GAIN-MAXIMIZING CONTROL IN HIGH-ORDER PROCESSES

Ryoner TANUMA

Fuji Electric Corporate Research and Development Lid.,
2-2-1, Nagasaka, Yokosuka 240-01

Key Words:
Process; Broken-Line Fitting

Process Control; Adaptive Control; Nonlinear Process; Gain-Maximizing Control; High-Order

This paper describes the study of the gain-maximizing (GMAX) control system in high-order processes. The
GMAX system is applied to the process where a high-order linear dynamic element is followed by a static sigmoid
function. It regulates the process output at the sigmoid curve’s inflection point, where the static gain becomes
maximum. Adaptive broken-line fitting based on a new high-order difference equation is developed. New feedback
compensation is also proposed to improve control performance. Computer simulations show that the process output
settles quite rapidly to the maximum-gain level, and reliable GMAX control can be achieved.

Introduction

The author and co-workers have developed a
gain-maximizing (GMAX) control system for dis-
solved oxygen (DO) control in the activated sludge
process.* In this process, the DO concentration is
related to the aeration air flow rate by a sigmoid curve,
and the gain of DO concentration with respect to the
air flow rate maximizes at the inflection point (IP) of
the sigmoid curve. The GMAX control automatically
adjusts the DO level so as to maximize the gain, and
the DO level is thereby regulated at the IP.

Similar sigmoid relations exist in various processes,
particularly in chemical and biological processes. A
typical example can be seen in a reduction-oxidation
(redox) process, where the redox potential jumps at
the equivalence point, thus varying along a sigmoid
curve. The pH value in an acid-base reaction behaves
in almost the same manner. In these processes, the
IPs usually correspond to optimum conditions to be
maintained. Although the IP levels often vary with
unknown factors such as sensor contamination and
environmental disturbances, the GMAX action will
automatically hold the output at the IP levels, thereby
maintaining optimum conditions. Hence, similar
GMAX methods would be quite useful in these
processes. However, most existing sigmoid processes
exhibit high-order dynamic behavior, whereas the
GMAX method used in DO control is only for a
first-order process.

The author has proposed a new GMAX method
which is applicable to high-order processes.® This
paper describes the improved version of this new
method. Adaptive broken-line fitting for high-order

* Received October 30, 1990. Correspondence concerning this article should be
addressed to R. Tanuma.
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processes is first developed and incorporated into the
GMAX method. To improve control performance,
new feedback compensation is introduced. Computer
simulations verify the excellent performance of the
new method.

2. Adaptive Broken-Line Fitting

Nonlinear processes can usually be represented by
two types of generalized models: a linear dynamic
element followed by a nonlinear static element (DS
series model) and a nonlinear static element followed
by a linear dynamic element (SD series model).?

In this paper, we deal with the sigmoid process
described by the DS series model. This is expressed
as the block diagram shown in Fig. 1, where F is the
input, C; is the output of the linear block, and C is
the output of the nonlinear block. The gain of the
linear block is taken as unity. Let us assume that the
linear part is stable and nonvibrational. The sigmoid
curve in the nonlinear block is illustrated in Fig. 2.
For the GMAX control, we consider the broken-line
fitting to the curve as shown in this figure. The adaptive
broken-line fitting (ABLF) described below is the
parameter identification technique to determine the
broken line.

Using the zero-average variables

u=F—F
x=C, —C,
y=C—-C
E—-) Ial;ne;r:\ic block = stl.g?iflglock -_Cé
Fig. 1. Sigmoid process described by the DS series model
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Fig. 2. Sigmoid curve and the broken line

where F, C and C are the time averages of F, C; and
C, respectively, we can express the linear part as

xk=a1xk_ 1 +a2xk_2+ e +a,,xk_,,
+hiu by s+ .. b, ()
where a;, a,,...,a, by, b,,..., and b, are
time-invariant coefficients. If we introduce the

broken-line model, the nonlinear part can be expressed
as

Xe—i=Yi—i/ K-

K, for y,_.< 2
Kowo={ir s @
Ky for y,_;>0
(i=0,1,2,....,n)

where K; and Ky, respectively correspond to the slopes
(SLs) of the lower and upper linear parts of the broken
line (Fig. 2). To obtain an ABLF algorithm, the shift
equation (1) must be converted into a difference form
where the gain appears explicitly. However, the
difference equation which includes high-order differ-
ence terms?® is not suitable for parameter identification
because the high-order terms may enhance high-
frequency noise.

