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Introduction

A new scheme to control processes, based on a layed
neural network, was proposed. Adaptive and
self-tuning features were achieved by modifying the
weight for connections in the network through
learning. As the learning sets of data, the relation
gotten by experience and a global control policy were
used simultaneously. The applicability of this scheme
was confirmed by simulation of level control.

* Received November 8, 1991. Correspondence concerning this article should be
addressed to M. Ishida.
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1. Proposed Control System and Its Self-Tuhing
Mechanism

1.1 System structure

Figure 1(a) shows the connection of the controller
and the given process. The controller gives a new value
for the control variable u based on the present and
previous values of u, the controlled variable y and the
target value y,, ... Figure 1(b) shows a neural-network
to compose the controller for a single-input and
single-output process. »

The network is composed of layers. The input layer
consists of six units. Four of them are related to the
process output variable, y, and the other two to the
control variable, u.

JOURNAL OF CHEMICAL ENGINEERING OF JAPAN



y /
targe PENN u y
Controller Process

(a) Control system structure

(b) Structure of the neural network

Fig. 1. Control system structure and neural network for the
controller

The control variables, u;, are assumed to take zero
or positive values and they are normalized by
Uj=u;/uy,,, where u,, is the maximum allowable
value for u. The controlled variables y; are converted
to errors by

ej:ytargct_yj .

Then they are normalized by their maximum value,
e as follows:

E;=0.54+0.5%e;/en,, -

Hence, U;and E; take values between zero and unity.

In Fig. 1(b), U; and E; at the present time are
inputted. For the values sampled at the previous times
(denoted by subscripts m1 or m2) or predicted for the
data at the next sampling time (denoted by subscripts
pl), their differences to those at the present time are
taken, say dE,,=E,—E;_,, dE,,=E;—E;_, and
dE,, = E; ., — E;. The reason for such selection will be
clarified later. The value of dE,,, is given by the desired
path of E against time ¢.

For the hidden layer, there are three units in Fig.
1(b), and from the output layer, dU is given. Hence
the next value of the control variable is obtained by
the relation, U;,; =U;+ dU;.

1.2 Learning mechanism

To utilize the above net, the learning mechanism
that gets the best values for weight w; is very
important. We have noticed from our experience that
some processes have a specific feature in control. This
is that the trajectory of the vector (dE,,,, dE,;, E,
E,;, Uny, U, dU) passes through some difinite routes
and does not cover the whole space of the
seven-dimensional domain. This does not mean that
the relation between dE,,, dE,,, E, dE,,, Uy, U and
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Fig. 2. Change of water level from 20cm to 60cm based
on local learning through experience

dU which was gotten each time when a new control
variable was given is useless. It does mean that such
information through previous experience is local and
limited. Hence more global information should be
given simultaneously.

In this study, learning by error back-propagation?
is done by the following two procedures: (1) global
learning based on control policy and (2) local learning
based on previous experience. The first learning
mechanism uses an appropriate number of rules and
gives information which covers the whole control
space. Hence we may say that the former learning
gives the control policy. For this purpose we do not
need any detailed information. On the other hand,
detailed information of the process features can be
gotten from the previous experience or the previous
runs. This latter learning is done by the observed
relation between the process inputs and process
outputs. Hence this controller may be called a
policy-and-experience-driven neural network (PENN)
controller.

2. Experiment by Simulation

The above control scheme was examined by
simulation of water-level control when the water level
is changed from 20 cm to 60 cm. It is slightly nonlinear
but the time constant is calculated as 216s. For a step
change of the feed rate u, the level 4 becomes 53.2cm
at 400s and 58.6cm at 800s.

