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This paper presents a new mathematical model for the dynamics of a liquid-liquid phase-transfer catalyzed
batch reaction system. The model is formulated as a system of coupled nonlinear differential and algebraic
equations in which the differential equations describe the slow reactions in the organic phase, whereas the algebraic
ones describe the rapidly established dissociation equilibria in the aqueous phase and the mass balances of the
species. A two-stage optimal parameter estimation method is used to estimate the values of the model parameters,
such as the reaction rate constants, the overall mass transfer coefficients, the distribution coefficients, and the
dissociation constants, from the experimental data. The reversible reaction between organic-phase benzyl chloride
and aqueous-phase sodium bromide, with tetrabutylammonium bromide as a catalyst, was carried out to verify
the mathematical model. Simulation results reveal that by the proposed model one can successfully make a
correct judgement as to whether the quaternary onium salts in the two phases are in extractive equilibrium. Also,
one can explicitly determine the respective contributions of the reaction and the mass transfer to the overall rate.
Moreover, the fact that a high-concentration inorganic salt in the aqueous phase salts out the quaternary onium
salts into the organic phase and thereby alters the distribution coefficients of the phase-transfer catalysts can be

explained by our model.

Introduction

Chemical reactions between nonelectrolyte sub-
strates dissolved in organic phase and ionic reagents
dissolved in aqueous phase are generally inhibited by
the boundary between the two phases, which separates
the reactants and prevents them from access to each
other. Traditionally, such a barrier is overcome by the
use of an appropriate mutual solvent that solubilizes
both inorganic salt and substrate. Typical solvents are
polar or aprotic solvents, such as acetonitrile or
dimethyformamide (DMF), which greatly increase the
reaction rate since they only weakly solvate the
nucleophile. However, the use of mutual solvents is
not always convenient, and is frequently expensive on
an industrial scale. To aviod these disadvantages, an
alternative method known as phase-transfer catalysis
(PTC) has been developed over the last two decades.

In a two-phase PTC system, the chemical reaction
is brought about by the use of a small amount of
phase-transfer agent, such as tetrabutyl onium salt,
which transfers reactants across the phase boundary
so that the reaction can proceed. The phase-transfer
catalyst is not consumed but performs the above

* Received July 9, 1990. Correspondence concerning this article should be
addressed to C. Hwang.

284

transport function repeatedly. Many previous re-
searches have shown that PTC not only promotes
chemical reaction between reagents in different phases
but also offers a number of important process
advantages, such as mild reaction conditions, low
energy requirements, high selectivity, and by-product
suppression’'12),

Since PTC was pioneered by the early work of
Starks'® and others, the phase-transfer technique has
received a great deal of attention from preparative
chemists, and several articles and books on phase-
transfer catalysis have appeared*!®!®. This is
particularly true of liquid-liquid PTC, since it is the
most common two-phase reaction process. Much
experimental work has been done in pursuit of an
understanding of the mechanism and kinetics of PTC.
However, the mathematical description of a two-
phase PTC reaction system has received inadequate
consideration. Starks and Liotta'® have proposed a
model for a PTC reaction system by making an
assumption that the two phases are in extractive
equilibrium and thus the mass transfer resistance be-
tween phases can be neglected. Their assumption is
based on the observation that the apparent rates of
laboratory PTC reactions are often independent of
the effectiveness of contact between the phases over a
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broad range of stirring speeds. However, as pointed
out by several authors®>®!? the PTC reaction is
strongly mediated by the mass transfer of the
phase-transfer catalysts. Hence, the simple model of
Starks and Liotta does not cover the complete range
of operating conditions. Besides, it is not adequate to
account for the salting-out and common-ion effects
on the rate of PTC reactions.