To avoid this problem, the author proposes a new
difference form where all the difference terms are of
first order:

X+ oy Adx,_ +ahdx o+ ...+ Ax,,
=Br——Brduy_y— ... =B Au_, (3)
where
A1 =X = X1, AN =X~ Xy s, ...
) Axk—nzxk—n+1_xk—n
Ay =up_y =Wy, At 3=t _,—Uy_3, ...
vy A= — Uy,

Hereafter, the differences for the variables y, C, F, 4,
and y are defined similarly. The time-invariant
coefficients oy, o5, ..., ay, B, B4, . .., and f, are related
to the coefficients in Eq. (1) as
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oy=(a;+a,+ ... +a,)y
ay=(a,+as+ ... +a,)ly

a0, =a,/y

, 4
Bi=(b,+by+ ... +b)y @
Bu=baf7 J

where
y=l—a;—a,— ... —a,

and f} (=1) is the gain. Note that
y>0 )

because of the assumption for the linear part.
Substituting Eq. (2) into. Eq. (3), we obtain

et Ay oAy, o+ 4w, Ay,
=Kyu— = BrAuy 5 — ... =B, Au,_, (6)
with the approximation
Ax,_ =4y, i/K;
Ki=[K(y - ) +K(yi—i-1)]1/2 i=1,2,...,n

and the time averaging

n=uKpy)/K;  (i=1,2,...,n)
Bi=BK(»y)  (i=2,...,n)

Using the parameter vector

P=[%, . 0 ooy B Kiy Ky
and the signal vector

G=[Ayx— 1, Ay Ay, ..., Ay,

h(ye, we—1)]"

we can rewrite Eq. (6) as
Vit pd =0 (N

where

Wy u )2{[—uk—190] for y,=0
S0, —u ] for p>0

The equation error e is defined as

=Y+ PP (8)
where p, is the adjustable parameter vector,
] Oznk’ B2k’ AR Bnk’ KLk! Ier]

Subtracting Eq. (7) from Eq. (8), we obtain the error
equation,

ﬁk:[dlk’
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e=(p—p)d )]

and consequently, the identification algorithm using
a fixed-trace scheme is

€= Y+ Pr—19x

Fo=Pr1— G, 19,
k=Pk-1T T A
1+ ¢,.G,— 19: (10)
1 G._ Henm
Gk=A<Gk-1_ k 1¢;k¢k k 1)
Vi 1t @G-y,

where e, is the a-priori value of e, G, is the gain matrix,
u is a constant, and the value of v, is updated at each
step of the identification in such a way that the trace
of G, remains constant.® The parameters K, , and Ky,
the last two members of p,, are estimates of K and
Ky, respectively. Hence, adjustmg the process output
level to equalize Ky, and K,,, we can maintain the
output at the IP level. We refer to the above
identification algorithm as the ABLF.

The difference form is essential in the ABLF.
Consider that a test signal fluctuates y and u over
an appropriate range as shown in Fig. 3. To ob-
tain the distinct difference between K, and Ky,
they should be determined in the outer parts of the
fluctuating zones (the crosshatched parts). The
difference form permits this kind of weighting because
the static variables, y, and wu,_,, automatically
dominate over the dynamic variables, 4y,,... and
Au,, ..., in the outer parts. This consideration also
shows that the period of the test signal must be long
enough to make the static variables predominant.

3. Control System

Figure 4 shows the GMAX control system using
the high-order ABLF. Control loop Lpl manipulates
adjustable set point C, to maximize the gain, and
control loop Lp2 controls the output C around C,.
The high-pass filters convert input F and output C to
zero-average signals u and y, respectively. The filtering
algorithm is

P/ P N PR

m

S =Me—mp2— (1)
where the pair of { and # is that of y and C, or u and
F, respectively, and m is the number of data, which
is taken as an even number. These high-pass filters
can effectively reject unwanted low-frequency compo-
nents.* On receiving u and v, the ABLF determines
the parameter vector p,, which is used not only for
gain maximization, but also for feedback compensa-
tion and adaptive PI control in Lp2. The controlled
variable in Lpl is ¢,, obtained from p, as

Cyp = (kﬂk - KLk)/kk (12)
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Fig. 3. Fluctuation of y and the zones where K| and Ky
should be determined
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Fig. 4. Control system
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Fig. 5. Test signal

where
Kk = (K, + Kuk)/z

The ¢, values are limited in —1<¢,<1 to exclude
extraordinary values. Since ¢,, =0 and <0 approx-
imately correspond to d*C/dF?=0 and <0, respec-
tively, controlling ¢, at zero by manipulating C, re-
sults in gain maximization. For this control, the in-
tegral action

Crk: Crk— 1 +kzcvk (]3)

where £, is the integral gain is used because ¢, is often
noisy. For C to fluctuate over an appropriate range,
the test signal S, is applied to C,, and C tracks the
perturbed set point C;=C+S,. In this system, S, is a
pseudo-random binary signal, which is a rectangular
wave with randomized periods as shown in Fig. 5. It
is specified by the amplitude A, the average period
7,, and the standard deviation S, of the period.

