equivalent, but more simple
(since «=0) than those mentioned above for the
isothermal vapor-liquid flash.

Once the partial derivatives (12a—12d) are obtained,
the steps of the proposed general analysis can easily
be followed.
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175 200 225 250 T(K)
Fig. 3. P-T diagram of a seven-component typical natural
gas mixture
Examples

Equilibrium calculations for the widely used
example of a typical natural gas mixture’'1®!Y are
run. The purpose is to demonstrate how an
extrapolating model can be evaluated from the
viewpoint of the two important characteristic
discussed in the paper. The P-T diagram of the
mixture is shown on Fig. 3, and its composition (in
mole fractions) in Tables 3, 4 and 5.

The thermodynamic model used is the Soave-
Redlich-Kwong CEOS. The binary interaction param-
eters are the recommended k;; given in DECHEMA
Chemistry Data Series”: k,,=0.0278; k,,=0.0407;
k14=0.0763;k,5=0.08; k4 =0.0878; k,,=0.1496; the
rest of the k;; values are set equal to zero. The
extrapolating model analysed is the one suggested by
Stateva et al.'>.

The following points are studied:
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Point A. T=230K, P=70atm
The point lies inside the two-phase boundary.

Infeasible pressure specifications are recognized at the

4th iteration for the liquid phase. The block,

containing the extrapolating model, is triggered. It
provides values for the “pseudovolume” v™* and

“pseudofugacity” coefficients In ¢**. The Jacobian

matrix M@* is formed and its eigenvalues are

calculated. The conclusion is that:

—the extrapolating procedure is suitable, since
| Aax | =0.482;

—the extrapolating procedure is reliable, since the
recommended value of ¢, estimated according to
relation (11), is 5.107* and A=|I**D k1)
satisfies condition (10a).

The algorithm converges at the ninth iteraction. Its
performance characteristics, including the values of
| Amax| at each iteration and the profile of the
convergence criterion 4.,,, are given in Figs. 4a, 4b.
Table 3 summarizes some additional information for
the calculations performed.

Point B. T=204K, P=58 atm
This specification lies in the immediate vicinity of

the true critical point of the mixture. After the

extrapolating routine has been executed once, the

Table 5.
z Xconvg KCOHVE
N, 0.014 0.008128 1.8741
C, 0.943 0.8845 1.08
C, 0.027 0.050859 0.4432
C, 0.0074 0.020884 0.2185
nC, 0.0049 0.018375 0.1123
nCs 0.0027 0.012216 0.0570
nCq 0.001 0.005038 0.0297
Uconvg = 0-8260; total number of iterations =53.
| A maxl
050} -~ mmmm e mm——— o -
OI lbg [
048 /9\\_&
0470 )
046+
0/4 5 r

123456789
Number of iterations

following results are obtained: |AX,.|=0.992; the
upper bound ¢=3.10"°. The values of /**V and [&} ¥
(k=11), and x and K at convergence, are given in
Table 4. The performance characteristics of the
algorithm are presented in Figs. 5a, 5b.

For comparison, a simple extrapolating technique,
adopting the only root of the EOS, was applied. The
flash calculations did not converge—the iterates
moved away from the solution (Figs. Sa, b).

Point C. T=204K, P=57 atm

The flash algorithm, after the “extrapolating” block
is triggered three times, converges successfully. The
results are shown in Table 5, while the convergence
history of the calculations—on Figs. 6a and 6b.

The same point was tried with different initial es-
timates and as a result the algorithm converged, with
no extrapolations required. The deviation between
the solution in Table 5 and that obtained without
extrapolations is in the range of tolerance, required
by the flash algorithm itself.

Conclusion

This paper has discussed and provides a direct way
of estimating quantitatively how “extrapolated
values” of thermophysical properties (supplied by
specifically designed extrapolating techniques) influ-
ence the convergence characteristics of higher-level
simulation algorithms.