In reality, the mechanism and kinetics of a
liquid-liquid phase-transfer catalyzed reaction system
are extremely complicated. In general, a liquid-liquid
phase-transfer catalyzed reaction involves the follow-
ing steps: (1) chemical reaction in the organic phase;
(2) fast dissociation equilibria and competition
between the reactant and product anions for the
quaternary cation in the aqueous phase; (3) transport
of quaternary onium salts between the two phase; and
(4) equilibrium partition of quaternary onium salt at
the interface. Based on this mechanism and the
two-film theory, we derive in this paper a new
mathematical model for describing the dynamics of
a liquid-liquid PTC reaction system. The model is
formulated as a system of coupled nonlinear
differential and algebraic equations in which the
differential equations describe the slow reactions
occurring in the organic phase, whereas the algebraic
ones describe the rapidly established dissociation
equilibria in the aqueous phase and the mass balances
of species. This differential-algebraic system can be
solved by the generalized third-order semi-implicit
Runge-Kutta method®. The parameters in the
proposed model, such as the reaction rate constants,
the overall mass transfer coefficients, the distribution
coeficients, and the dissociation constants, are the
major factors that govern the overall dynamic be-
havior of a liquid-liquid PTC reaction system. Since
the chemical and physical properties of a PTC system
change as the reaction proceeds, the parameters are
often experimentally very difficult to measure and so
they are not presently available!®. To obtain repre-
sentative and physically meaningful parameters, a
two-stage optimal parameter estimation scheme that
combines the Sobol’s systematic searching method!¥
with the DSC-Powell method?’ is adopted to estimate
the model parameters from the experimental data. To
verify the proposed model, a reversible reaction of
organic-phase benzyl chloride and aqueous-phase
sodium bromide, in the presence of tetrabutylam-
monium bromide as a phase-transfer catalyst, was
carried out. The experiment and simulation results
reveal that the proposed model not only can cover a
wide range of operating conditions but can also
elucidate well several important phenomena involved
in a liquid-liquid PTC reaction system.
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1. Mathematical model

1.1 Model formulation

The following mechanism represents a general
mathematical model of the dynamics of a liquid-liquid
phase-transfer catalyzed reaction system.

organic oo oy KL oy 4 Ry
phase A
-1
______ T___________l R
QYoi QXai
interface Tl Tl
QYWl QXwi
______ S
oY o ox
aqueous N %
phase Y X €))

It is assumed here that both RX and RY are

insoluble in the aqueous phase and that quaternary
onium salts QX and QY at the interface are in
extractive equilibrium. Based on the mechanism in (1),
the whole reaction system consists of the following
steps:
1) Mass transfer step The quaternary onium salts
can transfer back and forth between phases, with QY
transferring from the aqueous phase to the organic
phase and QX from the organic phase to the aqueous
phase. Applying the two-film theory!®, we have the
fluxes for QY and QX as follows:

JQY = kQY,w[(Q Y)w - (Q Y)wi] = kQY,o[(Q Y)oi - (Q Y)o]
(2)

Jox=kox o[(QX),—(@X)yi] = kox w[(QX),i —(@X).]
3)

2) Extractive equilibrium at interface We assume
that Q@Y and QX are, respectively, in extractive
equilibrium at the interface but not in the two phases.
This assumption implies that

@),
" 0V @
and
_ (QX)oi
"o 0x),, ©)

With the substitution of Eqgs. (4) and (5), we can
eliminate (QY),;, (QY).: (@X),;, and (QX),,; from
Egs. (2) and (3). Hence, the fluxes of QY and QX
between phases can expressed in terms of their con-
centrations in the two phases:

Jor= KQY[mQY(Q Y),—(QY),] (6)
JQX = KQX[(QX)o - mQX(QX)w] )
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where

1 Moy |71
Koy = [ S ]
kQY,w kQY,o

3) Slow reactions in organic phase The rate
equations for the slow organic-phase reactions are
assumed to be:

d%f_h —ky(RX),(QY), +k_,(RY),(QX), (8)
i%ﬁ= —ky (RX),(QY), +k_,(RY),(QX),
VAR My (@Y —(@1),] )
MOt (Rx), Q1) k(R (0,
— V5 AR o [(QX), —mox(0X),] (10)
d(lfi:/)":kl(RX)o(Q Y),—k_(RY),(QX), (11)

4) Dissociation equilibrium in aqueous phase In
the aqueous phase, dissociation equilibria for QX and
QY are rapidly established. Hence, the competition
between X~ and Y~ for quaternary cation Q* and
the common-ion effect of Q% can be represented by
the following dissociation equilibrium equations:

o (@),

=" oy (12)
Kgxz(Q( ;)({))r) o

5) Mass balances of species The mass balances for
Y™, X7, and Q" are given below:

VLRY),+(@1),]+ V., [(Y7),+(2Y),]

