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Gain scheduling is comparable‘ to feedforward compensation and is highly sensitive to modeling errors. In this
paper, the errors are represented by variations in the uncertain physical parameter 6 under changes in process
dynamics. For a state of the process specified by the auxiliary variable «, the variational region in the 0-space
can be mapped into the space of transfer function parameter p. An orthotope R, is defined in the p-space as the
region of required tolerance through such mapping. On the other hand, the inherent region of system tolerance
8§, is the set of p at which the proposed schedule rule can satisfy the admissible system performance. An iterative
design algorithm was developed to find a schedule rule so that S, includes R, for a selected set of «. Application
of robust gain scheduling to a reactor system with catalyst decay was studied to illustrate the effectiveness of the

proposed design method.

Introduction

In many processes the dynamic behavior changes
during operation. If on-line identification of the
process dynamics is achieved, adaptive control such
as a self-tuning regulator can be applied. However,
since on-line identification under disturbances has not
been established, there are few implementations of the
adaptive control to the process control area.

In some processes the changes in process dynamics
can be estimated from an auxiliary process variable.
Based on this variable, controller parameters can be
adjusted by a simple rule. This primitive adaptation
is called gain scheduling.’>” It is a scheme widely used
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for industrial processes because of simplicity of
implementation. However, it has the drawback that
the control system is highly sensitive to model error.
This is a result of open-loop compensation. Therefore,
remedies for model-process mismatch should be
considered.

In this paper the robustness of the gain scheduling
control system is analyzed in the uncertain parameter
space.>® This tolerance analysis is used to design a
gain scheduling control system with required robust-
ness under model-process mismatch.

2. Gain Scheduling and Its Drawback

Suppose that a catalytic reactor system with
deactivation is the objective of gain scheduling control.
The dynamic behavior of the reactor is represented by
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nonlinear differential equations,® summarized in
Appendix 1.

A linear model is derived from the nonlinear
differential equations under some assumptions. The
transfer function between instructed signal of heater
and reactor temperature is represented as follows?:

Gls)= K (t35+1)e™ ™

T (rs+ D(ts+ 1) M

where K, is process gain, 7, i€ {l,2, 3} are the time
constants and 7, is the dead time. Derivation of Eq.
(1) is shown in Appendix 2.

As the catalyst deactivates, the operating tempera-
ture of the reactor must be raised to keep the
conversion of the reactant in the main reaction
constant.” Then, changes in deactivating factor and
reactor temperature cause variations in the process
dynamics. Figure 1 shows an example of the changes
in deactivating factor a by catalyst sintering and
changes in the reactor temperature. These changes are
very slow in comparison with the process responses.

At four representative operating points 1-4 in Fig.
1, the deactivating factor and process parameters have
the values shown inTable 1. As the catalyst fouls, the
value of process gain K, increases considerably, but
the other process parameters remain almost constant.

Since the deactivating factor of the catalyst is
measured by the composition analysis of product gas,
the variable can be used as an auxiliary process
variable to represent the transition of process
dynamics. The process gain is represented by a
function of the deactivating factor and physical
parameters such as the frequency factor &, in the rate
equation of the main reaction as follows:

K,=¢(k,, a) @

The function ¢ is derived in Appendix 2. The other
parameters 7, ie{1,2,3,4}, are treated as constants
for the controller design.

Consider the gain scheduling of a PI controller to
cope with process gain transition.

Cl)=K[1+1/T;s) 3

where K, is the controller gain and Tj is the integral
time.

A schedule rule for the PI controller is determine
by keeping the loop gain constant as follows:

Kc . Kp = KcO : KpO (4)
T1=Ty (5)

where K, and K, are the process gains for the fresh
catalyst and deactivated catalyst respectively. These
values are calculated from Eq. (2) with the nominal
value of k,. The parameters K., and 7}, are the design
variables, which are the initial parameter values of the
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Fig. 1. Transitions of operating temperature and deactiva-
ting factor

Table 1. Transfer function parameters at four operating
points

Operating a K, Ty 7, T3 Ty

condition [—] K-V [s] [s] [s] [s]
1 1.00 26.8 3339 1538 249.1 15.0
2 0.36 30.0 3326 1524 2494 150
3 0.16 332 3311 1509 249.6 150
4 0.04 40.0 3288 1479 250.1 150

PI controller. They are determined so that the control
system always satisfies the following design specifica-
tions under catalyst deactivation:

6.0dB < GM (Gain Margin) < 10.0dB } ©)
25.0deg < PM (Phase Margin) <34.0deg

This control system has three components: the process
G(s), controller C(s) and schedule rule of Eqs. (4) and
(5). System performance depends on the process
parameter K, and the design variables K, and Tp,.
The solution for the design variables is not always
unique. A solution was obtained under no variation
in the physical parameter as follows:

K=0384V-K~!, T,,=36.887s

This schedule rule, Egs. (4) and (5), with these values
can satisfy admissible system performance at four
points in Table 1. However, if the frequency factor &,
of the main reaction has —20% error, the reactor
temperature oscillates considerably even at the
operating point 2. In this case a gain scheduling control
system which is robust enough for the specified
parameter variation should be designed.

