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Introduction

Bubbles are closely related to gas-solid mixing, so the
performance of a gas-solid fluidized bed may be
determined by the behavior of bubbles. Bubbles at
ambient temperature have been much investigated
from various viewpoints to obtain almost the same
conclusions about size and resing velocity. However,
there exists some conflict among researchers con-
cerning the dependence of temperature on bubble
properties.

Sitthiphong er al.® reported that the eruption
diameter in a large particle bed increases with bed
temperature. Wittman et al.® and Sishtla et al.¥
reported no effect of temperature on bubble size over
the range investigated. Yoshida et al.'V, Geldart et
al.® and Stubington et al.” reported that bubble size
decreased with bed temperature from ambient to
about 600 K.

To measure bubble size and bubble rising velocity,
various methods have been proposed and developed.
But it is difficult to determine the movement of each
bubble easily and directly by vusual observation in a
3-D fluidized bed. Semi-cylindrical beds have been
used to observe the behavior of slugs and jets in
fluidized beds and spouted beds, proving that
semi-cylindrical beds are a useful tool for direct
observation of in-bed phenomena with only minor
wall interference*®.

In the present work, bubbles and/or slugs at an
elevated bed temperature (600 K) were observed using
a semi-cylindrical bed to determine their sizes and
rising velocities, and these data were compared with
the the results obtained at room temperature (300 K).
1. Experimental

The experimental apparatus is the same as that used
in a previous paper® except that a jacket heater and

* Received May 5, 1990. Correspondence concerning this article should be
addressed to Y. Hatate. M. Migita is now at Nippon Sceel Co., Ltd. and D. F. King is
now at Chevron Research Co., Ltd.
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ceramic wool were installed in the back side of the col-
umn to keep the bed temperature at 600 K.

Air preheated to 600K below the distributor was
used as the fluidizing medium in all experiments. Four
cuts of sands, covering a wide range of Geldart
classification B, were used as solid particles (see Table
1). The average sizes of solid particles d, were
determined by a sieve analysis. The values of U,,, were
measured at 300K and 600K. U,,, at 600K is much
smaller than that at 300 K for comparatively large
particles. The experimental procedure and analytical
method for bubble sizes and rising velocities were the
same as described in the previous paper®.

2. Results and discussion

2.1 Bubble size

In general it can be said that not only fluidizing gas
viscosity but also particle adhesivity and particle
friction characteristics of change with bed tempera-
ture!®.

The effect of gas flow rate (= U— U,,,,) on equivalent
diameter of bubble Dy at 600K and d,=281pum is
shown in Fig. 1. It is found that Dy increases with
increasing height above the distributor (%) and excess
gas velocity (U— U,,) as well as ambient temperature.
The solid lines in the figure show values calculated
from the equation by Darton et al.?, which was
obtained for bubbles in the bubble regime at ambient
temperature.

Figures 2, 3, 4 and 5 show the effect of bed
temperature on bubble size for d,=752um, d,=

Table 1. Physical properties of particles used

d,[um] p,[kg/m’] Unslonis]
300K 600 K
75.2 2500 0.980 0.700
189 2500 3.30 2.39
281 2500 10.2 5.35
521 2500 33.2 16.7
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fluidity of the fluidized bed.!®

As a whole, however, it was found that the bubble
rising velocity is little affected by bed temperature or
bed height in the slugging regime.

Nomenclature
Dy = equivalent diameter of bubble [em]
d, = average diameter of solid particles

by sieve analysis [pm]
h = bed height above distributor [cm]
Uy = bubble rising velocity [em/s]
U = superficial gas velocity [cm/s]
Uns = minimum fluidization velocity [cm/s]
Pp = particle density [kg/m3]
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