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For the isothermal desorption of film, the diffusion equation for a slab based on the dissolved solid coordinate
is solved numerically with various types of concentration dependence of the diffusion coefficient. Based on the
assumption of concentration distribution similarity, the relations between desorption rate and integral average
diffusion coefficient are derived as functions of the ratios of average concentration to center concentration for
both the penetration period and the regular regime, regardless of the type of concentration dependence of the
diffusion coefficient. By means of these relations, Methods of calculating the diffusion coefficient as a function of
solvent concentration are presented for both the initial rate in the penetration period and the rate in the regular
regime, which covers the whole concentration range included in the desorption data. The method is usable within
an error of 10% in the range of 0.5 < (the ratio of average concentration to center concentration) <0.9, which

covers a variety of concentration dependences of the diffusion coefficient.

Introduction

When analysing the drying process of solutions such
as polymer solutions and aqueous solutions of food,
it is important to know their mutual diffusion
coefficients, which usually show strong concentration
dependence. Sorption experiments are commonly used
‘to obtain the diffusion coefficient. In some polymer-
solvent systems near their glass transition point,
non-Fickian behaviour such as a sigmoidal sorption
curve due to time-dependent relaxation of polymer
chains are found in the adsorption, while the
desorption is quite Fickian.!® In such systems, only
desorption experiments can be used to obtain the
diffusion coefficient.

Methods of calculating the concentration-depen-
dent mutual diffusion coefficient for sorption experi-
ments were reviewed by Crank® and Vrentas and
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Duda.” Recently, Schoeber and Thijssen® proposed
a shortcut method for the calculation of drying rates
for slabs with concentration-dependent diffusion
coefficient. They introduced the concept of regular
regime in the drying analysis and proposed a meth-
od for calculating the diffusion coefficient from the
regular-regime drying curve. Vrentas and Duda®
proposed a method for calculating thé diffusion
coeflicient from the initial rate in step-change sorption
experiments, assuming exponential concentration
dependence of the diffusion coefficient. The authors!?
proposed a method by correlating the apparent
diffusion coefficient to the weighted mean diffusion
coefficient proposed by Crank®.

Most previous calculation methods seem to utilize
only a part of the information included in the sorption
data®” and have some shortcomings such as
cumbersome calculation and application in a limited
concentration range.

In this paper, a method for calculating the diffusion
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coefficient covering the whole concentration range
concerned in desorption experiments, regardless of the
type of concentration dependence, and based on the
assumption of similar concentration distribution on a
slab is described.

1. Governing Equations for Desorption

1.1 Diffusion equations
The diffusion equation for a slab based on the
dissolved-solid coordinates*> is
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By using Eq. (1), the effects of volume change due to
diffusion and the moving-boundary problem due to
solvent loss are treated automatically.”

The desorption process considered here is the case
in which the initial concentration is uniform, the rate
of desorption is controlled entirely by the internal
diffusion of solvent, and the surface concentration is
zero. Then the initial condition and the boundary
conditions are
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Table 1. Concentration Dependence of D,

() D,=m" 0=Zas5s
(2) D,=expla(m—1)) —3=<as5
(3) D,=am+(1—a) —10=<a<1
(4) skim milk-water system at 303KV
d,=1580 [kg/m®] d,,= 1000 [kg/m°]
( 38.92+323.3%,,
D=exp| ———m————

) m*s], @,<0.9
1+15.840,
(5) Polyvinyl alcohol (PVA)-water system at 323K®
d;=1270 [kg/m®] d,= 1000 [kg/m?]
. 60
peexp( 20F3000m) L ag w,<08
1+16.00,,

Eq. (1) with. Egs. (2), (3) and (4) is solved
numerically by the Crank-Nicolson finite difference
method, using various types of concentration-de-
pendence equations for the diffusion coefficient.

1.2 The concentration-dependent diffusion coefficient

The mutual diffusion coefficients for polymer
solutions and aqueous solutions of food material
usually decrease continuously with solvent concen-
tration. However, in some polymer-solvent systems
such as the toluene-polystyrene system® the diffusion
coefficient changes with concentration and shows a
maximum value.

The reduced diffusion coefficient D, considered here
includes solid concentration p, as shown in Eq. (9).
D, varies with concentration not only by the
concentration dependence of D itself but also by the
term p,. The concentration dependences of D, tested
in this work, are the three mathematical model
equations and two empirical equations listed in Table
1 and shown in Fig. 1.

