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Introduction

In the authors’ recent paper® in this journal, it was
reported that singularity of fracture behavior of a
single brittle particle has been found under impact
loading of duration comparable to the particle’s
natural period as the result of compression tests on
spherical specimens of 2.0 cm size. Crushing efficiency
was especially improved. This suggests the feasibility
of improving the energy efficiency of grinding
machines by adjusting the rate of loading particles to
the loading rate v, at which the singularity occurs.
However, @, is expected to vary with particle size
because the natural period of the single particle is
presumed to vary with particle size and the strength
of the particle varies with its volume.® It is therefore
necessary to investigate the relation between the
natural period ¢, and the particle size d in order to
develop some techniques of improving the energy
efficiency. In the present study, this relation is
investigated by analyzing the proper vibration of an
elastic sphere by means of the finite element method.

1. Analysis

In the previous work, the natural period was
measured by an acoustic method. The sound gen-
erated by collision of two spherical specimens in the
air was recorded by microphone and tape recorder.
The natural period was determined by analyzing these
sound waves by synchroscope and camera.

In this study, the natural period is calculated by
analyzing the axi-symmetric proper vibration of an
elastic sphere by means of the finite element method?
because an elastic sphere is assumed to vibrate
axi-symmetrically when colliding with another sphere
in the air. The axi-symmetry assumption allows us to
make a two-dimensional analysis. Figure 1 shows the
two-dimensional region divided into finite elements
used in the analysis. Frequencies and modes of the
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proper vibration were calculated by mode analysis.
The natural period was calculated from the lowest
frequency among them.

2. Result

Dotted lines in Fig. 1 shows the mode of vibration
having the lowest frequency. It seems very likely that,
as shown in Fig. 1, the sphere is transformed into a
circular ellipsoid whose axis is the z-axis when the
sphere collides with another sphere and the impact
force acts in z-direction. Figure 2 shows the relation

AL
\ “ry
[ANGN
oo b NS
N
A
== AN
D = > N
D D S TN
D A =3
* \ S~
\
N \ \ N
~, \,
X, NN,
-~ ) N \
. NS~ Nt \
\ 5 S CNNY \
N, e, S ¥~ N
\ HEY g ~=3
N . . N
) s, 2
D) SR ] T
\, i s 2 !
N, ) N ;
o W t \ L
5 ¢ i o I i AR
\, \] b 0
\ . ~-3AJ N
\ Ny ' BN
TRy T SR
N o H i !
\ At i NN
\ N ) DN Y
\ . b
N N pN)
3 R
'\ ~== N _
~
S N ) S
.
! NN
' D N \ \
i D \ \ \
\, \, \, \
\, N N \
% Y r

Fig. 1. Two-dimensional region divided into finite elements
used for analysis and mode of vibration having the lowest
frequency calculated by analysis
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Fig. 2. Relation between natural period and diameter of an
elastic sphere calculated by finite element method (borosilicate
glass sphere)

427



between the natural period and the particle size of a
borosilicate glass sphere calculated by this method.
As shown in Fig. 2, the relation can be expressed by
the following equation:

t,=k-d 1)

where k is a coefficient. Since the natural period of
the 2.0-cm sphere calculated by this method is much
shorter than that measured by the acoustic method,
the mode of proper vibration may be different from
the axi-symmetric type. However, we assumed that
the relation between the natural period and the particle
size is expressed by Eq. (1).

The dependence of the strength S, on the spherical
particle’s volume ¥(=nd>/6) can be expressed by the
following equation:®

Sy=A-V~lm=4-(n/6)Vmd =" @)

where A is a coefficient and m is Weibull’s coefficient
of uniformity.

S, also depends on the loading rate © and its
dependence can be expressed by the following
equation:®

S, = B(/,)* (3)

where 9 is standard loading rate, B is a constant and
q is exponent.

Equation (2) was obtained from the results of
compression tests on single particles of various sizes
under conventional rate of loading. Equation (3) was
obtained from the results of compression tests on
2.0-cm spherical specimens in a wide range of loading
rates. By assuming that the effect of loading rate on
S, is independent of particle size, the dependence of
S, on both particle size and loading rate is given by
the following equation:

Sy=B(6/00)*A - (n/6) " 1"d~I"[S 4)

where S¥* denotes the sphere compressive strength of
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the 2.0-cm specimen at conventional rate of loading
as calculated by Eq. (2). Since the relation among S,
fracture load L, and d is given by Hiramatsu’s
equation,?

S,=2.8L/nd? &)

the loading rate ¢, defined by L /¢, is therefore related
to the particle size as follows.

ﬁnocd(m—fi)/m(l -q) (6)

As shown in the previous papers,>* ¢ is very small

in a wide range of loading rates and m~3 in a wide
range of particle sizes. It is therefore found that o,
does not vary much with particle size in the size range
where m~3.

Nomenclature
A = coefficient in Eq. (2)
B = coefficient in Eq. (3) [Pa]
d = diameter [m]
k = coefficient in Eq. (1) [s/m]
L, = fracture load [N]
m = Weibull’s coefficient of uniformity -1
q = exponent in Eq. (3) [—]
S = sphere compressive strength [Pa]
S¥ = sphere compressive strength of 2cm

specimen under conventional rate of

loading, caulcuated by using Eq. (2) [Pa]
t, = natural period [s]
o, = loading rate at which singular

fracture occurs [N/s]
B = standard loading rate [N/s]
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