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Generally, chemical processes behave nonlinearly. But existing well-developed controller design techniques are
based on linearized models of nonlinear processes. The neglected nonlinear effects affect the stability of control
systems. Robustness degree, a new measure for robust control, is introduced and studied from the engineering point
of view. The concept of robustness degree, proposed by applying the semigroup theory of functional analysis, can
play a role in analysis and design of control systems. It is a sufficient and quantitative measure of the margin of
stability within which certain nonlinear functions and modelling errors can be tolerated. Robustness degree of an
open-loop or closed-loop system is linked with system matrix measure as an estimation that is straightforward and
easy to calculate. A chemical reactor is studied as an example of robust control system design by this approach.

Introduction

Consider a continuous stirred-tank reactor (CSTR)
in which a single first-order exothermic reaction is
taking place. The nonlinear system model® is

ac
V*&?‘:F(CAf—CA)— Vr
T
VpCy = pCoF(Ty=T)+ V(= AH)r = hA(T = T)

where r is the reaction rate and equals k,exp(—E/
RT)C,. We assume that the coolant temperature, T,
is the only manipulated variable. The dimensionless
model can be written as

Xy = — Xy + D1 —x,) exp(x,/(1+x,/v))
Xy=—X,+ BD (1 —x) exp(x,/(1 +x,/v)) (1)
— By — x30) + Pu

The dimensionless parameters are given in Table 1.

The tranditional method of control system design
for a nonlinear system is to linearize the nonlinear
model into a linear model about some steady-state
operating point so that well-developed linear design
procedures may be applied; e.g. system (1) is con-
trolled by a state feedback control law

u=—kAx, —k,4x, (2)
designed on the basis of
AXy=a Ax +a,4x,

3

A’).CZ =a21AXI +a22AX2 +b2u
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where a,,, a,,, 4,;, a,, and b, are some constant
parameters of the linearized system.

Mathematically, system (3) can be stabilized by
control (2) if system (3) is controllable. However, it is
well known that depending on different parameter
values, the reactor shows different unforced (i.e. u=0)
dynamic behavior corresponding to the multiple
steady states (with stable and unstable ones). In
addition, the reactor is disturbed by many effects, e.g.
the feed temperature, feed flowrate and coolant flow-
rate. Will the system remain stable after application of
control (2), designed on the basis of a linear model
that has discrepancies with the system, and in the
presence of the uncertainties noted above?

This is a simple case, but the problem is the same

Table 1. Dimensionless parameters for the CSTR model

E (—4H)C 440
V= 5 = v
RT;, pc, o

D koexp(—w)V hA

“ F ’ Fpc,
R TcO_ TfO v

0=

Tro

F
Dimensionless time: t’ =t7

. . s CAfO - CA
Dimensionless composition: x,=—————
CAfO

T—Tso
Tro
. . Tc - TCO
Dimensionless control: #=-———v
Tro

Dimensionless temperature: X;= v
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for more general cases. The main problem is to design
a controller with which the system is stabilized ro-
bustly to some bounded uncertainties, disturbances
and possible modeling mismatch. The meaning of
robustness can be viewed as tolerance of uncertainty,
disturbance and any perturbation of the system be-
fore a particular feedback design becomes unstable.

In the last two decades, many papers have been
published on this topic. Molander and Willems®
studied the design of cone-bounded feedback non-
linearities that preserve the stability of a linear open-
loop system. Noldus” also studied dynamic systems
containing cone-bounded nonlinearities in the open-
loop equation, and developed some results regarding
the robustness of the systems relative to the un-
certainties in both the state matrix and in the control
matrix. Davison and Ferguson® considered the prob-
‘lem of designing realistic multivariable controllers
for a servomechanism system so as to achieve closed-
loop stability and asymptotic regulation with the
property of robustness. Chen and Desoer? developed
some necessary and sufficient conditions for robust
stability of linear distributed feedback systems.
However, there was lack of a simple measure for
system robustness not only in frequency domain
analysis but also in time domain analysis.

The present paper introduces a new concept of
robustness degree of control systems. A useful but
approximate estimate for robustness degree is dis-
cussed. Finally, the robust stability of a chemical
reactor is considered. The results reported here are
very useful for system analysis and control system
synthesis. Compared with other measures for system
robustness, robustness degree of the control system, is
a simple concept featuring ease of calculation, good
estimation results estimate and a clear geometric
meaning,.