The proposed general analysis has been imple-
mented as a part of a general process simulator
“BEQUILIBRIA”?. The numerical performance,
tested on a variety of systems and applications, has
shown that the computational requirements of the
method are quite reasonable. It includes standard
numerical procedures (matrices and vector-matrix
multiplication; eigenvalues estimation, etc.), providing
a high degree of reliability for the conclusions

1 234567 89 10
Number of iterations

Fig. 4. Performance characteristics of the flash algorithm at 7=230K and P=70atm:
a) values of | A, |, calculated at each iteration, b) profile of the convergence criterion 4,,,; ——, an iteration
without extrapolation; ———, performance of the extrapolation model® :

VOL. 25 NO. 3 1992

333



| A max| r"'/.

100 |

099 I
0.98 i
097 \j‘l
0.96
0.95
094
033
092

0 20 30 40
Number of iterations

-9
-10
-1
-12

0 20 30 40
Number of iterations

Fig. 5. Performance characteristics of the flash algorithm at T=204K and P=58atm:
a) values of A,,,,, calculation at each iteration, b) profile of the convergence criterion 4.,,; ——, an iteration
without expolation; ———, performance of the extrapolation model!®; — —, extrapolation leading to

divergence of the calculations

| A max|
100t -3t
) - 4 M
0198 \jl‘ 5 _5 |
osel \ 5/ S-of |
i o _ /,\
094 _gl
092} -9t
-10}
090} 1
. . . A . -12 . f
10 20 30 40 50 60 10 20 30 40 50 60
Number of iterations Number of iterations
Fig. 6. Performance characteristics of the flash algorithm at T=204K and P=57 atm:
a) values of | Ay, |, calculated at each iteration, b) profile of the convergence criterion 4,,,; ——, an

iteration without extrapolation; ———, performance of the extrapolation model'"’

obtained. The partial derivatives are given as
analytical expressions and their estimation requires
simple operations only.

Nomenclature
b, = van der Waal volume (Fig. 1) [em®mol 1]
f = fugacity [atm]
F = total number of moles in feed, F=Y z, [
ki = binary interaction parameter for the SRK CEOS
[—]
K, = equilibrium ratio of i-th component —1
I; = mole number of liquid phase, component i [—]
L = total number of moles in liquid phase, L=/, [—]
M = Jacobian matrix [—]
N, = total number of components [—1
P = specified pressure [atm]
R" = n-dimensional space [—]
T = temperature [K]
v = molar volume of liquid/vapor phase [cm3mol™1]
v; = mole number of vapor phase, component i [—]
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total number of moles in vapor phase, V=3%uv[—]
“extrapolated” volume of liquid phase at infeasible
pressure specifications, P= P, (Fig. 1)

[em3 mol 1]
pseudocritical volume at T< T, of liquid phase
(Fig. 1) [em®mol 1]
mole fraction of liquid phase [—]
mole fraction of vapor phase [—]
mole number of feed, component i —]
norm of a vector [—]
composition @,0P, : P(x)=P,(D,(x)) [—]
vapor mole fraction, a=V/F [—]
activity coefficient [—]
change in appropriate variable [—]
criterion, Eq. 6 |
correction to I at iteration k [
Kroneker delta [—]
recommended value, Eq. 11 [—]
eigenvalue [—]
a mapping [—]
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¢ = fugacity coefficient [—]
{Superscripts)

k = number of iterations

L = liquid

V = vapor

* = extrapolated

{Subscripts)

calc = calculated from the EOS

convg = value of a parameter at convergence

lim = limiting value

max/min = maximal/minimal value

pc = pseudocritical value

real = true value (obtained without extrapolations)
spec = specified
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Appendix I

The following functional dependences are taken into considera-
tion when deriving the elements of M®,:

L=l K);
a=a(Ky, Ky, *+ Kno) 5
Sf=f(a, Ky, Ky, » 0, Ky

K=Kl v);
v=v,(;) .
Then:
al; ol; ol;\ Oa 0x; o(1 —a)x; Oa
aKj=(ax,>f(a)xa—z<,=“‘“)(ax,.)f*f " oK
where:
ox; . mr _axiyi
oK; [1+a(K;—1)]? z;K;
a(l—a)x; _ z;K; _ i
da [1+a(K;—1)]? z;
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0a/0K;= —(0f/0K})/(0f/0w) implicit differentiation from f(a,
Ky, -+, Ky)=0. The elements of M®, are given by:

mij=a(1—a)[(—ﬂ)5u+M] @y
z;K; a(l—a)df/oa

J

Appendix II

Appendix II demonstrates the differentiation of df/0a and
0f/0K; when f(a, K) is either the Rachford-Rice or the Barnes-
Flores formulation. These forms have proved to be most widely
used.!¥
A. The Rachford-Rice formulation: f(x, K )=Z( Yi—x;)

z(Ki—1)
l1+a(K;—1)

0 17 i+ Xx; K,—1)?
d(l—a)—f=a(]—‘a) z(yl+xx)=a(1_a){_z Zi( i ) }
oa oo [1+aK;—1)]?
Z(Ki—D)(1-0) z(Ki—1)(1-0a)
--% ) :
[1+a(K;—1)] [1+a(K;—1)]
Combining Egs. (II.1) and (I1.2), the following result is obtained:

S K)=Y (L)

(I1.2)

5f_ _ z(Ki—1) —
a(l—a)a—(l a)z—[l+a(K,-—l)]2 51 (I1.3)
EL=62(J’-'—X1)=L[Z z(Ki—1) j|=ﬁ (11.4)
K; 0K; oK; l+a(K;—1)] Kjz;

Substituting Egs. (I1.3) and (I1.4) into Eq. (I.1), the elements of
M®,, when f(a, K) is the Rachford-Rice form are obtained:

mi,=a(1—a)@i<—5ij+%) aLs)
z; K 5y
B. The Barnes-Flores formulation: f(a, K)=In(} y;)—In(} x;)

From f(«, K)=0, follows directly that ) y,=Yx; or the
equivalent expression Y (y;—x;) =0. The latter is the Rachford-Rice
formulation, Eq. (IL.1).

Then:
a(l —d)ﬂ=a(l —a) Olin(3.y) ~In(}%)]
Oa ot
a(l—a) 6(§y.~) a(l—a)a(gx")
= : - o (11.6)
Zyi in
However, since Y, y,-=Zx,- the following relation holds:
a1l —a) a(Z(_;;—X,-))
o
)= 11.7
a(l —a) o 5 17

The expression in the numerator on the right-hand side of Eq.
(I1.7) has been shown to be equal to s, (see Eq. I1.3). Hence:

z;(K;—1)
or O kT s,
a(l —o) == ==t (IL8)
do Zy, zyx
aYy) o x)
of @ _ _ oK; 0K;
5Kj_6K_,~ [ln(ZJ’i) ln(zxi)] zJ’i in
ALXi—x)] Xy,
- K K (1L.9)
Z)’i Zy:
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Appendix III
S=oD[11],

where:

0y <a In ¢F N éln ¢>,.V>

on; on;
dyj=VL(x;yi/z)[6;;+ (x;;/2)/s]
s=1=Y (x/z) -

Analysis of M® = M®,- M®P, shows that: i) The rows of M®P,
are proportional to the rows of the matrix @ (see Eq. 3), with a
proportionality coefficient K;; ii) the columns of M®, are
proportional to the columns of matrix D with a proportionality
coefficient 1/K;. Furthermore, the difference between the values of
the elements of M@, are the elements of the matrix D is given by
the difference between s, and s, where:

Z(Ki—1)

XiVi
s,=(1—06)2——————[1_HX(K__I)]2 s=1-% -

336

When f(«, K) is the Rachford-Rice form, the expression for s
can be rewritten as:

ik yey R
RN Wy T S TR
_y k=D ~ o
_y ke gy wKED
_z[l+ac(K,~—1)] a a)z[1+a(Ki—l)]2
=—(1—a)2ﬂ§i (L

(1 +a(K;— D]?

Hence s= —s;.

The same results is obtained when f(«, K) is the Barnes-Flores
form.

Taking into consideration the above derivation and performing
the multiplication (M@ - M®,) proves the equivalence of matrices
M® and S.
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