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The Luenberger observer design method is extended by a further interesting consideration. This paper addresses
the design method of robust observers for linear systems with uncertainty and a class of nonlinear systems by
applying the concept of system roubstness degree proposed by the authors.*’ The uncertainty in linear systems and
-nonlinear distortion in nonlinear systems may lead the observer to be unstable. The Luenberger observer design
approach combined with the system robustness degree will construct a robust asymptotic observer. Reduced-order
robust observer design is also studied. Finally, a practical example of nonlinear robust observer design for a
biochemical reactor is illustrated to show the validity of the propesed method.

Introduction

A well known topic, observer design, is again
studied with a further interesting consideration.
Usually, observers are used as state estimators for
deterministic linear systems. For such a system, the

observer can be designed so as to reconstruct the state

of the system.® It is often the case, however, that the
system is not deterministic, but with uncertain func-
tion and even nonlinear properties. Therefore, an
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observer should be designed with the properties of
robustness to system uncertainties and adaptivity to
system nonlinearities.

Bhattacharyya®" considered a robust observer to
reconstruct a linear function of the state for arbi-
trarily small perturbations of parameters of the ob-
server. Akashi and Imai!’ discussed the insensitive ob-
server design by the geometric approach. Carroll and
Lindorf,” and Luders and Narendra® considered the
design problem of an adaptive observer that had
adjustable parameters to be updated for state es-
timate. Mita® proposed a design procedure of a zero-
sensitivity observer of a linear functional for single-
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input single-output systems.

This paper considers the design method of robust
observers for linear systems with uncertainty and a
class of nonlinear systems by applying the concept of
system robustness degree proposed by Chu et al*
The concept of system robustness degree is briefly
introduced in Section 1. Section 2 considers robust
observer design for linear systems with uncertainty.
Section 3 discusses robust observer design for a class
of nonlinear systems. Reduced-order nonlinear robust
observer design is discussed in Section 4. Finally, a
practical example of the nonlinear robust observer for
a biochemical reactor will be illustrated to show the
feasibility of the proposed method.

1. Robustness Degree

Consider the following linear deterministic system:
X=Ax+ Bu ¢

where xe R" denotes the system state vector. ue R’
denotes the system input vector. Suppose (A4, B) is a
controllable pair, and we have derived a feedback
control law

u=—Kx 2)
which can stabilize system (1) as
X=(4—BK)x 3)

It is evident that it is asymptotically stable, so that
all of the possible matrix (4—BK) can form an
operator set which generates an asymptotically stable
semigroup 7, such that

IT.1l = Il exp((A — BK)1)[| = M exp(wt) 4

with w<0, M=1, t=0 as shown by Chu et al.® It is
also given the following useful definition regarding
the system robustness.
Definition 1. Robustness Degree

The robustness degree of system (1) with feedback
control Eq. (2) is defined by

p=—w/M>0 (5)

where w, M are shown by Eq. (4).

If K=0, i.e. no feedback control acts on the system,
then p is called the inherent robustness degree of the
system. If the system is of the form

X=Ax+Bu+g(x,u,it) 6)

where g(x, u, 1) denotes an uncertain function, then
we have the following theorem.
Theorem 1.

The sufficient condition for system (6) to be asy-
mptotically stable under the feedback control Eq.
(2) is that the inequality

lg(x, u. Ol <plx| (D
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holds for all allowable control.
Proof. See Chu et al.¥

2. Robust Stability Condition of Observers for Linear
Systems with Uncertainty

Here we will consider a dynamical system described
by the following differential equation:

X=(A+A4A)x+(B+ AB)u+ AF(x, u) (10)
x(0)=x,

y=Cx (11)

on [0, T], a real finite time interval, where x is an n x |
state vector, # an rx 1 control vector, y an mx1
output vector, A an n x n constant system matrix, and
B an nxr constant input matrix. The term 44
represents the uncertainty of the plant, and AF(x, u)
symbolizes the disturbance to the plant, while 4B can
be construed as the nonlinearities or disturbances in
the input.

