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In recent studies of cake filtration, a new deliquoring technique called as “filtration consolidation” was proposed.
It is principally based on the mechanism of non-unidimensional filtration and gives a highly compacted cake
without any additional mechanical load. To investigate the deliquoring mechanism of filtration consolidation in
detail, it is essential to find a relation between liquid pressure P, and solid compressive pressure Pg in

non-unidimensional filter cake.

Accordingly, a generalized P,—P; relation applicable to any cake profile and filtrate flow pattern of complicated
geometry is derived in terms of an orthogonal curvilinear coordinate system. It is also shown that, starting from
the generalized equation, all the P,—Pg relations already reported for non-unidimensional filter cakes of relatively

simple geometries can be easily reduced.

Introduction

In the filtration of solid-liquid suspensions, de-
liquoring of filter cake is increasingly important in
many fields, such as chemical process industries,
sewage sludge treatments, fruit pulps processing and
fermentation industries: In these fields, almost all
methods of reducing the liquid content of cakes have
been based on mechanical pressing systems that
involve considerable investment expense.

In a recent study®>? of cake filtration, a new
deliquoring principle called filtration consolidation,
quite different from traditional principles, was
proposed. Based on this new principle, a horizontal
plate filter was designed, having an impermeable
rubber membrane at the top and slurry inlets in the
side wall of the filter chamber, as illustrated in Fig. 1.
In this filter, once the cake fills the filter chamber, the
stream line of filtrate flow changes from a straight line
to a non-unidimensional curve, as shown in Fig. 1(b).
This change of flow pattern causes both the lowering
of liquid pressure P, and the rising of solid
compressive pressure Pgin almost all parts of the filter
cake. Thus, it becomes possible to obtain a much
more compacted cake than that in normal filtration.

In filtration consolidation, there is no doubt that
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the non-unidimensional flow of filtrate through the
cake plays an important role. To investigate the
mechanism of these consolidation phenomena in
detail, it is essential to set up a generalized relation
between P, and Pg, taking non-unidimensional flow
of filtrate into account.

In the field of soil mechanics, the famous
piston-spring analogy of Terzaghi,®® which lead to
Eq. (1), has been used:
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Fig. 1. Filtrate flow pattern in filtration and consolidation
period in a horizontal plate filter having an impermeable
rubber membrane
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P,+Ps=P 1

where P is the pressure applied to the system.

In the field of filtration, Collins? and Tiller ez al.1®
derived the following equation from the force balance
acting on a differential slice dx in filter cake:

R Tl
0x ox

On integration, Eq. (2) reduces to Eq. (1).

These relations, Eq. (1) and (2), hold in the strict
sense only for normal unidimensional filtration, where
stream lines of filtrate flow are straight and parallel
to each other, and the surface of the cake is always flat.

The geometry of cake profile and the flow pattern
of filtrate depend generally on both the shape of the
filter medium and the constraining wall, as illustrated
in Fig. 2. Filtration on the tubular (cylindrical) filter,
shown in Fig. 2(a), and on the rectangular leaf, shown
in Fig. 2(b), both having two constraining walls, is
2-dimensional. On the other hand, the circular leaf
and the spherical filter without constraining wall will
lead us to 3-dimensional filtration as shown in Figs.
2(c) and (d). Shirato and co-workers*® have derived
the P, — P relations for several simple geometries as
shown in Fig. 2:

(i) for 2-dimensional filtration on tubular filter

)

ro 1
" r
(ii) for 3-dimensional filtration on spherical surface
ro
PL+PS=P+2f (l—k)Psidr (3b)
B r r

(iii) for 3-dimensional filtration on circular leaf

rers=es [ 0bnfai e at)
L+ Ps=P+ | (1-k)Pgl —— +—"—)d¢
4

E+4n? 41
(30)
and ;
(iv) for 2-dimensional filtration on rectangular leaf
f “0-bPy— _dr  (d
P, +P;=P+ - T
L+ Ps €( )s(62+112) (3d)

Recently Tiller ez al.'V also derived Eq. (3a). In the
equations above, k denotes the coefficient of earth
pressure at rest in soil mechanics, as will be mentioned
again below, and variables #, &, n and the coordinate
systems used are shown in Fig. 2.

In filtration consolidation, however, more compli-
cated flow patterns may be encountered than those in
the cases (i) to (iv) of non-unidimensional filtrations
cited above.

