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Introduction

The fast Fourier transform (FFT) algorithm can be
used to numerically invert certain Laplace trans-
forms.® Recently, it has been successfully applied to
the prediction of elution curves-of fixed-bed adsorbers
with linear kinetics and pore diffusion,'#> and with
nonlinear kinetics but without pore diffusion.?’ The
results illustrated that this method has the advantages
of computing speed and accuracy.

The purpose of the present study is to investigate
the utilization of FFT to simulate the elution curves
of slurry adsorbers in which nonlinear adsorptions
proceed over porous adsorbents, and to evaluate its
validity in terms of calculating speed and accuracy.

1. Descriptions of Model and Method

Consider an isothermal slurry adsorber where a
reversible and nonlinear adsorption process is carried
out over a porous spherical adsorbent. The adsorber
is assumed to be perfectly mixed and there is no
external film resistance. The initial concentration of
adsorbate is zero. At time zero, a step input of
adsorbate is introduced to the inlet of the adsorber,
which can then be described by the following
equations:
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Direct use of the FFT technique has two limitations;
the function involved should be a continuous one, and
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should start and end at zero. Therefore, a step input
is not valid, and a modified input function proposed
in a previous work? is employed:
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where the concentration profiles in the time ranges 0
to ¢t; and (z,—1,) to ¢, are characterized by the normal
distribution. The function described by Eq. 7 is
continuous and can approach a block function if ¢
and o are carefully selected; for example, if ¢; is small
compared with ¢, and o is small enough. In this
situation, the concentration profile desired for a step
input can be obtained from the input function of Eq.
7 after ignoring the time lag (time from 0 to ¢;) and
the tailing part (after saturation) of the elution curve.

The solutions of the above system of equations in
the Laplace domain can be solved as
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where
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The time-domain elution curve can then be obtained
by adapting the FFT algorithm with the iterative
procedure described below. It should be noted that
the Laplace variable s is calculated by setting s =ikn/T,
where k=0,1,2,-:-, N—1. The linear adsorption
process was assumed to start the calculation, i.e., C,
and @ are first calculated from Egs. 8, 9, and 11-13
by setting C,0 equal to zero. The nonlinear term, C,0,
needed for iteration is then calculated numerically
from C, and 6 with the aid of FFT.? All integrals
involved in the present work were obtained by the
Newton-Cotes method. To calculate the integrative
terms numerically, data of C,0 at different positions
inside the particle must be obtained first. For this
purpose, five equal-spaced points were taken along the
radius of the particle. When the calculations were
made at the center of the spherical adsorbent, r=0,
or when the Laplace variable s equaled zero, an
infinite value was enccountered. To overcome these
problems, IL’Hospital’s rule was applied. The
expression of C, under these spezial conditions was
obtained as:
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Fig. 1. Elution curves from the FFT method and the

orthogonal collocation method

2. Results and Discussion

The number of sample points, N, used in the FFT
method is critical in the aspects of accuracy and
computing speed. The adequate sample size depends
on the sharpness of the function encountered, i.e.,
larger N for sharper function. To solve a nonlinear
system by the FFT method, the number of iterations
should be determined first. A relatively large number
of sample points (N=1024) were employed to ensure
good accuracy during the determination of the
iteration number. Since the iterative process of the
present method converges very fast, only two
iterations were needed, as shown in Fig. 1. After
determining iteration number, the sample size N was
then examined. It was found that N=256 was
sufficient for the present case, and the execution time
on a CDC Cyber 840 computer was 2.398 seconds.

Since the analytical solution for the present system
has not yet been established in the literature, the result
calculated from the FFT method was compared with
the result from the orthogonal collocation method,
which is widely used to solve partial differential
equations. In the method of orthogonal collocation,
step input was employed and four interior collocation
points were taken. The resulting equations are a set
of ordinary differential equations that are initial-value
problems. The Runge-Kutta method was then chosen
for the time integration. The results obtained from
these two methods were in good agreement, as shown
in Fig. 1. The execution time for the orthogonal
collocation method (terminated at C/C, around 0.95)
was found to be 2250 seconds. Thus the computing
speed the computing speed of the FFT method is three
orders of magnitude faster than the orthogonal
collocation method.

In this study, the FFT technique was successfully
applied to a slurry adsorber with a nonlinear kinetics
and pore diffusion, without losing the elegance of
computing speed and accuracy. Since the calculation
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is so rapid, the present method is believed to be suitable
for use as an auxiliary tool for parameters estimation
in the time domain. For the case of existing external
film resistance, the transfer functions can also be
derived with the same mathematical manipulation,
and the same numerical iteration procedure is also
applicable. Extending this technique to fixed-bed
adsorption problems with nonlinear kinetics and
diffusion effects and to other chemical reactor systems,
which might need further modification of this
technique, is attractive future work.

Nomenclature
A = parameter, Eq. 11 [—]
As = gpecific surface area [em?/cm?3]
C = adsorbate concentration in bulk fluid

phase [mol/cm?]
Ci = adsorber input function [—1]
Co = inlet concentration of adsorbate [mol/cm?]
C, = adsorbate concentration in pore fluid

phase [mol/cm?®]
C,0 = C,(t,r)x0(t,r) [—]
D, = pore diffusivity of adsorbate [cm3/s]
ky = adsorption rate constant [em3/mol-s]
k, = desorption rate constant [s™4]
N = number of sample points [—1
Hp = adsorption concentration at complete coverage
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of surface [mol/cm?]
R = radius of spherical adsorbent [cm]
r = radial distancce in particle [em]
K = Laplace transfer variable [s™%]
T = half period of the function of interest [s]
t = time [s]
t, = time when the input concentration returns

to zero [s]
t; = mean of the normal distribution [s]
IR = parameter, Eq. 14 -1
B = parameter, Eq. 15 [—]
g, = void fraction in particles [—]
0 = fraction of surface coverage [—1
g = standard deviation of the normal

distribution [s]
T = gpace time [s]
[N = parameter, Eq. 12 [—]
(2% = parameter, Eq. 13 [—1]
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