=V (RY);+ V,[(QY),+(YT)] (14
Vol(RX) +(QX),]+ V., [(X7), +(QX).]
=V(RX )+ V,[(QX),, +(X7).] (15)
Vol(QY), +(QX), ]+ V,[(Q ™) +(2X), +(Q1),]
=V, U2Y),+(0X)] (16)

The dynamic behaviour of a liquid-liquid PTC
reaction system is now described by Egs. (8)-(16).
These equations can be further simplified to the
following system of three differential equations and
one algebraic equation:

dy
7;= —P1y1Y2+P(Ne—y1)ys (17)
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dy "
”j= =P 1Yt (Ng—y1)ys
_Pa{J’2 —Ps [Ny-—oNg—y, +J’2)]} (18)
| P
+_
Ya
dy .
—§=P1J’1y2 —P2(Nx—y1)ys
dt
1
_P4{J’3 —Ps [N%-—a(y, +y3):|} (19)
1 Ps
+_
Ya
( 1 (]
0=_NQ+ +Dt(y2+y3)+y4+ [N -
1427
Ya
1
—a(Ng—y;+1)]+ [Ny -—a(y; +y3)]1(20)
| Ps
+k
Ya

where

Dl’yz’yfvy‘t]:[(RX)oa (QY)o’(QX)o’ (Q+)w:l
[pl’pzap3’p45p53p6’p7’p8]z[klyk—la Vo_lAKQY’
Vy IAKQXa Moy, Mox, ng Kgx]

Ng=(RX);+(RY);
Ny-=(QY),+(Y ), +a(RY);
Ny-=(QX),+ (X 7), +a(RX);

0+ =(QY),+(QX),

1.2 Admissible initial conditions

Before reaction, the species QX, QY, Y, and X~
are in the aqueous phase, while RX and RY are in the
organic phase. Hence, the intital conditions of (RX),,
(QY),. and (QX), are given by [,(0), y,(0), y;(0)] =
[(RX)g, 0, 0]. The initial concentration of Q*, y,(0),
cannot be a arbitrary value or the system will show
impulsive (jump) behaviour at the initial state?!?,
To avoid impulsive behaviour, the intial values of
y{0) for i=1,2,34 should satisfy the admissible
initial condition. In other words, y,(0) should be de-
termined from Eq. (20).

2. Solution of nonlinear differential-algebraic equa-
tions

A model composed of nonlinear differential and
algebraic equations can be expressed in the general
form

d)
§=f1cv,p, ) (21a)
0=1,(.p.0) (21b)
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with the admissible initial condition y(0), were y is the
n-dimensional state vector
y=DT|y1"
5[)’15)’2, o "ym|ym+15ym+2, o "yn]T s
p is the r-dimensional parameter vector

p=[p19p2’ o 'apr]T >
and f; and f, on the right-hand side of Eq. (21) are

flz[fnfz’ : ”’fm]T
L=l me1s fms2s "'afn]T

The differential-algebraic system of Eq. (21) can also
be written in the compact form

Ey=f (22)

where

E:[Imxm 0m><(n—m) :I
0(n—m)><m 0(n—m)><(n—m)

_ [f 1]
S
It is noted that not all systems described by coupled
differential and algebraic equations are solvable. Let
the vector-valued function f be continuously

differentiable with respect to y, and let the Jacobian
matrix be partitioned as

_a£=|:J11[me] J12[m><(n—m)] ] (23)
ayT JZl[(n—m)Xm] Jzzun—m)X(n—m)]

Then the sufficient condition for the solvability of Eq.
(21) or Eq. (22) is¥

det J,, #0 Vi (24)

It can be verified that Egs. (17)-(20) are solvable.
Hence the system with admissible initial conditions
can be favorably solved by the generalized third-order
semi-implict Runge-Kutta method®. This scheme is
based on the Richardson extrapolation technique'?
and has the advantages of increasing the solution
accuracy by one order, retaining the stability
properties of the algorithm, and providing a simple
method for step-size control.

and

3. Optimal parameter estimation

To estimate the optimal parameters of the model,
we assume that observation errors at different time
points are uncorrelated. The following simple
least-square function is chosen as the objective
function:

nexp v Wy

minJ= Y Y Y e.(p) (25)

u=lv=1w=1
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where

e : error between simulated result and experi-
mental data

nexp : number of runs

v, : numberofobservable components (v, <#n)in
run u
w, : number of sampled data of component v