In the skim milk-water system (d; > d,,), the diffusion
coefficient decreases continuously with decreasing
water concentration in the whole concentration range,
but D, in this system shows a maximum for initial
water mass fraction w,,,>0.5.

2. Flux Equations Based on Concentration Distribu-
tion Similarity

The desorption process presented by Egs. (1), (2),
(3) and (4) is divided into three periods, as shown in
Fig. 2. In the following, the penetration period, the
transition period and the regular regime are
abbreviated as PP, TP and RR respectively.

In PP, the desorption process can be considered as
a diffusion process in a semi-infinite medium, and the
following equation is obtained by introducing
Boltzmann’s transformation into Eq. (1).

dm d dm
25E+£<D,E£)=o (14)
1—
=12 as)
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Fig. 2. Concentration distributions of penetration period,
transition period and regular regime

The reduced solvent content m is a function of ¢ alone
and thus the distribution of m is strictly similar in the
range of <¢p<1. In PP, the plot of E vs. /7 is
linear with a constant slope of S regardless of the
concentration dependence of D,.”

om
F=—|D — 2ldm=———- (16
< ra¢>¢ 1 ij v --(16)

dE

Ve
1 2
FE=?ﬁ (18)

(17)

Here, we consider the concentration distribution
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function based on the similarity.

m

(LR (19)
m, C
_p=3

T 1-6 (20)

where 1 —46 is the penetration depth as shown in Fig.
2. Next, we consider a variable Y, which is a
.dimensionless flux in the slab.

0
Y($)= —Dr"g%: 1)
At the surface
om
Y=—|(D,—) =F 2
(2.5%),.. @)

The average flux in the slab is obtained by the
integration of Eq. (21).

1 l me R
f Ydn=—— D,dm=% (23)
0 _‘5 1_‘5

where the integral average diffusion coefficient is

S w P
D,c=iJ‘ ”‘"f 2 (24)
mc 0

OpsO

On the other hand, by putting Eq. (21) into Eq. (1)
and after some manipulation the flux ratio Y/F is
expressed by the average value and the first moment
of the reduced concentration distribution. (See Ap-
pendix)

Finally, we obtain the following equations for the
end point of PP

D, _1-2f,+2M,, 25)
F (1—1,p)
M,,= J n.f(m)dn (26)
4]
Jop= j S (n)dn (27)

fop is constant during PP because of the similarity of
concentration distribution in the range 0=<x=1
(0£¢p=<1) and can be obtained by the following
equation from the value of E at the end point of PP
because =0 at this point.

E
=5

1—m

oy (28)
After PP, the concentration distribution changes

gradually from the pattern of PP to the pattern of

RR. If we assume the similarity of concentration

distirbution in RR using Egs. (19) and (20) in which

5=0 and n=¢ (the function of Eq. (19) may be
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different in PP and RR), we get the following equations
for RR. (see Appendix)

mcl)_rc 1 Mg

F O @

MRR = J ¢f(¢)d¢ (30)

fgk=ﬂ=j F(@)dep G31)
mc 0

3. Results and Discussion

The results of numerical solutions of Eq. (1) with
Egs. (2), (3) and (4), using the various types of D,
shownin Table 1, are analysed under the consideration
of the flux equations described above.

3.1 PP, TP and RR during desorption

Examples of the numerical solutions are shown by
the plots of E, f and m,, vs. \/ 7 in Figs. 3 and 4. E
Vs. \/ ‘¢ shows a linear relation with a slope of § in
PP. The linear relation continues for a while after m,
begins to fall from unity. At a certain later 7, the
relation E vs. \/? begins to deviate from the straight
line as shown by the solid circle keys. These points
can be considered as the starting point of RR and are
conveniently determined here by the point at which
F-E is 90% of (F- E)pp.

The end-points of PP, defined as the point at which
m, begins to fall from unity, is here taken practically
as the point m,=0.99 and are shown by the open circle
keys. The period between the end point of PP and the
starting point of RR is TP.

3.2 Concentration distribution and the ratio of the
average to the center concentration f

Several samples of comparisons between concentra-
tion distributions at the end of point of PP and the
starting point of RR are shown in Fig. 5.

f is considered as the representative value of the
concentration distribution.

In PP, fis given by the following equation.

f=5+(1“5)f_m>=”_" (32)

fep» given by Eq. (27), corresponds to the value of f
at the end of PP. The change of f with \/ ¢ is linear
in PP, which corresponds to the linear change of
with /7. In TP, the change of f is small for
continuously decreasing D, with m. But when D, has
a maximum value or increases with decreasing m, large
changes in f are found, as shown in Fig. 4.