The system described by Eq. (10) is quite popular
for industrial processes, especially chemical processes.
Because 44, AB and AF are uncertain functions,
rearrange system (10) in the following form:

It is difficult to find the precise version of robust-
ness degree shown by Chu et a/.* But an approximate
and useful measure, called matrix measure, can be
applied to express the system robustness degree as
concluded in Corollary 1.

Corollary 1.

The robustness degree p, in one of its possible
precise forms, of system (1) with feedback control Eq.
(2) is equal to the negative of the measure of the
matrix (4 — BK) as shown by

p=—u(A— BK) (8)
where
UZ)= 2ol (£ 4+ Z27%)/2] )

Jmaxl ] denotes the maximum eigenvalue of [-].

In the following sections, we will discuss the prob-
lem of robust observer design for linear and non-
linear systems by applying the concept of the system
robustness degree.

X=Ax+Bu+g(x,u,t) (12)
where
g(x,u, t)=A4Ax+ ABu+ AF(x, u) (13)

Usually, we cannot have a detailed knowledge of
g(x, u, 1), but only its approximate range:

lg(x, u, )] =g (14)

where ¢ is some constant value. Obviously, the pur-
pose of robust observer design is to observe the real
unmeasurable system state through the measurable
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system output undergoing the presence of uncertain-
ties or disturbances. The observer is driven by the
input as well as the output of the original system. And
we assume throughout that the pair (4, C) is
observable.

In the well-known Luenberger observer design ap-
proach, the output y=Cx of the real system is
compared with y=Cx where ¥ is the output of the
observer, and this difference is used as a correcting
term. The difference j(7) — = y(¢) — y(¢) is multiplied by
an »n x m real constant matrix P and fed into the input
of the integrators of the observer. This observer will
be called the asymptotic estimator.

The dynamical equation of the estimator is given by

£(1)= A£(t)+ Bu(1) — Pj(1) (15)
The state error vector

X(t)=x(t)—x(1) (16)
Then we have

£=(A+PO)i+g(x,u 1) (17)

The classical observer design approach does not
consider the effect of uncertain function g(x, u, ?),
and only if all of the eigenvalues of (4+ PC) are
located in the left half plane by selecting the proper
matrix P will the designed observer be asymptotically
stable. But in the presence of uncertainty g(x, u, 1) we
must design a robust observer to undertake the effect
of system uncertainty. Based on the knowledge in
section 1, if the matrix P can be determined so as to let
the robustness degree of system matrix (4+ PC)
satisfy

p(A+PC)>|lg(x, u, D]/] ] (18)

then this observer will be robustly stable in the
presence of uncertainty.
By the property of the semigroup, we know that

Il expl(4 + PO)t]| = M exp(w?)

for some M =1, w»<0; then by the definition of p
w
A+ PQC)= —— 19
o O=—; (19)

we have the solution of Eq. (15) as

x(t)=exp[(4 + PC)t]x(0)

+ j exp[(4+ PO)(t—1)]g(x, u, dr  (20)
0
Taking a norm to Eq. (20):

I%(0) | = M exp(cr) || £(0)]

+ jt M exploft— )] 1lg(x, u, 7)||dt @1
0
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By applying the Gronwall Lemma® (see Appendix),
we derive

&)l < M xO)ll exp[ jt (w+Mliglx, u, r)ll/l!fll)d’f]
0

(22)
Thus, the state of system (10) can be estimated with
an n-dimensional observer of the form

£=(A+ PC)i+ Bu—Py (23)
x(0)=x,
From Egs. (18), (19), (22) and Corollary 1, we can
obtain the following theorem for robust observer

design.
Theorem 2.

The sufficient condition for observer (21) to be able

to robustly estimate the state of system (10)—(11) is
that the matrix P is determined so as to let the
robustness degree of system matrix (4 + PC) satisfy
inequality (18).