VOL. 22 NO. 4 1989

r-COORDINATE CURVE
[ 9-50&JDINATE CURVE

i 2,2

TUBULAR FILTER
CAKE SURFACE,r =15

Fig. 2(a). Filtration on tubular leaf (cylindrical coordinate)
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Fig. 2(b). Filtration on rectangular leaf (elliptic cylindrical
coordinate)
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Fig. 2(c). Filtration on circular leaf (oblate spherical
coordinate)
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Fig. 2(d). Filtration on spherical leaf (spherical coordinate)

1. Derivation of Generalized P;—Pg Relation

We assume that the stream line of the filtrate in
filter cake is perpendicular to the isopotential surface
as is usual with the flow through porous media, and
introduce an orthogonal curvilinear coordinate system
(xt, x2, x®). We denote the stream line of filtrate by
x'-coordinate curve, and represent the isopotential

-surface by x!-coordinate surface, to which both

x2- and x3-coordinate curves are perpendicular. The
volume element formed by the (x'—(1/2)dx’)- and
(x*+(1/2)dx’)-coordinate surfaces has the shape of a
rectangular parallelepiped enclosing a central point
M(x*, x?, x3) as illustrated in Fig. 3, where g, ¢,, g5
are covariant base vectors in the direction of increasing
x!, x* and x3, respectively.

The force per unit area, F, due to the hydraulic and
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x!

Fig. 3. Volume element in orthogonal curvilinear co-
ordinate system

the solid compressive pressures, on any surface
element normal to the direction of g, is simply
evaluated as:

F=P;+ Pg @)

On the other hand, the force per unit area, Fg,
acting on the surface element normal to the direction
of g, or g5 is:

Fs=P,+kPg %)

This expression is different from Eq. (4) because the
lateral value of the solid compressive pressure is not
equal to the normal Pg, as known in soil mechanics,
and k in Eq. (5) denotes again the ratio of lateral to
normal solid compressive pressure.!*#11)

The generalized P;—Pj relation is developed from
a force balance over the volume element shown in Fig.
3. We begin by considering the pair of surface elements
perpendicular to the x!-curve. The forces acting on
the (x'—(1/2)dx') and (x'+(1/2)dx') coordinate
surfaces are:

0 1
F(g, x g3)dx*dx® — P tCER ys)dxzdx3}~2 dx',
X

and

0 1
—[I‘(yz X g3)dx2dx® E{F(gz X g3)dxdx>} del]

respectively. The second expression has a negative sign
because the force acts in the direction of the interior
normal, whereas (g, x¢;) points to the exterior
normal. Thus, the resultant dF; of these forces acting
on the pair of surfaces is

aF, =~ L {Rg,xg)acadas  (©)
X

Similar expressions can be written for the other two
pairs of surface elements perpendicular respectively to
the x- and the x>-curve in the forms.

dF,=— ’6‘93 {Fslgs x g,)}dx'dx?dx® ™
X

360

dFy=— 56’3‘ {Fslg, x g,)}dx'dx>dx® (®)
x

Since inertial forces have been shown to be
negligible in filtration,'® the resultant total force of
dF,, dF, and dF, must be equal to zero, i.e.,
Substituting Eqgs. (6), (7) and (8) into Eq. (9) and
considering the following formulas:

9:x93=(/9:1091; 93%91=0/922)92;
g1 % 92=(J/933)93;

J=g.(9.%95)=[91,92 93],

95=9:"9; (10)
we obtain
{FU/g11)91} 1+ {Fs(J/922)92} 2+ {Fs(J/933)95} 3 =0
(11)

T2

where the subscript “,i”” denotes differentiation with
respect to x'. Introducing the Christoffel symbol of
the second kind, the differentiation of base vector g,
with respect to x/ can be written in the form

09, m
9.;= 5;1 =I7iGm (12)

with the summation convention implied over the
repeated index m. Applying thisto Eq. (11), we have

{FAJ/g10} 191+ {Fs(J]922)} 292
+{F5(J/933)} 395+ JIFUIT1/911)
+ Fs(I'32/922) + Fs(I'33/933)19, =0 (13)
This vectorial form, Eq. (13), consists of three scalar
relations. Among them, the most interesting relation
is a force balance in the g,-direction, i.e., the direction
of the flow of filtrate. Multiplying Eq. (13) by g, and

noting that g, -g,=¢,g;=0 due to the orthogonal-
.ity, we have

J
F,1+F(@)(—> +FTY,
J J\g11/ 1

+ Fs{I'35(911/922) +T'33(911/933)} =0 (14)
The orther two scalar relations are given in
Appendix. Taking account of J=g,¢g, x g;3=

V911922933, the second term in Eq. (14) can be
rearranged to

(@) (_!_) —[1n722055/d111.