Figure 2 shows that the simulated result when the
control was done only through experience. At t=0,
the initial values of Eand U, dE, , =dE,,=dU,,=0.5
(i.e., zero) and the value of dE,, are given, and dU is
obtained by the network. For the new U calculated
from U and dU, the process proceeds for a sampling
period dt, which is set as 10s, and the new level 4 is
obtained. Note that dE, is calculated to satisfy the
desired change of height against time. In this study,
the following simple relation is used:

E;ry=E;/(1+di/T))

A small value of 7 results in rapid change of height
and 7 is set at 10s in this study. At t=d!t, the same
procedure is repeated.
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Figure 2 shows the results for the 1st, 5th, 10th,
20th and 40th runs. For the first run, the network had
very poor information of the process. Hence the
network did not understand what dE,, means,
resulting in a decrease of water level. But by learning
the relation between dE,; and dU, h began to increase
from the second run. As shown in Fig. 2, however, it
increased too much, much higher than the target level
of 60 cm. As leaning continued, control became better
and in the 40th run very satisfactory control was
achieved.

It is remarkable that the characteristic feature of
the process was grasped by self-learning, i.e., learning
from previous experience. But this control scheme does
not converge and often gives quite different or peculiar
results. This uncertainty is the scheme’s greatest
disadvantage.

Figure 3 shows also the Ist, 5th, 10th, 20th and 40th
runs when only global learning, based on the following
five rules, was performed:

(1) FordE,,=dE,, =dE, =dU,,=0, E=0, U=
U, then dU=0

(2) For dE,,=dE,; =0, E=1, dE,;=1/(1+
dt/T))—1, dU,,, =0, U=U, then dU=1

(3) FordE,,=dE,, =—1,E=0,dE, =0, U=U,
dU,,;=0, then dU= —1.

(4) FordE,,=dE, =0, E=—1,dE,; = —1/(1+
at/Ty)—(—1),dU,; =0, U=U, then dU= —1

(5) For dE,,,=dE,,; =1, E=0, dE,; =0, U=U,
dU,,;=0, then dU=1

where these expressions use the range of — 1 through
1 instead of 0 through 1 so as to be understood easily.

For each sampling period, only the above five rules
were taught, while previous experience was not
taught.

It was astonishing that the first run gave good
control. But it was not maintained; oscillation began
to be observed and was intensified.

The above five rules gave the global information
for control or the control policy. The network learned
the above policy but did not grasp the detailed features
of the process. It is found from this experiment that
abnormal behavior can be avoided by the learning of
global policy.

Figure 4 shows the case by the PENN controller
based on both learning mechanisms. Before the first
run, the above five rules were taught once in advance.
Then global learning of one of the above five rules
and experience learning were performed for each
sampling period. The sequence of the choice of rules
for global learning was: 1,2,1,3,1,4,1,5, indicating
that the first rule for the steady state was taught
frequently.

For the first run, the water level changed in a similar
way to that shown in Fig. 3. This means that the effect
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Fig. 3. Change of water level from 20cm to 60cm based
on global learning of control policy
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Fig. 4. Change of water level from 20cm to 60cm by the
proposed policy-and-experience-driven control

of the global learning was significant. But the net
began to learn the features of the process through
experience and gave quite satisfactory control. It is to
be noted that the variables for the input layer of the
neural network were selected to make both global
policy learning and local experience learning possible.

In Fig. 3 it is observed that further learning gave a
rather worse result. For PENN control, however,
further learning, say 300 runs, gave gradually better
control. For example, the overshoot observed for 4
was 1.2cm for the 40th run but diminished to 0.9 cm
for the 300th run. This is quite an important feature
of the PENN control, since this controller may follow
a gradual change in process characteristics by
continuing learning. This controller has no parameters
to be tuned in advance, a fact that supports the
adaptability of this controller.

In this prompt paper the basic feature of the PENN
controller has been demonstrated. When we want to
simplify the controller, we may omit dE,,,, U, and/or
dU,,; units from the input layer. When we want to
apply it to a more complicated process, we may add
the appropriate units for input, hidden and output
layers. The effect of noise in the controlled variable
v, the time lag of the process, interaction between
variables, and comparison of various methods using
neural networks are also important and will be
discussed later.

Conclusion

The use of both local experience and global policy
in control based on a neural network was proposed.
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This controller has no specific parameters to be tuned Literature Cited

in advance and hence is quite adaptive. The potential 1) Rumelhart, D. E.,, et al.: “Parallel Distributed Processing”
advantage of the controller was demonstrated for a vol. 1, MIT Press (1986).
case study of water-level control.
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