The design procedure for the robust observer is to
select a matrix P which satisfies inequality (18).
Corollary 1 in Section 1 shows the relation between
the system robustness degree and pole assignment by
Egs. (8)—(9). Thus it is necessary to know the magni-
tude of the right-hand side of inequality (18), i.e. the
norms of g(x, u, 1) and the desired £(oc) in order to
define all the eigenvalues of the observer. The norm of
g(x,u, t) is defined by inequality (14). From in-
equality (22), we know that

[X(0)]l < M| =0)] (24)
and if | g(x, u, 1) >0 when ¢— o0, then
lim || x(7)|| =0 (25)

which means that the robust observer is asymptoti-
cally stable with zero steady state.

3. Robust Stability Condition of Observers for a
Class of Nonlinear Systems

In Section 2 we discussed the robust observer
design problem for linear systems with uncertainty.
We will now consider the robust observer design for a
class of nonlinear systems with or without uncer-
tainty. Usually, an observer is designed to estimate
the state of a linear system; there are few papers
concerning nonlinear observer design problems.

Consider the dynamical nonlinear system that
satisfies

X=(A+A4A)x+(B+ AB)u+F(x, u)+ AF(x, u) (26)
y=Cx 27
All symbols have the same meaning as in system (10),

(11) except that F(x, #) denotes the nonlinear portion
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of the plant and is assumed to be twice differentiable.
The modelling error has been included in, AF(x, u). All
of the uncertain terms are combined by ¢g(x, u, ¢) as in
Eq. (13) as

g(x,u, t)=AAx+ ABu+ AF(x, u) (28)

Also, we assume that detailed knowledge of g(x, u, 7)
is not available, but that as for the approximate norm
range

lg(x, u, D) =g (29)
for some value of g. Thus, system (26) becomes
X=Ax+Bu+F(x,u)+g(x,u,t) (30)
Suppose we have the nonlinear observer as
i=A%+ Bu+F (%, u)— Py (31)
where
JO)=p(1)—p(1)=Clx—%)=CX (32)

where X is the state error vector, then we can derive
f=(A+PO)i+F(x, u)—F(&, u)+g(x,u, 1) (33)

Take the Taylor series for the first order to nonlinear
function F(x, ), around the trajectory %, (because it is
twice differentiable), i.e.

. F . .

F(x, u)—F(x, u)=-a~(x, u)x (34)

x

Thus we have

) JF(x,u) \ .
f=<A+PC+(T’;)—>x+g(x, u, t) (35)
This is a nonlinear time-varying error system. It is
difficult to find its robustness degree compared with

that for linear time-invariant systems. Eq (35) is then
rewritten in another form as

$=(4 +PC)£+—§§(£, Witgxut)  (36)
The solution of Eq. (36) is of the form:
#0)=cxpl(4 + POFIH0)
v L expl(A+ PC)(t — 7] (Z—i“g(’“ . t))dr

(37)
Suppose the robustness degree of system matrix
(A+ PC) (where P is a matrix to be determined) has
the form
(03]
A+ PCO)= —— 38
AA+PO=——7 (38)

then taking the norm to Eq. (37)
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15(0)ll < M exp(wr)|| £(0)

OF(x, u) .

x(t)+g(x, u, t) || dr
ox

+ f M expl[o(t—1)]
0

(39)
By applying the Gronwall Lemma, we have

&)l < M Z0)l
OF .
o “+g/llxlf)) dr} (40)

o [ oo

To design a robust observer against the system non-
linear distortion for estimation and the system un-
certainties, the sufficient condition is

w—l—M(

+g/llfll)<0 (41)

Ox

ie.

)
oA +PC)>“—F
Ox

1+g/ %l (42)

Comparing inequality (18) for linear robust observer
design, we know the difference for nonlinear robust
observer design. If the nonlinear function F(x, u) is
not a function of state x, then the robustness degrees
for observers needed for both of the linear and the
nonlinear system are the same. The remaining design
procedures are the same as discussed in Section 2.