3. Uncertainty in Model

A model is generally represented by a set of non-
linear ordinary differential equations (NODEs) as
follows:

Z—t =g(x,u,0,2) @)
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where x: state vector

u: manipulated variable vector

0: uncertain parameter vector

a: auxiliary process variable
The controlled variable vector is represented as
follows:

y=Cx (®)

It is assumed that the auxiliary process variable « is
measurable and changes slowly in comparison with
the state variables.

For the control system design the NODEs are
linearized around a set of values of x*, #* at fixed 6
and a, i.e.,

dé_x =Adx+ Bou ®
dt
where dx=x—x°, Su=u—u’, A=0g/ox|, and B=
(7g/6u|s. Usually, #* is determined by some optimiza-
tion, and x* is from the steady-state relationships.

g(x*,u’,0,0)=0 (10)

Therefore, matrices A and Bdepend on @ and «. Taking
the Laplace transformation of the above linear ODEs,
the following transfer function description is obtained:

(s)=G(s)u(s) (11)
where
G(s)=CsI-A)"'B

and y(s) and u(s) are the output and input vectors
respectively in the s-domain. The transfer function
matrix G(s) depends on 6 and « as the matrices do.

4. Gain Scheduling under Uncertainty

A general scheme of gain scheduling is shown in
Fig. 2. The system is composed of the process, the
controller, and the schedule rule. In this section, a
single-input, single-output process is considered.

Assume that the process dynamics is approximated
by a transfer function at any operating point as
follows:

G=Gls,p) (12)

The parameter vector p in the transfer function
changes gradually with time. The vector can be
estimated from the auxiliary process variable « and
the physical parameter vector 8 as follows:

p=9¢(0,a) (13)
The function ¢ can be derived from the linearized
ordinary differential equations.
Although the parameter 0 has statistical variations,
the nominal value 6" is used for the estimation of p
at each operating point, i.e.,

p'=9(0", %) (14)
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Fig. 2. Black diagram of gain scheduling

A controller is represented by the following transfer
function:

C=0s,q) (15)

where ¢ is the vector of controller parameters. In the
gain scheduling control system, the controller pa-
rameter vector ¢ is adjusted as a function of p", i.e.,

q=y(d.p") (16)

where d is the design variable vector of the schedule
rule. Then the system performance depends on d, 6
and «.

Usually, the physical parameter vector 8 varies
around the nominal value #". The region of possible
variation is represented as follows:

A0<0—0"<AD (17)

The lower and upper bounds are determined by the
analysis of accumulated data.

In the previous section a schedule rule was obtained
without considering that the physical parameter k;
has estimation error. Thus the rule is sensitive to the
variation of k,. A robust gain scheduling control
system is designed to solve the problem of finding a
schedule rule or the design variable vector d so that
the control system satisfies the admissible system
performance under any variation in the specified
region in the uncertain parameter space.

5. Designof Gain Scheduling with Required Tolerance

5.1 Problem Statement

First, choose m representative operating points with
respect to the auxiliary process variable. The feasibility
at these points should guarantee the feasibility in the
range of actual operational conditions. These points
are called the critical points. In this paper the existence
of a set of critical points, denoted by a',a?, - - -, a™,
is assumed.

For each o' the region of required tolerance can be
defined in the #-space as follows:

Ry=[0|40<0—0"< 48] (18)

This region can be mapped into the p-space by the
function ¢(0,a’). Then an orthotope to include the
mapped region is made as follows:
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Ri=[p|Ap'<p—p" <4p] (19)
where ,
pr=¢(0", o) , (20)

On the other hand, the inherent region of system
tolerance is defined in the p-space as follows:

Syd)=[p|f(p.«',d)eF] @D

where f'is the vector of system performances and F is
the corresponding - admissible region. A necessary
condition for a gain scheduling control system to be
robust for the specified parameter variations is
described as follows:

RicSi, ie{l, - -,m) 22)

When the inherent region of system tolerance S% is
convex or one-dimensional convex, feasibility at all
the vertices of R! guarantees the feasibility at any
point within the orthotope R..>

5.2 Design Algorithm

An iterative design procedure to include R}, within
S3(d) is composed of the following four steps.

Step 1. First, a set of typical operating point a”s,
ie{l,---,m}, is chosen. For each &, calculate the
corresponding nominal value p™. From the informa-
tion on statistical variation of the physical parameter
0, determine an orthotope of required tolerance in the
p-space. All the vertices of R}',, ie{l, - -+, m}, must be
tested for robustness.