In RR, the change in f given by Eq. (31) is generally
very small. For the case of D,=m" f is essentially
constant in RR. This means that strict similarity of
concentration distribution holds in this case. The
constancy of f in RR reflects the adequacy of the
assumption of similarity in RR.
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Fig. 5. Comparison of reduced concentration distribution
in PP and RR

The change in f is correlated by the term
dIn F/dInm. In PP, we obtain the following equation
by the differentiation of Eq. (18).

dinF 1-E f

dnm E -] )

In RR, the following equation is empirically
obtained regardless of the concentration dependence
of D,, as shown in Fig. 6

1 dln 7\2
—=1+0.643( nm) —0.10(d1nm> (34)
Jrr dinF din F
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Fig. 7. M vs. f for PP and RR

The convergence of f to Eq. (34) in RR is quite
satisfactory. The small changes in fin RR correspond
well to Eq. (34) with errors less than 3% for fzz >0.5.
Then the center value m, is calculated from the
observed value of 71 with fzr by Eq. (34) through RR.
3.3 Relation between M and f

The first moment M and the average value f of the
concentration distribution given by Egs. (26) and (27)
for PP and Eqgs. (30) and (31) for RR, respectively are
calculated from the numerical solutions of concentra-
tion distribution. All values of M and f of the
concentration distribution in PP and RR are
correlated surprisingly well by the following equation,
regardless of the type of D,, as shown in Fig. 7.

M=0.23572+0.3627—0.0965 (0.5<f<1) (35)

By using Eq. (35) we can obtain the relation between
the integral average diffusion coefficient and the
desorption rate. For PP, we adopt the practical end
point of m,=0.99 and then from Egs. (18) and (25),
we obtain (see Appendix)

mD,, 0.807—0.470 fyp

= = 36
1/282 1—-0.99fpp (36)
For RR, from Eq. (29)
m.D,, - .
—=0.0965/frr +0.639 —0.235 frx 37

The numerical results of m.D,./(1/28%) vs. fpp for PP
and m.D, /F vs. fgr for RR are plotted in Figs. 8 and
9 respectively. The errors in Eq. (36) for PP may be
attributed partly to the definition of the end-point of
PP. The errors in Eq. (37), which may be attributed
to the assumption of similarity of the concentration
distribution in RR, are up to 10% at the beginning
of RR and become smaller in the later RR. If the
following empirical equation is used instead of Eq.
(37), the errors become smaller, as shown in Fig. 9.
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3.4 The empirical relation of § vs. fpp

From the numerical solutions, the initial slope of
Evs./© in PP is plotted with 1/fp as shown in Fig.
10 and is presented by the following equation.
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1
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fPP

The errors in Eq. (39) are less than 3% for fpp>0.5
regardless of the functional form of D, except the in
case of Dr=am+(1—a), in which the error becomes
up to 10% for a= —10 as shown in Fig. 10. In the
systems of skim milk-water and PVA-water, Eq. (39)
can be used quite satisfactorily in the range considered.

Note that f is the slope of E vs. \/ ¢ in PP for the
normalized D,, in which D,=1 at m=1.

4. Calculation Procedure for Concentration De-
pendent Diffusion Coefficient

The correlation equations presented above can be
used for calculation of the concentration dependent
diffusion coefficients from the data of desorption
experiments at a constant temperature. The calcula-
tion is conveniently performed by using the following
values: D, =Dp? instead of D,, F'=dE/dt instead of
F, and v =t/d?R? instead of 7.

4.1 Calculation procedure

The desorption data are treated as follows.

1) From desorption experiments with various
values of initial solvent concentration u,, the change
of # with time are obtained.

2) E=1-mvs: /7 is plotted. The initial part of
this plot shows a linear relation through the origin.
The slope of the relation gives ' =dE/d,/7 in PP.

3) The starting point of RR is conveniently
estimated by the point at which the plot of E vs. \/?
begins to deviate from the linear relation. During
RR, F' is calculated for various values of # by the
differentiation of E vs. /7.

4) F'u, obtained from the experiments of the
various u, values are plotted together with #in log-log
form. The plots make one master curve of the
desorption rate in RR which is independent of the
initial concentrations as shown by Schoeber.”