Now the nonlinear robust observer can be de-
scribed by

*#=(A+PO)%+ Bu+F(%, u)— Py (43)

The discussion above can be concluded with the
following theorem.

Theorem 3.

The sufficient condition for nonlinear observer (43)
to be able to robustly estimate the state of nonlinear
system (26), (27) is that the matrix P is determined so
as to let the robustness degree of system matrix
(A + PC) satisfy inequality (42).

4. Robust Stability Condition of a Nonlinear Reduced-
Order Observer

The full-order robust observer, designed and dis-
cussed in Section 3, was derived by setting up a model
of the plant and feeding back a ‘correction term’
proportional to the difference between the actual and
estimated outputs. Such an observer contains re-
dundancy because m state variables can be directly
obtained from m outputs which are available for
measurement and need not be estimated. The remain-
ing (n—m) state variables can be estimated using an
observer of order (n—m).

For a classical reduced-order observer, since there
is a direct link from the observed variable y(¢) to the
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estimated state X(7), the estimated %(z) will be more
sensitive to measurement errors in yp(7) than the
estimate generated by a full-order observer. This is
because the noise bypasses the natural filtering action
of the observer dynamics.”

In this section, we will discuss reduced-order ob-
server design for a class of nonlinear systems that
preserves the property of robustness in the presence of
system uncertainty or modelling error and measure-
ment noise.

Suppose the nonlinear system (26), (27) can be
partitioned into the following form through proper
rearrangement:

l:-’él}___[“‘u Alz] ["h]
X, A21 Azz X2
B, filx, u)] [gl(x, u, t):!
+[Bj"+[fz(x, ] Loaewn | ¥
y=[0C,Jx{x;]" (45)

where m state variables x, (R™) can be directly
obtained from Eq. (45):

x,=C,'y (46)

The remaining (7 —m) state variables require an ob-
server for estimation. Constructing a subsystem with
dimension of n—m for x,

X =Ayx +v (47)
z=Ayx (48)
where
v=A,,X,+Bu+fi(x,u)+g,(x, u,t)
=A,C'y+Bu+fi(x, u)+g,(x, u, 1) (49)
z=A5x,
=X, — Ay, — Bou—fi(x, u)— g,(x, u, 1)
=C,'V—A4,,C,'y—Bu—fy(x, u)
—g2(x, u, 1) (50)
Now we estimate x, with an observer
t,=(A4,,+PA, )%, +v—Pz
=(A;,+PA,)% +4,,C,.'y+Bu
+fi(%, u)—PC,, Y+ PA,,C,. 'y
+PB,u+ Pfy(x, u) (51)
By setting
()=%,)+PC,'y (52)
then we have the observer
X=(A,,+PAy)x+(B,+PB))u

+[fi(%, )+ Pfy(%X, u)]
+[A;,+PAy— (A, +PA,)PIC, 'y (53)
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Let

X=x —X
then
X=(A,,+PA,)E+f(x, u)—f1(X, u)

+P[f2(xv u)—.fl('fa u)]+gl(x’ u, t)
+Pg,(x, u, t) 54)

- Similarly to Eq. (34), we assume

fie ) —f (% w)= o l(z’ u)| [ 0] (55)

where the Jacobian of f; with respect to its augments
is an (n—m)xn matrix, if its first (n—m) x (n—m)
square submatrix is denoted by df;/0x,, taking the
similar procedures for [f,(x, u)—f,(%, #)], then Eq.
(54) becomes

f1 % .

6x1
+g,(x, u, )+ sz(x, u, t) (56)
As discussed in Section 3, we should have:

f1 p ot
Ox

P s,

i= (A11+PA21)x+ ~—I—P

oA, +PA,)>

+Ilgy(x, w, )+ Pg,(x, u, )|/l %] (57)

It should be pointed out that P appears in both sides

of the inequality (57). The detailed design procedures

are stated in the next section, referred to the example.
Then the estimate of the full state x is given by

& 1 [1]..[-P].,
=l ey lofs+ T

5. Application of a Nonlinear Observer for a
Biochemical Reactor

It is well known that the microorganism in a bio-
chemical process is very difficult to be detected for
monitoring and operating purposes. In this paper we
describe design of a robust nonlinear observer to
estimate the biomass concentration of Pickia magi
IFO 06-2.