J /\911
1
=_{gzz,1+933,1_911,1} (15)
2 (922 933 9gn

while differentiation of the metric tensor g,, with
respect to x? is
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922,15(92'92),1=292,1'92=2F§1922 (16a)

Similarly we have
g33,1 E21’23‘1933 (16b)
911.1=2T1191; (16c)

Moreover, differentiation of the relation g;-g;=0
(i#j) with respect to x* gives

Ily=—TI'%g./g;; (no summation over i and j) (17)
and then

I35911/920)=—T3,=—T}3, (18a)

I'}3(911/933)= —Ti3=—T3, (18b)

Using Egs. (15) to (18) and then substituting the
definitions of F and Fg into Eq. (14), we finally obtain
the relation of force balance in the g,-direction as

0
ﬁ(PL"'PS)""(l—k)PS(F%I"'Fgl):O (19)

This equation, relating P; to Pg, is of the generalized
form for any geometry of cake profile and any flow
pattern in the filter cake. It is here emphasized that
the coordinate must be chosen properly so that the
x!-coordinate curves do represent the stream line of
filtrate flow.

In the case of usual filtration, i.e., unidimensional
filtration, therefore, it is natural to use the Cartesian
coordinate system (x,y, z), since the stream lines of
filtrate flow are always straight and parallel to each
other, and isopotential surfaces are flat. Noting that
in the Cartesian coordinate system all components of
I'}; are zero, it is obvious that Eq. (19) reduces to Eq.
).

In the case of non-unidimensional filtration, how-
ever, the second term in Eq. (19) does not vanish,
and it follows that some different expressions relating

P, to Pg must be obtained.
2. Application of Eq. (19)

2.1 TFiltration on spherical surface

Taking account of the geometry concerned, it is
easy to see that the spherical coordinate system (7, 8, ¢)
is appropriate in handling the present problem. Since
the r-coordinate curves imply the flow pattern of
filtrate, the variable x! must be equivalent to 7, and
then we read (x', x%,x3)=(r, 6, ¢). If we denote unit
vectors pointing in the positive directions of the r-,
6-, p-coordinate curves by e,, e,, e,, respectively, we
have (g, 95,95) = (e,,reg, rsinfe,) and (g',9°% ¢°)=
(e,, eq/r, e4/(rsin 0)), where g’ is contravariant base
vector. Using the formula I'';=g*-g, ;, we have I';; =
I3, =1/r, and it follows from Eq. (19) that
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0 2
—(Pp+ Pg)+(1—k)Pg—=0 20)
or r

Noting that P, =P and Pg=0 at the cake surface
F=r,, and integrating Eq. (20) over the range of [r, 7o),
we obtain Eq. (3b).
2.2 Filtration on tubular (cylindrical) surface

The cylindrical coordinate system (r,6,z) can be
used in this case. By a similar way to that mentioned
aboveit can be easily shown that I'3; = 1/rand I'3, =0,
and substituting them into Eq. (19) we have

0 1
—(P,+ Pg)+(1—k)Pg—=0 2n
or r

On integration, this equation reduces to Eq. (3a).
2.3 Filtration on circular leaf

Using the oblate spherical coordinate system
(&,1,0), the stream line of filtrate and the isopotential

line are represented by
x2 42 72 _
bz(l _ ’72) bznz

and

x2 + y2 + ZZ _

b2(1 + 62) bz 62
respectively, where b denotes the radius of the circular
leaf. These relations can be transformed as

x=by/(1+&)(1—n*)cos{
y=bJ(1+&)(1—n?)sin{ @)
z=bln

0<¢<w,0=n<1)

In the present situation it is convenient to start from
position vector R in the form

R=xe,+ye,+ze, (23)

where e,, e, e, are unit vectors in Cartesian
coordinates, and x, y, z are functions of &, #, { as
given by Eq. (22). Noting the definition of covariant
base vector, g;=0R/[dx' (i=1,2,3) where (x!,x?,x%)
=(¢,1,(), we have the following formulae:

e T
91:=\ae) "\ae) "\ae)
ox\? (7y)2 (62)2
10,= /[|l—}) Hl=]) +|l=)e 24
92 \/ (611) (611 o) " @9
=G (&) (5
| 9=V \ag) "\ag) T\at)
where e, e,, e; denote unit vectors in the directions

of the &, #-, (-coordinate curves respectively.
Substituting Eq. (22) into (24) and then multiplying
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each g; by itself, we get
{gZ “§2=05,=b* (& +1)/(1—n?)
93 93=933=b*(1+&)/(1—n?)
Differentiating Eq. (25) with respect to x'(=¢), and
dividing by g,, or g33, we have I'Z; =&/(£2+#?) and

I3, =¢/(1+&%). Thus from Eq. (19) the following
equation results:

25)

¢ ¢
Zon 1+62] i
This equation is of the differential form corresponding
to Eq. (3¢).
2.4 Filtration on rectangular leaf

This problem can be easily handled by the elliptic
cylindrical coordinate system (&, #, {), which is written
in the form

0
&(PL+PS)+(1 —,k)Psl:

x=by/(1+E¥)(1—n?)
y=>bén 27
z=¢

Application of a similar method to that used above
yields the relations I'Z, = £/(é2 +n?)and I'3, =0. Thus,