From these data, the following three ways of
calculating the diffusion coefficient can be utilized.
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(1) Direct calculation of Dp? in PP

The value of Dop is usually unknown. If we use
B'=dE/d,/7 instead of f=dE/d,/ T, then

E)Z =Dyp? 40
( 8 0Ps0 (40)

From Egs. (18), (36), (39) and (40), the following
equations are obtained. (see Appendix)
X
Doply="B" (1)

where D,p2, is the value of Dp? at u,, (strictly at 0.99u,)
and

0.870—0.470p

42
109 (42
y=1+2dln[i‘ din X
dinu, dlnu,
0.233f2
Fe @)

T (1—75p)(0.807—0.470p)

In this derivation the approximation

(1—0.99Fop) /(1 —fop) =1.05  for fopp<0.9

is used.

fepand DypZ are obtained by trial calculation. First,
the values of ' are plotted with u, in log-log form
and dln p’/dInu, is obtained. Next, calculate fpp as
the first approximation by Eq. (43), neglecting the
term of din X/dInu,. Then, calculate the value of X -
from the value of fpp by Eq. (42) as the first
approximation and then obtain dlnX/dlnu, by
log-log plot of X vs. u,. The second approximation
of fep is obtained from Eq. (43), taking account of
the term d1n X/dInu,, and so on.

(2) Direct calculation of DypZ, in RR

By the differentiation of Eq. (38) with m=fpg ' m,,
the calculation equation is

WD) _ 1y (1my=0.507520 %

hiall 44
dm, "R “4)

assuming that fgg is constant.

From the master curve of log F'u, vs. log#, the
value of din F/dInm=dIn F'/d1In @z is calculated. From
this value we obtain fzz by Eq.-(34) and then m, and
u,. The direct calculation of Dp? at u, in RR is
performed by Eq. (44). This calculation is possible
even with the experimental data for one value of u,.

(3) Calculation by way of the integral average
diffusion coefficient.

In PP where u,=u,, the integral average diffusion
coefficient is

J Dpldu=Xp"%uy/2

0
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Tn RR

JDpfdu=O.50fR§°'6°F’uo
[¢]
The values of [;°DpZdu obtained from PP and RR are
plotted together with u,. Graphical differentiation of
the plots gives the value of Dp? as a function of u,.
4.2 Tllustration of the calculation procedure

The calculation procedure is tested with the
numerical results of desorption of the PVA-water
system. The master curve of the desorption rate by
the superimposed plots of F'u, vs.#Z obtained from
various u, values is shown in Fig. 11. The estimated
values of Dp? obtained in the above three ways
respectively are shown in Fig. 12. The agreement
between the estimated value and the value by the
equation of D for the PVA-water system given in Table
1 is satisfactory.

Concluding Remarks

In the analysis of isothermal desorption (drying) of
a slab, the diffusion equation expressed by the
dissolved-solid coordinates is solved numerically for
various type of concentration dependence of the
diffusion coefficient. A method of calculating the
concentration-dependent diffusion coefficient without
assuming the functional form of concentration de-
pendence is derived from an analysis of the nu-
merical results. Based on the flux equations by the as-
sumption of similarity of concentration distribution,
the integral average diffusion coefficient is related to
the desorption rate and the ratio of the average
concentration to the center concentration, for both
the penetration period and the regular regime. The
ratios in PP and RR are empirically correlated with
the desorption rates by Eqs (39) and (34) respectively.
From these equations, three ways of calculating the
concentration-dependent diffusion coefficient are
proposed.

1) In PP, the diffusion coefficient is directly
calculated by Eqgs. (41), (42) and (43), using the initial
slopes of E vs. \/r—’ of the desorption with various
initial concentrations. :

2) In RR, the diffusion coefficient is directly
calculated by Egs. (34) and (44), using the desorption
rate even in single-desorption experiments.

3) Integral average diffusion coefficients are
obtained by Eq. (36) for PP and Eq. (38) for RR.
Graphical differentiation of these values gives the
diffusion coefficient.

The error of calculation is less than 10% for the
range of 0.5<(fpp Or frr)<0.9, which covers the
various types of concentration dependence of diffusion
coefficient shown in Fig. 1 and Table 1.