To keep the GMAX control in high performance,
the following two conditions must be satisfied: C must
fluctuate over a constant range (Cond. A), and C and
Ffluctuating ranges must be divided equally into lower
and upper regions (Cond. B).

Cond. B is well satisfied with the high-pass filters
described above. For details, refer to the previous
paper.¥

Simple adaptive PI control has been used to satisfy
Cond. A in the GMAX DO control.* Because it is
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only for a first-order process, fixed-parameter PI
control was used preliminarily in the previous high-
order GMAX system, and consequently the C range
could not be fixed.”

For the new high-order GMAX, the author has
developed the feedback compensation shown in Fig.
4. Since the compensated feedback signal y behaves
as the output of a first-order process as described
below, we can use the same adptive PI control. The
linear model of the high-order process is obtained by
replacing K(y,) in Eq. (6) with constant gain K:

Vit oAy, =Kup 1 —(@dy 2+ ... + 0,4y -,)
—(BAuy o+ ... + A ,) (14)
Using C and F, we can rewrite Eq. (14) as
Co+0,4C,_=KF,_,—p'¢’ +const. (15)
where

'san’ﬁb "'5ﬁn]
AC_ AF 5, ... AF T

p=[o, ..
¢'=[4C;—,, ..
This means that C, behaves as the output of the
first-order element whose input is the right-hand side
of Eq. (15). It is apparent that this first-order element
is stable because all difference terms in Eq. (15)
converge to zero for a constant F values.
Let us consider the feedback compensation signal
A, that is generated by
Aty A =P’ (16)

where

ﬁ;{: [&Zk’ ceto &nk’ BZk’ et ﬁnk]
As shown in Fig. 4, 4, is added to C, to give the
feedback signal y,. Now we assume that the
identification is completed; that is a;, =, and p,=p’.
Adding Egs. (15) and (16), we obtain

e+ oAy~ 1 =KF,_, +const. 7
where

A= Ci+ A

That is, y, behaves as the output of the first-order
system. Hence, using y, as the feedback signal, we can
use the same adaptive PI control as that used in the
first-order GMAX system.* The PI control algorithm
used here is expressed as

a=Cu—

Fo=F_ +k(ey—e—1) thigg (18)

where k, is the proportional gain and k; is the integral

gain. The PI parameters are determined by
ki=(1 _—d)/kk}

kp=d1,k;

(19)
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where d is the desired pole value of the closed loop.
In Egs. (16) and (19), the values of d,, and K, are
limited in d,,=—0.4 and K,>1, respectively, to
exclude extraordinary values. If the PI parameters are
thereby determined, the closed loop transfer function
G,(z) becomes®
= 20)
z—d

That is, we can specify the fluctuation range of y.

Now let us consider how the y range is related to
the C range. The denominator of the process transfer
function can be expressed as

A()="—a, 2" —ay2" P — .. —a

=(—p)z—p2)...(2—py) (21)

where p,, p,, ...p, are the poles of the process to be
controlled. Referring to Eqs. (4) and (21), we obtain

I—y 1=A4,1)
alz =
Y A,(1)
1—-(1— l—py)...(1—
_1=0=p)d=ps)...(A=p,) 22)
(I=p)(1=p3)...(1=p,)
The parameter o, can also be expressed as
1—(1—p)
L G/} 23)
1—p

where p is the pole of the first-order delay which y,
obeys. Comparing Egs. (22) and (23), we obtain

0<l—p=(—-p)1—p,y)...(1=p)<l (24)
which shows

pi<p<l (i=1,2,....n) (25)

That is, p is larger than the maximum pole of the
system. Hence, taking the test-signal period long
enough for the dynamic gain of y nearly to saturate,
we can let the C range be almost the same with the y
range which is regulated to be constant.

4. Simulations

Computer simulations have been performed to
evaluate the new method. The process model for the
simulations is as follows:

[Linear part]
1

_ 2
O (02917 039(1 40,1501 70059

[Nonlinear part]

1-0.5exp[—10(C.—C)]  for € 2C,
~10.5exp[10(CL— C,)] for C_.<C,
27
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where C, is the C, value at the inflection point.
Equation (27) is graphically shown in Fig. 6. The
maximum slope is 5 at C=C,=0.5.