0 ¢ _
bE(PL+PS)+(1 —k)Pg (W>_O (28)

On integration, this reduces to Eq. (3d).
3. Filtration Consolidation

Flow pattern of filtrate in consolidation period may
be more complicate than that in normal filtration, and
itmay depend on the structure of filter. However, even
if we restrict ourself to the situation where geometries
concerned are 3-dimensional but axisymmetric, almost
all parts of possible situation will be covered.
Therefore, it is presumed that the stream line and the
isopotential surface are represented by &= ¢&(r,z) and
n=n(r, z), respectively, where r, z denote variables in
cylindrical coordinate. Inverse transformation of the
above relations will give r=G(&, %) and z=H(E,n),
from which we have

x=G(¢,n)cos{
y=G(¢&,n)sin{ (29)
z=H(¢,n)

Here, the functions, G and H, should be decided
properly so as to fit the corresponded geometries. Just
the same procedure as used in deriving Eq. (26) can
be applied again. Without going into details, the
relevant terms are
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e
Py on on

] (30)
r3,=—InyG?
31 oz n\/
As a result, according to Eq. (19) we have
0 (Pp+ Pg)+(1—k)Pg- 9
o¢ L s s a¢
2 2

<In \/G{(a—(;) H2) =0 e

\ on on

Conclusion

A generalized equation (19) relating the liquid
pressure P; to the solid compressive pressure Pg in
filter cake, which holds for any geometry of cake
profile and filtrate flow pattern, is presented. Since the
P,—Pg relation is essential in predicting filtration
behavior based on compression-permeability cell
results, this equation plays an important role in
investigating the mechanism of filtration consolida-
tion, including non-unidimensional filtration.

The proposed equation has been applied to several
cases of non-unidimensional filtration, and it is shown
that all the P,—Pg relations already reported can be
easily reduced from the generalized form.

Appendix
Multiplying Eq. (13) by g¢,, and rearranging, we

have
L
marr(5) (o)
J 922/ 2

+Fr2,%22 LR, Fr2, 922 0 (A

gd11 933

Noting that J E\/ g11922933, the second term can be

~ changed to

()G (),

1
_ ___(911,2 + 9332 gzz,z) (A2)
2\ 91 933 922
While differentiation of the relation g;-g,=g; with
respect to x’ yields

_1_ gii,j=
2 gy

According to the formula above, we have

I}, (no summation over i)  (A3)

1 g11,2 1. Lgas, 3. 1 9222
— 22 =T, — 222 =3, 2222 12 (A4
2 911 ' 2 g3 3 2 g, 4 Ad)

Moreover, using Eq. (17) yields
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g
F§1g—22= "F51=“Fiz
11

g
F%sg—zz= "‘F33=—F§2
33

(AS)

Combining Eq. (A1) with Egs. (A2), (A4), (A5), and
noting the definitions of F and Fj, we finally obtain

the relation of force balance in the g,-direction.

0
EE(PL'FkPS)_(I_k)PSF%z:

(A6)

Similarly, we have the relation in the g,-direction as

follows:
0 1
ﬁ(PL-i_kPS)-—(l —-k)PSF13=0
Nomenclature
b = half-width of rectangular leaf or radius
of circular leaf
e, €€, = unit vectors in spherical coordinate system
e, e, e, = Unit vectors in Cartesian coordinate system
e, e,,,e;A = unit vectors in elliptic cylindrical or oblate
spherical coordinate systems
F = resultant force per unit area due to P,

and Py acting on surface element normal to

direction of filtrate flow, defined by Eq. (4)
Fg = resultant force per unit area due to P,

and Pg acting on surface element parallel to

(AT)

[Pa]

direction of filtrate flow, where lateral value of
solid compressive pressure is assumed to be kPsg,

defined by Eq. (5)

G, H = functions by which stream line and
isopotential surface are specified

g = contravariant base vectors

g; = covariant base vectors

gij = metric tensor

J = Jacobian, defined by Eq. (10)

k = ratio of lateral to normal Py
(coefficient of earth pressure at rest)

P = filtration pressure
P, = local liquid pressure in filter cake
Py = local solid compressive pressure in filter

cake
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[Pa]

[~
[Pa]
[Pa]

[Pa]

position vector [m]

x = variables in orthogonal curvilinear
coordinate system

r i.‘j = Christoffel symbol of the second kind

{Subscripts)

0 = denotes surface of filter cake

S

denotes differentiation with respect to
X', i.e., 8/0xt

{Coordinate systems)

(x,,2) = Cartesian
(r,6,¢) = spherical
r,6,2) = cylindrical
(¢,n,0) = elliptic cylindrical or oblate spherical
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