Step 2. Give a schedule rule ¥(d, p") and determine
the initial value of design variable vector d(1).

Step 3. (j-th iteration): Calculate the controller
parameter g(j) by the schedule rule at each o,
ie{l,---,m}. The robustness test® is achieved for all
vertices of the orthotope R}, i€ {1, - - -,m}. Then a test
variable is chosen among all uncertain parameters.
The variable should give the inherent region of system
tolerance of convex or one-dimensional convex.
Checking of whether each vertex is inside the inherent
region of system tolerance or not is achieved along
the one-dimensional manifold parallel to the test
variable axis. If the vertex is inside the inherent region,
the corresponding variation in the p-space satisfies the
admissible system performance.

If the design specification is satisfied for all vertices
of the set of orthotopes R}, i€ {1, - - -,m}, the proposed
schedule rule ¥[d(j),p"] is robust enough for any
variation in the specified region of required tolerance.
Otherwise, go to next step. .

Step 4: The design variables in the schedule rule are
retuned as d(j + 1) so that the farthest vertices from
the inherent region of system tolerance along the
one-dimensional manifold parallel to the test variable
axis are contained in the new inherent region of system
tolerance. Then go to Step 3. The sensitivities of the
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Map the regions Ryl, i€ 11, -, m}, into the p-
space and find orthotopes R, i€ {1, -, m},
each of which includes the mapped region.

Give a schedule rule ¢ (d, p" and
determine the design variable vector d

Y

Calculate the controller parameters

by schedule rule

Robustness test:
R,'CS,, i€ {1, = m} Ve

Retune the design
variable vector d

A

Fig. 3. Flowchart of algorithm

design variables to the shift of the inherent region of

system tolerance are used for effective returning of

design variables.® If no design variable exists, then
the schedule rule must be modified based on the basis
of the characteristics of the transition of process
dynamics.

A flowchart of the design algorithm is shown in
Fig. 3.

6. Illustrative Example

In section 2, no variation in the physical parameters
was considered for the design of the gain scheduling
control system. In this section, it is predicted that the
frequency factor k; deviates by +20%, i.e.,

—0.2k" <k, —k" <0.2K" (23)

The region of required tolerance in the k,-space is
shown in Fig. 4. The process gain K, in the transfer
function is treated as an uncertain parameter. The
mapping of the region of required tolerance in the
k,-space into the K,-space at four typical operating
points a*, a?, a®, a* is shown in Fig. 5. The orthotope
to include the mapped region is an interval for each
fixed a.

The proposed iterative design algorithm was used
to design a gain scheduling system with required
tolerance. In this problem, the design variables are
K, and Ty, The iterative design process is
summarized in Table 2, in which A; and §;, i=1,2,
are weight factors for fast convergence.® After four
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Fig. 5. Tolerance analysis of gain scheduling control system

Table 2. Iterative design of robust gain scheduling (test
variable=K) (4; =1,=6,=3,=1.0)

Length from Length from
Iteration K, Tro farthest point  farthest point
Number j [V-K™1] [s] to upper to lower

bound of S,(j) bound of S,(j)

1 0.384 36.888 —2.132 4.294
2 0.330 36.888 —0.652 0.908
3 0.319 36.888 —0.282 0.059
4 0.316 36.888 —0.173 -0.189
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iterations, the following result was obtained.
K,,=0316V-K™ !, T,,=36.888s

The inherent region of system tolerance for an
arbitrary deactivating factor is defined as follows:

S,()=1{K,|f[K, a,d(j)]IeF,0.04<a<1} (24)

Where j is the number of redesign. S,(1) for the initial
design and S,(4) for the final design are shown in Fig.
5. The regions of required tolerance Rﬁ,, i€{1,2,3,4},
are completely contained in the inherent region of
system tolerance S,(4) for the final design. This means
that the admissible control performance is always
obtained in spite of parameter variations in the
specified region of the physical parameter k.

7. Conclusion

An iterative design method was proposed for gain
scheduling control system with required tolerance.
This method gives a gain scheduling control system
that is robust enough for the predicted variations of
the physical parameters. As a result, model-process
mismatch can be accepted to some extent for the gain
scheduling control system. A reactor system with
catalyst decay is controlled well by the schedule rule
designed by this method.

Appendix 1: Nonlinear Process Dynamics

The carbon dioxide-methane reforming reaction is carried out
with a shift reaction in a catalytic reactor.