It is well known that success in solving an optimal
parameter estimation problem relies heavily on
selecting a set of meaningful starting guesses for the
parameters. The most obvious method for choosing
a set of initial guesses is that by means of a priori
knowledge. For PTC reaction systems, however, pa-
rameters are experimentally very difficult to measure
and so they are not presently available'®. Hence, it
is hard to find a set of feasible starting guesses for
the parameters from experimental work or from
a priori knowledge. Fortunately, this shortcoming can
be overcome by a systematic search technique
proposed by Sobol!#. In applying Sobol’s method,
we need only confine all the parameters to a hypercube
which is formed with the possible parameter order
from a priori knowledge. A boundary contraction
algorithm'” can be used to adjust the parameter space,
which thus avoids requiring many searching points.
Bacause the searching points constructed by Sobol’s
method are distributed very uniformly in a certain
region of parameter space, Sobol’s method is found
to be efficient and superior to the traditional
random-search approach. After finding feasible starting
points from Sobol’s systematic searching method and
boundary contraction algotithm, the DSC-Powell
direct search method" is then used for further refining
the optimal parameters. The DSC-Powell method
consists of two search techniques. The first, known as
the DSC search, can bracket the optimal value of a
parameter. The second is the Powell search method,
by which the parameter can rapidly reach an optimal
one after that parameter is bracketed.

4. Experiment

The system chosen for study is the reaction of
organic-phase benzyl chloride with aqueous-phase
sodium bromide in the presence of tetrabutyl-
ammonium bromide as catalyst. The experimental
procedure is described as follows: First, the desired
amount of reactant sodium bromide, phase-transfer
catalyst tetrabutylammonium bromide and water were
poured into a 3.0x10"*m3, two-neck, round-
bottomed flask reactor. These aqueous components
were heated and mixed with a magnetic stirrer. The
constant stirring speed was controlled by a Heidolph
MR 2002 and the temperature was controlled by a
Kontakt thermostat. The organic phase was composed
on the solvent toluene, reactant benzyl chloride, and
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a small amount of naphthalene, which was used as an
internal standard for analysis. The organic phase was
preheated and kept at a present reaction temperature.
The reaction starts as soon as the organic phase is
added into the reactor.

Samples of 1.0 x 107" m? of organic phase were
withdrawn from the reactor at the present sampling
time and each sample was diluted by 1.0 x 10~ °m? of
toluene. The contents of the organic phase were
analyzed by a Shimazu GC-7A gas chromatograph
with a Shimazu C-R2A integrator. The GC column
is of 3m x 3mm ID and was packed with 5% SE-30
as liquid phase and 80—100 mesh Chromsorb W
AW-DMCS as solid support. The column temperature
was programmed from 120°C, maintained for
1 minute, to 270°C at a heating rate of 32°C/min. The
analysis conditions were as follows: injection-port
temperature was 270°C, the flow rate of carrier gas
N, was 5.0x 10" 7m3/s, the pressure of H, was
5.9 % 10*°N/m?, and that of air was 4.9 x 10*N/m?.
Under these conditions, the retention times of benzyl
chloride, benzyl bromide and naphthalene were found
to be 2.41, 2.76, and 3.28 minutes respectively.

5. Results and Discussion

To have accurate and reliable experimental data,
only benzyl chloride was actually measured. It seems
that the data from a single experiment are insufficient
to estimate all the parameters of our model. For the
purpose of searching a set of representative and
physically measningful parameters, three runs with
different initial concentrations of benzyl chloride but
under the same operating conditions were carried out.
To check whether tetrabutylammonium bromide and
tetrabutylammonium chloride in the two phases were
in extractive equilibrium or not, a sufficiently high
stirring speed was set to eliminate the effect of stirring
rate on the reaction.