The parameter values for the simulations were as
follows:

u=0.7 G,=2x10*1
T=0.1 m=20
L=mT=2 T,=2
A,=0.1 S4=0.5
d=0.905 k,=0.005

Note that 7, is equalized to L for the high-pass
filtering.* Two simulations, I and II, were performed.
In Simulation I, the integral action in Lpl was fixed,
and C, was increased stepwise. In Simulation II, the
system was evaluated in normal action.

5. Results and Discussion

Figure 7 shows the results of Simulation I. The set
point C, was increased from 0.2 to 0.8 in six steps (the
C, values are shown in the figure). The input F and
the output C increase with C,. The fluctuations of F
and C are caused by the test signal. As C, increases,
K, and Ky first increase, maximize at C,=0.5, and
then decrease; correspondingly, Ky is larger than K,
at C,<0.5, they are equalized at C,=0.5, and then
K, becomes larger than Ky at C,>0.5. Note that the
two gains and the other parameters, &,_, and
f,_., become stable as C, reaches the IP level. This
may be because the process can be well approximat-

ed by a linear model around the IP level. Although the
C range is a little larger in the lower and upper re-
gion than around the IP level, it is almost constant in
the range of C,=0.3 to 0.7.

Figure 8 shows the results of Simulation II. The set
point was first fixed at C,=0.2 until time =10, and
was then released. The gains, K, and Ky, are first as
low as 1, and K,;>K,. As soon as it is released, C,
rapidly increases and settles at the IP level. The setting
time (~ 20) is about half that in the previous high-order
GMAX with a fixed-parameter PI control.”

At 1=250, C,was changed from 0.5to0 0.7. Although
a great disturbance is caused here, it settles soon, and
hence the deviation of C, from the IP level is trivial.

The results of the two simulations show that the
new algorithm has high GMAX performance. The
ABLF performs quite satisfactorily. The two gains are
clearly separated, and their relation well represents
the curvature of the sigmoid curve. The adaptive PI

1r

0.5

Slope =5

0 05 1
C

Fig. 6. Sigmoid curve for the simulations
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Fig. 7. Simulation I: the integral action in LP1 was fixed, and C, was increased stepwise
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Fig. 8. Simulation II: normal action

control with the new feedback compensation main- k;
tains the C range nearly constant in a wide zone around Ky =
the IP level. Although the C range is a little greater ks B
in the outer region, this is rather desirable to accelerate m :
the GMAX action. The rapid settling to the IP position » _
is owing to the controlled C range. p =
6. Conclusions S

The simulation study shows that the new GMAX [T _
system performs quite satisfactorily in the high-order " _
process. The high performance is owing to the ABLF x =
based on the new difference equation, and the adaptive y =

PI control with the new feedback compensation.

= integral gain for the PI control

proportional gain for the PI control
integral gain in Lpl

period of the moving average

number of data for the moving average
parameter vector

adjustable parameter vector

standard deviation of the period of
the test signal

sampling time

time

filtered process input

zero-average output of the linear block
filtered process output

.., B,= coeflicients of the dynamic

terms in the process model

..B,= adjustable coefficients of the dynamic

terms in the process model

..., fn=coeflicients of the linear block model

l—a,—a,...—a,
parameters in the identification algorithm
output of the high-pass filter

input of the high-pass filter

feedback compensation signal

pole of the first-order delay which y obeys
poles of the system to be controlled
average period of the test signal

signal vectors

feedback signal

p. 82, Baifukan (1975).

Nomenclature

A = amplitude of the test signal [—] By oees O s
Ay, ..., 4, by, ..., b,= coeflicients of the shift equation [—] L

C = process output [—] Koo o i
C, = output of the nonlinear block [—] i

C, = set point [—] v =
C; = perturbed set point [—] o "
C, = (| at the inflection point [—] ° -~
¢, = controlled variable in Lpl [—] Z B
d = desired pole value [—] N
e = equation error [—] P =
e, = a priori value of e [—1 Pro-eos Pu j
F = process input [—1 * , :
G = gain matrix [—] ¢ ¢ B
h(y,, u,—,) = switching vector in the signal vector [—] “ -
K(yis) = switching gain [—1]

K. = lower part gain ] Literature Cited
Ky = adjustable lower part gain [—]

Ky = upper part gain [—1 1) Hotta, K.
Ry = adjustable upper part gain [—] Japanese),
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