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A theoretical study of asymptotic solutions (constant-pattern solutions) of fixed-bed hydriding processes is
presented for systems with finite longitudinal dispersion in a bed and finite resistances to mass transfer. A closed
form of the solutions is obtained under conditions where a metal hydride has a plateau pressure on its equilibrium
isotherm. If the equilibrium isotherm does not intersect a straight line connecting two points of an influent condition
and an initial one of the bed on an x-y,, diagram, a single asymptotic mass transfer zone propagates through the
bed. On the other hand, if the isotherm does intersect the line, a twin asymptotic mass transfer zone propagates.
Then a plateau zone is formed between the two zones. Application to a titanium hydride bed demonstrates the
usefulness of the analytical results on the basis of the asymptotic solutions.

Introduction

The existence and uniqueness of asymptotic solu-
tions (constant-pattern solutions) has been mathemat-
ically proved for fixed-bed separation processes with
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Langmuir- or Freundlich-type adsorption isotherm®”.
The existence condition for asymptotic solutions of
adsorption processes is expressed as d2y;/dx} <0. A
fixed bed of metallic particles, on the other hand, has
been used to selectively remove hydrogen from a
hydrogen-inert gas mixture in a tritium-handling
glovebox. Most metal hydrides have one or two



plateau pressures on the isotherm?®). Thus there exist
some points with an infinite value in the derivative of
the equilibrium isotherm, i.e., the x;—y; diagram. This
means that the first derivative of the isotherm is not
a monotone decreasing function. Therefore, some
modifications of the existence condition should be
made for asymptotic solutions of hydriding processes
by means of a fixed bed of metallic particles. In
this paper, the existence, uniqueness and important
characteristics of a single or twin asymptotic mass
transfer zones are analytically studied for a typical
system having a plateau pressure on the equilibrium
isotherm. A closed form of analytical equations is
obtained for the system including finite longitudinal
dispersion and finite resistances to mass transfer.
Further, the application to a titanium hydride bed
may demonstrate the usefulness of the analytical
results on the basis of the asymptotic solutions.

1. Governing Equation

1.1 Equilibrium isotherm

The equilibrium isotherm for a typical metal-
hydrogen system having only one plateau pressure
such as f-phase hydrides can be classified into three

regions®:

a solid-solution phase:

1/n
Vi
xizxplat<7> for y;<y, (D

i

a two-phase region:

X=X pras for yléyiéyu (2)

a metal hydride phase:

1-yi/l—yu
xi—xplat}/ Y for yi>yu (3)

The value of » in Eq. (1) is 0.5 for an ideal
solid-solution phase®. Eq. (3) is valid for some
metal-hydrogen systems, e.g., Y-H,* and Ti-H,>.
Here, x,, is a dimensionless plateau hydrogen
concentration in the fluid phase. y, and y, are values
at lower and upper limits of a two-phase coexistence
region on the basis of the hydrogen concentration in
solid particles. Any of these values is given as a
function of temperature on the phase digram*®.

It is noted in Eqgs. (1) to (3) that x; is a continuous
single-valued function of y;. Thus in this paper the
equilibrium isotherm is generally expressed by x;=
f(»). The function f(y;) has the conditions of f'>0
and f”=0 in the domain of »;20. It also has
discontinuous first and second derivatives at y;=y,
and y;=y,. In particular, the equality sign in the
equations of f*=0 and f”=0 is valid only at y,=0
and between y,<y;<y,. Their derivatives are always
positive in other regions.
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1.2 Material balance equation
Dimensionless equations of the material balance
and the hydriding rate are written as follows:

1 o2 0 1 ¢ )
ek _ex Lo oy,
Pe, 0Z 0Z m 01 ot
Y
f} = écomp('x - xi) = ésg(yi’ ym) (5)
ot
The boundary conditions are given as follows.
Ox
Z: — o0 X = = N v:O 6
x=x,=f(y1) 57 (6)
Ox
Z=00 x=Xxg= , ——=0 7
x=xg=f(yr) oz (7

Here, £, is a dimensionless parameter which
comprises the resistance of the fluid-film diffusion and
that of the hydriding reaction on surfaces defined in
the previous works.2®,

