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Introduction

The fast Fourier transform (FFT), which is capable
of inverting some Laplace transforms, has been
successfully applied to the prediction of the elution
curves of fixed-bed adsorbers with linear [1] or
nonlinear kinetics [2]. Recently, it has been furhter
extended to the simulation of slurry adsorbers with
pore diffusion and nonlinear kinetics [3]. The most
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attractive advantages of the FFT technique are its
computing speed and accuracy. However, there is one
major limitation in this method when dealing with
relatively complicated systems: the memory space
needed for the data may become very large. In
addition, for such systems, the mathematical manip-
ulations to obtain workable transfer functions may
not be feasible.

The orthogonal collocation method is frequently
used to simulate fixed-bed absorbers because of its
computing speed [4]. After the partial differential
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equations are primarily treated by the orthogonal
collocation method, the resulting ordinary differential
equations can be solved numerically by any standard
integration method. The mathematical manipulation
needed is little and the programming is easy. However,
this method is not so powerful as one might foresee
for difficult problems in which the temporal
integrations require much computation time. More-
over, modern integration routines such as RKGS
(subroutine in SSP) and DGEAR (subroutine in
IMSL) proceed with changing step size, and introduce
inconvenience in the performance of parameter
estimation.

The main objective of the present study is to
establish a method that combines the FFT method
and orthogonal method to overcome the shortcomings
of these two methods. A fixed-bed adsorber with
nonlinear kinetics and axial dispersion is chosen as
an example in this work.

1. Development of the Method

Consider a fixed-bed adsorber with nonlinear
adsorption kinetics. The flow pattern in the adsorber
is assumed to be plug flow with axial dispersion. For
ease of explanation, an adsorption-controlled process
was assumed in this study. Under these circumstances
the dimensionless governing equations can be written
as
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By applying orthogonal collocation with respect to
the axial coordinate, Eqs. 1-5 can be reduced to a set
of ordinary differential equations that are initial-value
problems and can be solved by using general methods
of integration. In the present study, however, these
equations are further reduced to algebraic equations
by taking Laplace trasnformation. The resulting set
of equations can be written as:
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where M is the number of interior collocation points;
A; ;and B; ; represent the first and second derivatives
of orthogonal polynomials at the zeros, respectively.
The desired time-domain solution can then be
obtained by using the following iterative procedure:
(1) Calculate 4; ; and B, ;.
(2) Obtain j; and ; by setting y,0; equal to zero,
i.e. a linear approximation.
(3) Invert y; and ; into the time domain.
(4) Calculate y;6; numerically with the resulting y;
and 6,.
(5) Transfer y;0; to the Laplace domain.
(6) Substitute y;0, into Egs. 6 and 7 to obtain new
y;and 0,.
(7) Repeat steps 3—6 until convergence is achieved.

2. Result and Discussion

In this study, the breakthrough curves of an
adsorption column were obtained by integrating the
elution data of pulse input with respect to time.
Because a Dirac’s delta pulse input was used for the
calculation, 7, is equal to unity. The breakthrough
curves obtained from various numbers of iterations
were evaluated and are shown in Fig. 1. It is important
to check whether the iterative procedure is rapidly
convergent. If rapid convergence is not assured, the
present method may not give a correct solution. For
the present case, only two iterations were needed to
reach a good convergence. After the number of
iterations needed was determined, data of break-
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Fig. 1. Convergence of breakthrough curves. L: linear
approximation, F: Ist iteration; S: 2nd iteration; T: 3rd
iteration

through curves with different N were calculated and
compared. It was found that N=32 is sufficient to
give a satisfactory result.

It is known that, to avoid oscillation or divergence,
the conventional orthogonal collocation method
should be manipulated with an adequate number of
collocation points and sufficiently small step sizes in
the time integration. Therefore, the computation time
may be large. However, when the time integration is
replaced by the FFT method (i.e. the present method),
the execution time can be reduced because the
computations needed are fewer. It is also found that,
even for a difficult system, the number of sample points
N used in the present method has little effect on the
accuracy of the result.

To compare the computing speed of the present
method with that of the conventional orthogonal
collocation method, the breakthrough curves for
various sets of parameters were evaluated. A
comparison between these two methods is shown in
Fig. 2 and in Table 1. It can be seen that the
breakthrough data obtained by the two methods
correspond with each other, but the computation times
required for the conventional collocation method are
longer and vary with the parameters employed. The
longer the process time involved, the greater is the
computation time needed by the conventional
method—but not in the present method.

In summary, the present method, combining
orthogonal collocation and the FFT technique, has
been shown to be adequate for calculation of the
breakthrough curves of nonlinear adsorption systems.
In addition to high computing speed, easy pro-
gramming and few mathematical manipulations
needed, the selectable time interval makes it conve-
nient for parameter estimations. On the basis of these
advantages, we believe that this method is elegant
in application to nonlinear fixed-bed adsorption
problems.
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Fig. 2. Comparison of breakthrough data. Solid symbols:
the present method; open symbols: the conventional
orthogonal method. =10, ¢, =1, ¢,=10.

Table 1. Comparison of Computing Speeds of Present
Method and Conventional Orthogonal Collocation Method

Execution time on

Method Pe N eDC Cyber-840, sec
OC+FFT 1,10,100 32 0.82
64 1.60
128 3.16
OC + DGEAR 1 49.74
10 8.27
100 5.82

OC: orthogonal collocation
Process parameters: ,,=1, ¢,=10, =10
M =10 for all cases

Nomenclature
C = adsorbate concentration in fluid phase [mol/cm?]
Co = inlet concentration of adsorbate [mol/cm?]
C,(9) = column input function [—]
D, = axial dispersion coefficient [cm?/s]
k, = adsorption rate constant [em3/mol, s]
k, = desorption rate constant ™1
L = column length [em]
M = interior collocation points [—]
N = number of sample points used in FFT [—]
Pe = VL/D,
G = adsorption concentration at complete

coverage of surface [mol/g]
R = radius of packed particles [em]
s = Laplace variable [—1]
t = time [s]
T = t/{(L]V)
14 = interstitial velocity [em/s]
x = z/L
y = (/G
Yin = Ci/Co
z = axial distance [em]
B = (1-8)ppgm/eCo
1) = parameter, Eq. 9
£ = bed void fraction
£, = porosity of particles
0 = fraction of surface coverage
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parameter, Eq. 8
density of solid particle
ki Co(LIV)

ko(LIV)

Literature Cited

(g/em?] 1) Chen, T. L. and J. T. Hsu: AICKE J., 33, 1387 (1987).
2) Chen, T. L., and J. T. Hsu: AIChE J., 35, 332 (1989).
3) Wu,J. Y., T. L. Chen and H.-S. Weng: J. Chem. Eng. Japan,
23, 649 (1990).
4) Raghavan, N. S., and D. M. Ruthven: AIChE J., 29, 922
(1983).

JOURNAL OF CHEMICAL ENGINEERING OF JAPAN