By applying the optimal parameter estimation
technique described in the previous section, the
starting guesses obtained from Sobol’s systematic
searching method and the optimal parameters refined
by the DSC-Powell searching technique were de-
termined and are listed in Table 1. Referring to Table
1, the starting guesses from the Sobol searching stage
is good enough for the DSC-Powell searching stage
to refine the optimal parameters. After the DSC-
Powell searching stage, the parameter p, becomes
extremely large. It is evident that tetrabutylammonium
chloride is in an extractive equilibrium between two
phases such that the corresponding mass transfer is
very fast. This is reasonable since tetrabutylam-
monium chloride is more hydrophilic than lipo-
philic'? and transfers into aqueous phase rapidly
until the concentrations in the two phases reach a
condition established by the distribution coefficient
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Table 1. Estimated parameters

Sobol DSC-Powell reduced model

p; [m3/mol-s] 4202x107*% 4172x107% 4.188x107%
p, [m3/mol-s]  2845x1073 2.840x1073 2.799x1073
p3 [mol/m3s] 2.503 x 103 2.433x 103 2.361 x 103
pa [mol/m3s] 1.063 x 10° 3.198 x 1014 00
ps [ 1 0.699 0.700 0.696
Pe [ 1 0.063 0.063 0.066
p, [mol/m?] 6.895x10°  6.878x10°  6.892 x 10°
s [mol/m?] 8282x10°  8241x10°  8.373x10°

2.0

15 o o o experimental data

from model

0.5

U B T S T |

concentration of BzC1X107*[mol/m*]
P

0.0 T T T T T T T T T T T 1
0 120 240 360 480 600 720

time (min)

Fig. 1. Fitness of the model

The experiments were carried out under the following
conditions: benzyl chloride (BzCl): 1.0 x 103, 1.5x 10 and
2.0x10° mol/m3, sodium bromide (NaBr): 2.0x 103
mol/m?, tetrabutylammonium bromide (TBABr): 1.0 x 102
mol/m3, volume ratio=1/2 (Vo=7.5x10"°m3, V, =15
x107°m?), reaction temperature=70°C, stirring rate=
700 rpm

moy. Q.

From the above result, we can set the term in
brackets on the right-hand side of Eq. (19) to zero.
This gives the following equation:

=P6(N§- —oyi)Va
Pe¥at+YatPs

By substituting Eq. (26) into Egs. (17), (18) and (20),
a new model, which will be referred to as the reduc-
ed model, is obtained. Applying the DSC-Powell
searching method to the reduced model with the
starting points being the final results of the original
model, as in the third column in Table 1, we obtained
the optimal parameters for the reduced model as
shown in the last column of Table 1. It is noted here
that the parameter ps still represents the distribution
coefficient of tetrabutylammonium bromide at the
interface, whereas the parameter ps now denotes the
distribution coefficient of tetrabutylammonium chlo-
ride between the two phases. The test of the set of
optimal parameters is shown in Fig. 1. The estimated
parameters reveal that the mass transfer of tetra-
butylammonium bromide has a significant effect on

(26)
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the behavior of the system, whereas the mass transfer
resistance of tetrabutylammonium chloride can be
neglected. To investigate the contributions of the mass
transfer and the reaction to the overall formation rate
of tetrabutylammonium bromide in the organic phase,
the mass transfer rate, the reaction rate, and the overall
rate are plotted Fig. 2 for the second run. It can be
seen from Fig. 2 that the contributions of reaction
and mass transfer are both positive before 110 min.
At 110 min, the overall rate is contributed merely by
the reaction since the mass transfer rate is zero. Later
on, the mass transfer gives a negative contribution to
the overall rate. This implies that tetrabutyl-
ammonium bromide is transferring back into the
aqueous phase.

6. Salting-out effect on distribution coefficients

Heriott and Picker® have found that increasing the
concentration of inorganic salts in the aqueous phase
tends to accelerate the overall reaction. They concluded
that increasing the ionic strength in the aqueous phase
salts out the organic salts, driving them into the or-
ganic phase and, therefore altering their distribution
coefficients. To investigate the salting-out effect on the
distribution coefficients, two additional experiments
were carried out with different concentration of
sodium bromide but under the same operating
conditions as before. The DSC-Powell searching
technique is applied to find the optimal parameters
ps and p, for each additional run, while keeping other
parameters in the values as shown in the last column
of Table 1. The estimated distribution coefficients are
shown in Table 2. The simulation results as well as
the experimental data are plotted in Fig. 3. From
Table 2, it is evident that the increase of the con-
centration of sodium bromide in the aqueous phase
results in increases of the distribution coefficients
of both tetrabutylammonium bromide at the inter-
face and tetrabutylammonium chloride between
the two phases. When the concentration of NaBr is
increased to 3.0 x 103 mole/m?, the distribution co-
efficient of tetrabutylammonium chloride becomes
about three times larger than that in the case of
2.5x 10*mole/m3. These data show that there a
great amount of tetrabutylammonium chloride
accumulates in organic phase as the reaction pro-
ceeds. The accumulation of tetrabutylammonium
chloride in the organic phase inhibits the forward
reaction and lowers the circulation rate of the
phase-transfer catalysts between the two phases.
Hence, the final conversion is lower. This is so
called “catalyst poisoning.” From Fig. 3, it is clear
that our model can well explain the salting-out
effect on the distribution coefficients.
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Fig. 2. Contributions of mass transfer and reaction to
overall rate