2. Asymptotic Breakthrough Curve

2.1 Single asymptotic mass transfer zone

The necessary and sufficient condition for the
existence of a single asymptotic mass transfer zone is
equivalent to the existence of the following moving
coordinate axis 7":

TEVAY ®)

Reducing Egs. (4) and (5) to ordinary differential
equations by Eq. (8) and integrating them with the
boundary conditions of Egs. (6) and (7), one can
obtain the following pair of equations:

dx
E?—z AP F(X, Vs Xgs V> X1o Y1) = G(X, V) &)

dym écom és

= _‘—AL(X_xi)z _¥g(yia ym)=H(x7 ym)
dn A A

(10)

in which the function F is defined as follows:
F(X, ym; XR’ yRo xL’ yL) =
X—X
V=Y =(Ym—>r) (11)

L R

The propagation velocity of the single mass transfer
zone, A, is obtained as follows:
1 1 Y=y
‘:__.q.i_yi (12)
A om xXp—Xx
It should be specified that functions of G(x, y,,) and
H(x, y,,) defined in Egs. (9) and (10) are continuous
in the domain of all positive x and y,, values, while
the first derivatives have some discontinuity. Then the
existence and uniqueness of the solutions to Egs. (9)
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and (10) is assured for any set of given initial values
of x and y,, at a specified # value, since the functions
G and H are integrable in the domain of x>0 and
y=0. The intersections of the lines G=0 and H=0
are just two points, which are now expressed as the
point R(xg, yg) and the point L(x;, y,). The points R
and L are both singular points. The curve H=0 gives
the equilibrium isotherm, i.e., x;=f(y;). The line
G =0 gives a straight line connecting the two singular
points, which is also depicted as an operating line for
an infinite Pe, value.

The nature of the direction field in the neighbor-
hood of the singular points is now examined. We
further suppose the condition of y, > yg, where y, is
in the f-hydride phase and yg in the solid-solution
phase. This may be a general hydriding process
by means of a metallic particle bed. Then the
characteristic equation of the system expressed by
Egs. (9) and (10) is given by

oG G |

E;*B’ dy ‘
" =0 (13)
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Unfortunately, the roots of the characteristic
equation cannot be analytically obtained, since the
function g¢g(y;, y,,) in Eq. (10) has a complicated
formula®. Therefore, an approximation of linear
driving force is used in place of g(y;, y,):

d
B Ceomp (= —%(y,- —y) = H(x, ¥)

dn A
(14)

It is believed that the use of the linear driving
force approximation does not lose the generality
of the proof of the existence and uniqueness of
the solutions to the metal-hydrogen system with a
plateau pressure.

Then the two roots f, are obtained as follows:

_ écompésf, j'Peh /]_i>
Fe= 2 compf +E) T2 \7 m

écompésfl APeh /]_l>}2
i[{ e +E) 2 \4 m

_ Pehécompés{ /<l_l>_ }:|1/2 1
T/ +E A R 1 (15)

It is proved that both f, and B_ are real because
the discriminant of Eq. (13) is always positive. It is
also noticed that f” > (x; — xg)/(y, —yg) and thus , >
B_>0 at point L, whereas /" <(x,—xg)/(y,—ygr) and
thus B, >0> p_ at point R. Consequently, L is found
to be an unstable node and R a saddle point®.

The solid line in Fig. 1 shows an example of an
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Fig. 1. Integral curve and lines of G=0 and H=0 with
single mass transfer zone
(Peh/écamp = lv écamp = és’ xplat = 04# yl = 05* Yu= 08)

integral curve y,(x), where xz=0 as an initial
condition and x;=1 as an influent condition are
assumed. The curve is also called an operating line in
mass transfer operation. The curves of H=0 and
G =0 and the signs of functions G(x, y,,) and H(x, y,,)
in the domain of 0=<x=<1 and 0y, <1 are also
shown in Fig. 1. Since the integral curve y,(x) is a
monotone increasing function, the sign of the
ratio H/G should always be positive, judging from
Egs. (9) and (10). In the region II, intercepted by the
relations of G=0 and H=0 in the figure, their signs
are both negative. On the other hand they differ in
sign in regions I and III. Thus the integral curve
always remains in region II. The integral curve
converges to point R (0, 0) as # approaches co and to
point L (1, 1) as n approaches — oc. The lines of y,,(x)
asymptotically converge to line G=0 as the Pe,, value
approaches infinity. They converge to the curve H=0
as the Pe,, value approaches zero or the values of both
Eeomp and & approach infinity. In conclusion, a single
asymptotic mass transfer zone is formed in a fixed bed
of sufficient height when the equilibrium isotherm
f () satisfies the conditions /" =0 and /" =0 and does
not intersect the straight line connecting the two
points (xg, yg) and (x;, y,). Then the breakthrough
curve for the hydriding process is similar to that for
adsorption.
2.2 Twin asymptotic mass transfer zone

