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Introduction

Studies of the effectiveness factor for reactant
diffusion in a porous catalytic pellet have been of
continuing interest to researchers concerned with
chemical reactor design. Past investigations have been
extensively surveyed by Aris.” A common assumption
in previous investigations is that the diffusion
coefficient of the reactant is a constant. In many
practical situations the diffusion coefficient is not
constant, but is concentration-dependent.” Diffusion
in a molecular sieve is a typical example. In fact,
concentration-dependent diffusion also appears in a
variety of practical applications in other engineering
and physical sciences.” ,

Ruthven® appears to be the first investigator to
consider the effect of concentration dependence of the
diffusion coefficient on the effectiveness factor. The
author was particularly concerned with zeolite diffu-
sion in molecular sieve catalysts. A first-order chem-
ical reaction without external mass transfer resistance
and with strong concentration dependence of the dif-
fusion coefficient was examined. In more recent work,
Pereira and Varma® investigated the problem in
which external mass-transfer resistance exists. How-
ever, they restricted their consideration to the case
with weak concentration dependence of the diffusion
coefficient and with first-order chemical reaction.
The purpose of this note is to show that by using
an appropriate numerical integration method, the
restrictions of previous investigations are not neces-
sary and a wide range of problems with weak or
strong concentration dependence of the diffusion co-
efficient and with any order of chemical reaction
can be handled.

1. Physical Model

Steady-state, concentration-dependent diffusion
with general-order chemical reaction can be re-
presented by
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Different concentration-dependent functions have
been used before.? The following two types are the
most general ones:
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If 6{1, Eq. (4) reduces to that considered by Pereira
and Varma.® Ruthven® used the following concentra-
tion-dependent relation:
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Although Eq. (6) is supported by some experimental
evidence, it has one major deficiency in that it becomes
indefinite when C approaches its equilibrium value C;.
In fact, the concentration dependence given by Eq.
(6) may well be represented by Eq. (4) with
appropriate combination of the parameter 6 and
power n. Therefore, Egs. (4) and (5) are sufficient to
represent a wide variety of concentration dependence
of the diffusion coefficient and are adopted in this
study.

In terms of the dimensionless variables and
parameters, Egs. (1) to (5) can be rewritten as
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where 8 is the dimensionless concentration, C/C,, and
the Thiele modulus ¢ is defined as (kob>*Ch~ /D) /2.
Eq. (7) with the boundary conditions of Egs. (9) and
(10) constitute and highly nonlinear ordinary
differential equation which can be readily integrated
by an interactive Runge-Kutta method.* To test the
accuracy of the present numerical scheme, several runs
were made for the special case with constant diffusion
coefficient and first-order chemical reaction. Figure 1
shows a comparison of the Thiele moduli obtained by
the present numerical method with those obtained
from analytic solutions.® It appears that the solutions
are essentially identical, the difference between them
being less than 1073, The following flgures show
some typical numerical results.

2. Discussion of Results

Figure 2 shows the effectiveness factor vs the Thiele
modulus in a spherical catalyst for a linearly
concentration-dependent diffusion. The bottom curve
for 6=0 corresponds to diffusion with constant
diffusion coefficient. It is apparent that the effect of
the variable diffusion coefficient on the effectiveness
factor is quite significant even when the diffusion
coefficient has only a linear concentration dependence.
Such an effect will be considerably amplified if a higher
power is used in Eq. (8). '

The effectiveness factors vs the Thiele modulus and
the Sherwood number are displayed in Figs. 3 and 4,
respectively, for varions geometries. It is of interest
to note in Fig. 4 that the effectiveness factor
asymptotically approaches a constant as the Sherwood
number increases. In fact, the effect of the Sherwood
number on the effectiveness factor is negligible for
Sh>100. This is due to the fact at such a large
Sherwood number the external mass transfer re-
sistance is almost nonexistent. It is obvious from this
figure that the effectiveness factor increases rapidly
for Sherwood numbers less than 50. This figure also
indicates that the curves of the precicted effectiveness
factors for linear and exponential concentration
dependences are close, primarily because of the small
¢ value chosen here. For larger J, they are expected
to be quite different.

The effect of the order of chemical reaction on the
effectiveness factor is demonstrated in Fig. 5. At low
Thiele modulus, less than 2, the influence of the
reaction order is relatively small. The curves for the
onehalf and second-order chemical reactions, how-
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Fig. 1. Comparison of numerical and analytical solutions
with constant diffusion coefficient and first-order chemical
reaction
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Fig. 2. Effectiveness factor vs Thiele modulus in a sphere
with SA=5.0, m=1 and f(§)=(1+50)

ever, depart considerably from that of the first-order
chemical reaction for large Thiele modulus.

Conclusions

A numerical procedure is presented in this note for
computing the effectiveness factor for concentration-
dependent diffusion in various geometries. Because of
the versatility of the numerical integration scheme
employed here, practically no restrictions need be
imposed on the form of concentration dependence of
diffusion coefficient or the order of chemical reaction.
According to the numerical results obtained here, the
external mass transfer resistance can be neglected for
Sherwood numbers larger than 100. It is also shown
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Fig. 3. Effectiveness factor vs Thiele modulus for various
geometries with linear concentration dependence of diffusion
coeflicient and with 6=0.5, Sh=5.0 and m=1
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Fig. 4. Effectiveness factor vs Sherwood number for
different geometries and concentration-dependent functions

with 6=0.5, m=1 and ¢=2.5 ——, Exponential concentra-
tion dependence, f(#) =exp (0.5 6); ------ , Linear concentration
dependence, f(6)=1+0.560; ——-—-, Power concentration

dependence, f(0)=(1+0.50)*

that the effect of the order of chemical reaction and
the form of concentration dependence on the
effectiveness factor are very strong in most cases.

Nomenclature

a = geometrical parameter (0 for slab, 1 for cylinder
and 3 for sphere)

b = characteristic dimension of the catalytic pellet

C = reactant concentration inside the catalytic pellet
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Fig. 5. Effectiveness factor vs Thiele modulus in a sphere
for different reaction orders with f{)) = (1 +0.56) and Sh=15.0

Cy = reactant concentration in the bulk phase

C, = saturated zeolite concentration

D(O) = concentration-dependent diffusion coefficient
D, = reference diffusion coefficient

k = external mass transfer coefficient

ko = reaction rate constant

m = order of chemical reaction

n = power in the concentration dependent function
Sh = Sherwood number, kb/D,

x = axial coordinate

x = dimensionless axial coordinate, x/b

é = parameter in the concentration-dependent function
0 = dimensionless reactant concentration, C/C,

¢ = Thiele modulus, (k,b>C%~1/Dy)

n = effectiveness factor
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