Mainreaction: CO,+CH,=2CO+2H, (R-1)

Shift reaction: CO,+H,=CO+H,0 (R-2)

The following nonlinear ordinary differential equations (NODEs)

are obtained from the energy balances for heating wire, air gap and
catalyst bed.»

dT,
H, 0 = U (Ty = T) = U= T4+ K (A-D)
A
dT,
H, dt =U(T—T)+ U ((T,— 1)~ Uo(T,— 1)) (A-2)

ar
Hy— =H 4 U (T3 TV (T=T)+0CT=T) (A

where heat generation by both the reactions is represented as
follows:
H,=[(—4H)aX, +(—4H,)aX,]Fco, (A-4)

The conversions of CO, in the reactions (R-1) and (R-2), X, and
X,, on the fresh catalyst are calculated by using the rate equations
of both reactions. The reaction rates r; and r, are represented as
follows:
_ E1(PcozPCH4*P(2:oP1212/K1)

Peo,+b1 Py, +byPEPy,+ by Py,
r __EZ(PC02PH2_PH20PCO/K2)

g =
Peo,+b, Py,

L8}

(A-5)

where k; and k, are rate constants of reactions (R-1) and (R-2)
respectively. These rate constants are represented by the Arrhenius
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relationship with respect to temperature 7.
ky=k, exp(E,/T) (A-T)
ky=k, exp(E,/T) (A-8)
where k; and k, are frequency factors.
Appendix 2: Changes in Transfer Function Parameters

Since H; is much smaller than H, and H,, Eq. (A-3) can be
reduced to an algebraic equation. Linearizing Egs. (A-1) and (A-2)
at a set of values of T°,T;, 7,4’ and taking the Laplace
transformation, we obtain the transfer function between manipu-
lated variable u(s) and reactor temperature T(s). The dead time 7,
was added from the experimental data, i.e.,

_ Ky(tast1)e™™

G(s)=
(Ty5+1)(t,5+1)

(A-9)

where K, is the process gain, and 1, 7, and 15 are the time constants.
These parameters are functions of the deactivating factor a and the
steady-state conditions. For example, the static process gain X, is
represented as follows:

_ 2K LU 1 Koo+ (U 4uKos + C1)K,,]
S &

K,

(A-10)

where
Ci=Uy +4U5(T)* = (T°PK,,)
Co=Upa+ U+ U~ Uik,
Cy=(U 13+ U 14K, )(U 41 +4U (5(T*)’K,,)

AU ,(T3)°
AU (T + Uy —(0H,J0T)], +C,
Uy
T 4UL(T + U,— (0H,JaT) |, +oC,

ow

oa

(0H,[0T) Is means evaluation at the corresponding steady state. This
relationship is written simply as follows:

K,=§(T°, T2, T2, 1, a) (A-11)
When the reactor is operated to maintain constant conversion as
the catalyst fouls,? the manipulated variable #* is dependent on the
deactivating factor a. The state variables 7, T% and T, depend on
a and «*. Therefore, all the variables 7=, Ta, T, uf are functions of
the deactivating factor a.

On the other hand, it is assumed that the frequency factor k, in
the rate equation of reaction (R-1) shows statistical variation. Then
the gain K, depends on k, through H,. Therefore, K, is represented
by a function of & and the parameter k.

K,=d(ky, ) (A-12)
Nomenclature
a = deactivating factor . 1
b, = kinetic adsorption parameter [—]
C = transfer function of controller [—]
c, = specific heat capacity of feed gas  [J-mol~1-K™1]
d = design variable vector in schedule rule [—]
F = admissible region of f° [l
Feo, = feed flowrate of CO, [mol-s™1]
f = vector of system performance [—]
G = transfer function of plant [—]
H, = heat capactiy [T-K™ Y
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K, = gain of PI controller [V-K™1]
K; = equilibrium constant [~
K, = gain of reactor system K-V
K, = heater parameter [W-Vv™1
k; = frequency factor [mol - (g-cat.) 1571
P; = modal fraction of species j [—]
P = vector of uncertain parameters in G [—]
q = vector of controller parameters [—1]
R = required region of tolerance [
S = inherent region of tolerance 1
s = Laplace transformation variable [—1
T, = integral time of PI controller [s]
T, T,T,T, T,= temperatures at air gap, heating wire,

catalyst bed, feed and environment K]
Uy, U 49, U= heat transfer parameters [W-K™1
Uys = heat transfer parameter [W-K™4
u = manipulating variable [
v = molal flow rate of feed [mol-s™1]
X; = conversion calculated from rate equation

for reaction i [—]
x = state vector [—]
¥y = controlled variable vector [—]
o = auxiliary variable [—1]
o = value of « at i-th operating condition [—]
0 = physical parameter vector [
T4,75,T3 = time constants [s]
Ty = dead time [s]
¢ = function for estimation of p [—1
' = schedule rule function —1
(—4H;)) = heat of reaction i [J-mol™1]
{Subscripts)
0 = initial value of controller parameter
» = region in p-space
- = lower limit value
0 = region in @-space
{Superscripts)
s = pseudo-steady state value
" = nominal value

Il

upper limit
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