When the isotherm intersects the straight line
connecting the two points R and L, the mass transfer
zone may be split into two stages according to
position above and below the point (x,,,, y;) on the
equilibrium isotherm. The first mass transfer zone in
the range of xgp<x<Xx,, is located in front of the
second one in the range of x,,<x=<x;. Then, two
kinds of moving coordinate axes are defined as #,
and n,:
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Mm=2Z— A7 k=12 (16)

The boundary conditions for each mass transfer zone
are given by

0x

H=—x x:xplat‘:.f(yl)’ =0 (17)
ony
0x

ni=0 x=xg=f(yg), ——=0 (18)
ony
ox

Ny=—00w x=x.=[f(y), =0 (19)
on,
ox

Ny=00 X=Xp,=f(y), ——=0 (20)
on,

The propagation velocities of each mass transfer zone
are obtained by a similar procedure to that described
above:

1 1 -
A=7+& 1))
Ay M Xpe—Xpg

1 1 —
_:7+M (22)
/12 m xL_xplat

Eqgs. (4) and (5) are rewritten for each mass transfer
zone:

dx
——=G(x, V)
dn, (X Vi)

k=1,2 (23)

Gl(x’ ym) = '1 1P€hF()C, Yms XR> VR> xplatv yl) (24)
GZ(X’ ym) = ;tZPehF(x? ym; xplan Yis Xp» yL) (25)

d
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dny Ak
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Ak

The intersections of the relations G; =0 and H, =0
are just two: (xg, yg) and (X, y;). The former is found
to be a saddle point by a similar procedure to that
described above. The later is an unstable node. The
isotherm between yp<y,<y, is convex when it is
observed from the x-axis (because it has the derivatives
f'>0 and f”>0). Therefore, the existence and
uniqueness of the asymptotic solutions is assured on
the basis of the existence condition for the adsorption
process':”) depicted as d?y,/dx?<0. Thus integral
curves are always present in the region intersected by
both lines G, =0 and H,=0. Similarly, the intersec-
tions of lines G, =0 and H, =0 are also two: (X, ¥;)
of a saddle point and (x,, y,) of an unstable node.
As the isotherm between y,<y,<y, is also convex,
the existence and uniqueness of the asymptotic
solutions is assured. Thus integral curves are always
present in the region intersected by both lines G, =0
and H,=0.

612

Peh/gs" 0.1 :
08— = ~o
:10%
06+ _ ( / \GZ:O
: i
04| E/5ZY!
=10 4
02+ /4
/ \G'FO
| | | |
R,0 02 04 06 08 1
X

Fig. 2. Integral curves with twin mass transfer zones
(Crwmpzés’ Xplar=0‘51 yl=0'4’ yu:06)
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Fig. 3. Asymptotic breakthrough curves with twin mass
transfer zones
(Eeomp=E5=100, x,,,=0.5, ,=0.4, ,=0.6, m=1000)

Figure 2 is an illustration of operating lines for
some values of Pe, and &, under &,,=¢. Each
operating line for the first and second mass transfer
zones varies with the values of a parameter Pe,/E,. It
asymptotically converges to the equilibrium isotherm
as values of both Pe,/{; and Pe/¢,,,, approach zero.
If both of them approach infinity, the operating line
of the first mass transfer zone converges to the line
G, =0 and that of the second mass transfer zone to
the line G,=0.

2.3 Example of breakthrough curve with plateau zone

Figure 3 shows numerical examples of asymptotic
breakthrough curves with twin mass transfer zones.
In the asymptotic curves, each propagation velocity
of the first and the second mass transfer zones is
constant regardless of the values of Pe,, &, and ..
It depends on the plateau concentration on the
equilibrium isotherm, the influent conditions of a
fixed bed and initial ones. An interval of the plateau
zone on the breakthrough curves may increase in
proportion to the bed height due to the difference
between the two propagation velocities.