Table 2. Salting-out effect on distribution coefficients

NaBr 2.0 x 10*mole/m*® 2.5x 103mole/m*® 3.0 x 10*> mole/m?

s 0.696 0.864 1.383

s 0.066 0.067 0.215

_ 20

g ]
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Fig. 3. Salting-out effect

The experiments were carried out under the following
conditios: sodium bromide (NaBr): 2.0 x 103, 2.5 x 10 and
3.0 x 10° mol/m?, benzyl chloride (BzCl): 1.5 x 10> mol/m?3,
tetrabutylammonium bromide (TBABr): 1.0 x 102 mol/m?3,
volume ratio=1/2 (V,=7.5x10""m3, V,=1.5x10"%m?),
reaction temperature =70°C, stirring rate =700 rpm

O, O and A represent the experimental data for NaBr
20x10% 2.5x10® and 3.0x10® mole/m® respectively.l

Conclusions

A new mathematical model, formulated as a system
of coupled nonlinear differential and algebraic
equations, has been presented from describing the
dynamics of a liquid-liquid phase-transfer catalyzed
reaction system. The model not only contains all the
factors that influence the behaviour of a phase-transfer
catalyzed reaction system but also accounts for the
common-ion and salting-out effects. Moreover, the
model can cover the whole range of operating
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conditions.

Through the help of a parameter estimation
technique, the estimated model paremeters provide
more information for understanding the behaviour of
the reaction system. It should be pointed out that since
the chemical and physical properties of the aqueous
phase and the organic phase change as the reaction
proceeds, the values of parameters may not be
constant for a real PTC system. Hence, the estimat-
ed parameters can be considered as characteristic
properties of a PTC system in the range of reaction
conditions. In general, the estimated parameters
would be more representative if more components
could be measured accurately and reliably. Also, if
some parameters can be estimated from published
correlations, the accuracy of the obtained model
becomes higher.

The stimulation and experimental results reveal that
the suggested model can elucidate well the phenomena
involved in a liquid-liquid phase-transfer catalyzed
system. Hence, it is confirmed that the proposed model
can be adopted for reactor design for a liquid-liquid
phase-transfer catalyzed reaction system.

Nomenclature
A = interfacial area [m?]
Joxs Jor = fluxes of QX and QY [mol/m?s]
Kox, Koy = overall mass transfer coefficients of

QX and QY [m/s]
K3y, K§y = dissociation constants of QX

and QY [mol/m?3]
kox.w» Kox,, = mass transfer coefficients of QX [m/s]
koyw kov,, = mass transfer coefficients of QY [m/s]
ki, k_y = forward and backward reaction

rates [m3/mol -s]
moy, Mgy = distribution coefficients of QX

and QY [—1
(QX), (QY) = concentrations of quaternary

onium salts [mol/m?]
(QX),;, (QX),.:, = concentrations of QX at the

interface [mol/m?]
©QY),;, (QY),;, = concentrations of QY at the
interface [mol/m?]

(28] = concentration of quaternary cation

in the aqueous phase [mol/m?]
(RX), (RY) = concentrations of organic reagents

in the organic phase [mol/m?]
(X7), (Y7) = concentrations of anions in the
290

aqueous phase [mol/m?3]
Vo Vi = volumes of organic phase and
aqueous phase [m?]
o = volume ratio (a=V,/V,,)
{Subscripts)
o = organic phase
w = aqueous phase
i = interface
{Superscripts)
0 = total concentration at initial
T = transpose of a vector or matrix
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