5.1 Modelling
The continuous process can be described by the

following nonlinear equations proposed by
Takamatsu et al.!®
%C:““O 1353 ex ( 0100?)0.25S+s
S S
—0.2945(a +0.385) (0.001 5025 +S>
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dS  0.0409aSX, 0.04SX,

Sl = Uuia-S
&~ 0001+ 1is+s U
dc 258.98aS
Sl 6—c)—| ———+33 )X,
o 83.53(7.6 —¢) (0.001+S + 3)

where X,: dry cell concentration le//]
a: a‘dummy’ state denoting DNA  [—]
S: substrate concentration [Vol.%]
¢: dissolved oxygen concentration [ppm]
U: dilute rate ' [h=1]

For such a nonlinear system, we have no effective
method to design an observer. In this section we use a
simplified nonlinear model by Taylor’s series:

X=Ax+Bu+F(x"x, xu, %)
and a linear model:
X=Ax+ Bu

where

x"=[X.—X.,a—a,S-S§, c—¢]
u =U-U

where X, a, S, ¢, U are the operating points of X, a,
S, ¢, U.
Obviously, the substrate concentration S and the
dissolved oxygen concentration ¢ are easy to measure.
We would like to observe the cell concentration X,
and the ‘dummy’ state a through S, ¢ and input U.
The design procedures for the nonlinear and linear
observers can be referred to the above results. And we
~will consider the difference between these two kinds of
observers.
5.2 Robustness consideration

We consider the original nonlinear model as a real
system. Then there exist truncating errors for the
simplified nonlinear model:

gsnr(x, ) =R;(x, u)

and for the linear model:

gfx, u)=Ry(x, u)

where Ry(x, u) (i=2, 3) denotes the truncated terms
from the /-th order term. We can find the conservative
maximum values of ggy;(x, u) and g,(x, u), denoted
by gsy. and g,. by some calculation. Thus the
conservative robustness degree for the nonlinear ob-
server can be calculated by

of 0
pNLO(A11+PA21)-2—\ £I+P /s
1

2 ox,

+ ”951\114 + Pgsnio /1%

and for the linear observer:

Pro(Ay +PAy ) Z g +Pgpll/ 1 X]
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Because both sides of the above inequalities include
matrix P, we must choose P carefully.
For example, in the range of |u|=0.02, if P is

chosen to be
P 6  0.0005
5 001

Pyio=0.143

then

thus the possible maximum estimating error
| %] =0.064

For the linear case, if with the same P, the possible
maximum estimating error becomes

€] =0.34

It is obvious that the difference between the two
observers is more than fivefold according to the
discussion above, although this is very conservative.
If a smaller estimating error is desired, we should
increase the robustness degree.
5.3 Simulation

The purpose of simulation is to show the feasibility
of the robust nonlinear or linear observers and show
the difference between the two observers. The abnor-
mal conditions considered are the initial state

x,(0)=0.15

(others are zeros) and a constant input disturbance
after 40 h. Thus

{0 0st<40h
““lo02  ¢=40n

Figures 1 and 2 show the simulation results for
different P, i.e. p;=0.143, and p, =0.098, where we
can see that the estimating errors for x,, i.e. the
“dummy”’ state, are very small by using nonlinear and
linear observers as shown in Figs. 1b and 2b. But the
estimating errors for x,, the cell concentration, are
completely different, as shown in Figs. 1a and 2a. The
X, estimated by the nonlinear observer closely follows
the real value. But there exists a difference when the
linear observer is applied. Moreover, we find that as
the robustness degree increases, the estimating error
by the linear observer becomes smaller, as shown in
Figs. 1c and 2c. This fact is further demonstrated by
Fig. 3, which is based upon several other simulation
results for the linear observer with various values of
robustness degree.