Figure 4 shows some examples of experimental
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Fig. 4. Experimental breakthrough curves of titanium
particle bed

breakthrough curves of a titanium particle bed. The
curves were obtained by using the apparatus described
in the previous paper®. When the column temperature
is 400°C, there is no plateau zone in the breakthrough
curve, as shown in the figure. On the other hand, one
plateau zone appears in the curve when the column
temperature is 500°C at the same influent condition.
The hydrogen concentration in the plateau zone is in
good agreement with that calculated from the plateau
pressure corresponding to formation of the d-phase
from the B-phase of titanium®. Further, there is a
reflection point in the breakthrough curve at the con-
dition of 600°C which fits the pressure correspond-
ing to formation of the f-phase from the a-phase
of titanium®.

The equilibrium lines for each experimental
condition are shown in Fig. 5. It is confirmed that the
breakthrough curve at 500°C may have one plateau
zone even in the asymptotic condition because the
equilibrium line intersects the line of x=y,, in the
figure. On the other hand, when 7= 600°C, the plateau
zone may disappear at the asymptotic breakthrough
curve even if the zone or the inflection point appears
in the developing effluent curve from a bed with an
insufficient height. It is apparent that the x—y,, diagram
is a useful tool for determining the existence and the
characteristics of the asymptotic plateau zone.

Conclusion

The asymptotic solutions of fixed-bed hydriding
processes are obtained under the condition where the
equilibrium isotherm of a metal-hydrogen system has
a plateau pressure. The existence condition of the
solutions is determined on the basis of an x—y,, di-
agram. If the equilibrium isotherm does not intersect
the line which connects the points of the initial and
the influent conditions of the bed on the x—y,, diagram,
a single mass transfer zone propagates through the
bed. If the equilibrium isotherm intersects the line,
twin asymptotic mass transfer zones are formed
regardless of the values of Pe,, &, and &, Then a
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Fig. 5. x-y,, diagram of titanium-hydrogen system

plateau zone is formed in the bed due to the difference
in propagation velocities. The existence of the plateau
zone is confirmed by the experiment using a titanium
particle bed. It is evident that the asymptotic solutions
obtained here are a useful tool for obtaining the
characteristics of the effluent curves of a fixed bed of
metal particles.

Nomenclature
a, = external particle area per unit volume
of fixed bed [1/m]
c = hydrogen concentration in fluid phase [mol/m?]
D, = longitudinal dispersion coefficient [m?/s]
F(x, Y; Xg, Vg, X, y)= function defined by Eq. (11) [—]
f(r) = equilibrium isotherm [—]
A = dxjjdy, (f"=d>x;/dy}) [—]
G(x, Ym) = function defined by Eq. (9), or Egs.
(24) and (25) —1
IVis Vim) = solution of the moving-boundary problem
defined in the reference® [—1]
H(x, y,) = function defined by Eq. (10) or Eq. (26) [—1
h = height of fixed bed [m]
Keomp = composite mass transfer coefficient [m/s]
kg = internal mass transfer coefficient [m/s]
m = 74o/tCo [—]
n = constant [—]
Pe, = uhleD, [—1
q = hydrogen concentration in solid phase
[—, H/Metal]
t = time [s]
u = superficial fluid velocity [m/s]
W = inlet hydrogen mole fraction [—1]
x = ¢leo [—1
y = 4l9o -]
z = axial distance in flow direction [m]
z = z/h [—]
B = root of characteristic equation [—]
y = bed molar density [mol/m3]
€ = void fraction of fixed bed [—]
n = dimensionless moving coordinate [—]
A = dimensionless propagation velocity of
mass transfer zone [—]
écomp = hkcompav/u [—]
és = hV‘Ioksav/uco [_]
T = ucotihyq, [—]
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{(Subscripts)

comp
i

L

/

m
plat
R

s
u
0
1
2

composite

interface value

condition at z= —oc

lower limit of two-phase region
mean

plateau value

condition at z= +cc

solid phase

upper limit of two-phase region
influent condition

first mass transfer zone

second mass transfer zone
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