VOL. 23 NO. 3 1390

L}
]0‘4__ Uo= 233, =40 |
) “ (W5=08)
%
{ Master curve
< of desorption rate in RR
T 10°F -
X Uo
o 0
o ol -
+
(=)
=,
w PVA - water system
3 8
10 —
| L It \

0 02040608 1 2 3 4 5
T [kg-H,0 / kg-PVA]
Fig. 11.  Master curve of desorption rate for PVA-water

system
' T T T
2o h0-x
4 N
10°F £ N E
A
o N
o S
E [{ PvA-water system
(2]
)
§ 33+3934 [ 1000:1270 |
N 55 . . |
F 10— Des=exp{ 570 17000+ 12704]
g o PP direct
NQLn x RR direct ?
[m) A from uDr
10‘7 | L " 1

002040608 1 2 3 4
u [kg-H,0/ kg-PVA]

Fig. 12. Sample calculation of Dp? for PVA-water system

Appendix

Derivations of Egs. (25), (29), (36) and (41)
Eq. (25): For PP, putting Eq. (21) into Eq. (1) with Egs. (19)
and (20), we obtain

¥ ® (A1
0—”— ﬂ; )] -1)

Integrating this equation with the condition of (=0, ¥=0), we
obtain

ds "
Y= —EI:I +f()n— I)—j i (n)dn} (A-2)
At the surface (n=1)
ds
Y()=F=—"(1—fpp) (A-3)
dt

Integrating Eq. (A-2), we obtain

1 ds 1
Y=f Y-dn= —9—[1 —prp+2J nf(ﬂ)dﬂ] (A-4)

0 T 0
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From Egs. (A-3) and (A~4), using Eq. (23), we obtain
meD,,  1—2fpp+2Mpp
(1-9F (I~Fep)

For the end-point of PP, Eq. (25) is obtained by setting § =0 and
m,=1 in Eq. (A-5). .
Eq.(29): For RR where = ¢, we also get the following equations.

(A-5)

dm. ¢
Y= ’"‘j 1) (A-6)
dt J,
dm,
Y()=F= _flm (A-7)
dt
. dm,
Y=-— [fnn—y¢f (¢)d¢} (A-8)
dr o

and then we obtain Eq. (29). )
Eq. (36): Egs. (18) and (25) are assumed to hold to the point
m,=0.99, where '

E=1—m=1-099fp

Then, from these equations, using Eq. (35), we get Eq. (36).
Eq. (41): From Egs. (24) and (36), we obtain

ug 1
j Dpfdu:-z—){ﬁ’luo (A-9)

]

assuming u,=u, at the end-point of PP. Differentiation of this
equation by u, gives

Y _dl
dln +2d“"°] (A-10)

i
DopZy=—XB?*| 1+
oP0=" ﬁ[ dinug  dinug

Then, using Eqgs. (39) and (40), we obtain Egs. (41), (42) and (43).

Nomenclature
a = parameter in mathematical model equation [—1
D = (mutual) diffusion coefficient [m?/s]
D, = reference diffusion coefficient of arbitrary value

or diffusion coefficient at initial solvent

concentration [m?/s]
D, = reduced diffusion coefficient by Eq. (9) [—1]
D,, = reduced integral average diffusion coefficient

by Eq. (24) 1
d, = density of solvent [kg/m3]
d, = density of solid [kg/m?3]
E = 1|—rm, relative amount of solvent evaporated  [—]
F = reduced desorption rate -

1
f = f S(p)dp=m/m, ]
0

Jop = value of f at end of penetration period [
Jar = value of }‘" during regular regime [—]
m = reduced solvent content, u/u, ]
R = half-thickness of a slab [m]
R, = half-thickness of a slab in dried state [m]
r = diffusional distance [m]
338

t = desorption time [s]
u = solvent content [kg solvent/kg solid]
X = value defined by Eq. (42) [—]
Y = reduced flux defined by Eq. (21) 1]
z = dissolved-solid coordinate defined by Eq. (6)
[kg/m?}
VA = value of z at surface [kg/m?]
= initial slope of E vs. \/? of penetration period [—]
y = value defined by Eq. (43) [—]
é = value of ¢ keeping initial solvent content in
penetration period shown in Fig. 2 -1
n = reduced distance coordinate defined by
Eq. (20) [l
¢ = variable defined by Eq. (15) [—]
05 = solid concentration [kg/m3]
T = reduced desorption time defined by Eq. (8) -1
1} = reduced dimensionless coordinate defined
by Eq. (5) [—]
Wy = u/(1+u), mass fraction of solvent [—]

{Subscript and superscript)

c = refers to center value

o = referes to initial value

PP = refers to penetration period
RR = refers to regular regime

TP = refers to transition period

— = refers to average value
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