Furthermore, we consider the compiex input dis-
turbance shown in Fig. 4a, and take p=0.143.
Simulation results in Figs. 4b, 4c, 4d show that the
performance of the nonlinear observer is better than
that of the linear one.
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Fig.1b
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0 50
Fig.lc

100
time (hr.)

Fig. 1. Simulation results of nonlinear observed (NLO) and
linear observer (LO) with x; (0)=0.15 and p=0.143 ——:
real value; ———— by NLO; —-—-— : by LO

.15 :

0 A

x

.05

%

L S

1 T
Fig.2b

.05 T T T T T T
0 50 100

Fig.2c timethr. )
Fig. 2. Simulation results of nonlinear observer (NLO) and
linear observer (LO) with x,(0)=0.15 and p =0.098 ——: real
value; ———-: by NLO; —-~-~ : by LO

Conclusions and Discussion

The method of nonlinear robust observer design is
introduced and discussed. The key point of this
method is the combined consideration of the
Luenberger observer with the system robustness de-
gree, and the linear observer is extended to the non-
linear case and to the uncertain case. The design ap-
proach for full- and reduced-order nonlinear observ-
ers is feasible from the mathematical point of view.
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Fig. 3. Maximum | %,(c0) | by linear observer vs. robustness
degree p

input u
.02 4

-.02

T T 1
0 50 100 150
time (hr.)

Fig.da

-.05

50 100 150

Fig.4d time (hr.)
Fig. 4. Simulation results of nonlinear observer (NLO) and
linear observer (LO) with x,(0)=0.15 and p=0.143 —: real
value; ————: by NLO; ——-~ 1 by LO

An application example for a bioreactor is studied.
The simulation results show that the performance of
the nonlinear observer is better than that of the linear
one, and that consideration of robustness can play a
role.

However, it.is somewhat difficult to determine P for
a robust reduced-order observer. Another problem is
that the condition of robust stability is only a suf-
ficient one.

Appendix

Lemma. (Gronwall Lemma)
If (1), (1) and p(r) are all nonnegative continuous functions for
t20 and 4 is a positive constant such that
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HO<I+ L [U(s)(s)+ us)]ds  for all =0

then

D)< Aexp ( Jo [¥(s)+ pt(s)/l]ds) forall (=0

Nomenclature

I

A" & aR
I

i

m

F(x, u)
Sfi(x, u)
g(x,u,t)

IxgrmTE
L A [ |

Ri(xa u) =

Xy =

NN'QX_E-:R”-:QE“‘:Q"’(A*
Il

‘dummy’ state denoting DNA
nx n system matrix

n X r system input matrix
dissolved oxygen concentration
m x n system output matrix
submatrix in C

nx i nonlinear function vector
i-th sub-vector of F(x, u)
uncertain nonlinear vector
boundedness of g(x, u, 1)
number

feedback gain matrix
parameter of semigroup
parameter of semigroup
number of outputs

number of states

gain matrix in an observer design
space with i dimensions
truncated error from i-th order term
number of inputs

substrate concentration
integrating variable

linear semigroup

time

rx | control input vector
dilute rate

single control variable

new input

nx 1 state vector

sub-vector in x

dry cell concentration

mx | output vector

vector

square matrix
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BN

Z0)]
P
T
0]
(D)

w

= variation of a function [

= denoting *‘belong to” [—]
= eigenvalue of a matrix [—]
= constant [—1]
= matrix measure [—]
= continuous function [—]
= robustness degree [—]
= integral variable denoting time [—]
= continuous function [—1]
= continuous function [—]
= parameter of semigroup [—]

{Superscripts and Subscripts)

* T = conjugate, transpose of matrix

max, min = maximum, minimum

SNL = simplified nonlinear

L = linear

NLO = nonlinear observer

LO = linear observer

. = estimated value

- = error between real and estimated ones
- = estimated value
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