1. Robustness Analysis of Control Systems
Suppose a dynamical system satisfies

X=(A+A)X+(B+AB)U+g(X, U, a)

X(0)=X, @

on [0, 7], a real finite time interval, where Xisan zn x 1
state vector, U an rx1 control vector, & a px1
parameter vector, 4 an n x n constant system matrix,
B, an n x r constant input matrix, g an # x 1 known or
unknown nonlinear function vector (e.g. the high-
order truncation of Taylor’s series) assumed to be
continuously differentiable in its arguments. The
terms 44, AB and g(X, U, &) can represent the un-
certainties, disturbances, nonlinearities and modelling
error of the plant. We can rearrange system (4) in the
following form:

X=AX+BU+F(X, U, a) )
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where
F(X, U a)=AAX+ABU+g(X, U,a)  (6)

The problem of robustness analysis of a control
system arises because in practical cases we would like
to design a state feedback control law based only on
the linear part of system (5) where detailed infor-
mation about the nonlinear function F(X, U, «) lack-
ing; that is, the system

X=AX+BU (7

The state feedback control law can be derived by any
of several techniques, such that

U=—KX 8)
which can stabilize system (7); i.e. the closed system
X=(4—-BK)X )

is asymptotically stable. But actually the real system is
in the form of Eq. (5). We now consider the stability
and robustness of system (5) with linear feedback
control (8):

X=(4—-BK)X+F(X, —KX, «) (10)

To investigate the stability, functional analysis is
applied to deal with the problem of analyzing the
stability and robustness of system (10).

It is not difficult to show that all of the possible
matrix (4 — BK) can form an operator set that gen-
erates an asymptotically stable linear semigroup 7,
such that

I T,|| = M exp(wr) (1)

with the constants M >1, w <0, for t=0.

Suppose that the nonlinear function F(X, U, a) in
the system forms another nonlinear operator set
which is bounded on Range (F). We can expect the
solution for Eq. (10) to have the form

t
X(t)=T X(0)+ J T,_ F(X, — KX, a)dt (12)
0
where X(0) is the initial condition.
Now if we assume that the solution is given by

X(H)=S,X(0) (13)

ie.
t
S,X(0)=T X(0)+ J T,_F(X, —KX,a)dr (14)
0

we can prove that S, X satisfy those properties of a
nonlinear semigroup.” If S, is a stable semigroup, the
closed-loop system (10) is stable.

Taking the norm on Eq. (12) (for simplicity,
F(X, — KX, a) is denoted by F):

kil



I X0l = | T.XO)[ + J IT,-Fldz (15)
0

T

< Maexp(wt)+ f M expla(t—1)]||F||dT  (16)

0

where || X(0)|| =a. We can also write

t

1 X0\ exp(——wt)gMa+J M||F| exp(—wt)dr (17)
0

Here we would like to introduce an important lemma
without proof. It is a version of the Gronwall
Lemma.®
Lemma 1

If ¢(), ¥(r) and u(f) are each nonnegative con-
tinuous functions for =0 and 4 is a positive constant
such that

PO A+ J! [W(s)p(s) + u(s)1ds forall t=0
0
then
P < iexp( Jt (W(s) + u(s)/. /l)ds) forall ¢=0
0

Rewrite Eq. (17) in the following form:
| X(0)]| exp(— wt) < Ma +

Jt M| X(7)l| exp(— D) FIl/| X()[ldz  (18)

0

By applying Lemma 1, we have

—_

[ X(2) || exp(— wt) = Ma eXP( J; MIIFII/IIXI!dT> 19)
ie.
IIX(t)IléManp(thr JIOMIIFII/l!XIIdT) (20)
By Eq. (13), we find
IS XO) éMMXp(wH ﬁ) M!IFII/iIXIIdT) (21)

or
IS X(0)| =Ma eXp( jt (o+M|F II/IIXII)dT> (22)
0

Obviously, S,X is a stable semigroup if
w+ M| F|/II X <0 (23)

holds for =0, that is to say the closed-loop system
(10) is robustly stable in the sense of Lyapunov.

We can see, in another form of inequality (23), that
nonlinear operator F forms a conic sector

w
[F(X, — KX, a)|| < —-MIIXII (24)
We define
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w
p= —ﬁ>0 (25
Then we call the parameter p the robustness degree of
nonlinear system (5) with linear state feedback con-
trol law (8). The following definition is more formal.
Definition 1 Robustness Degree
For a nonlinear system with the form of Eq. (5), if
the system is stabilized by the linear state feedback
control law Eq. (7) when the nonlinear function
vector is located within the conic sector

[FX, U, &) <p| X]| (26)

then p is called robustness degree of the controlled
system. That is to say, linear system (7) with feedback
Eq. (8) preserves a robustness degree p to suffer the
effect of the nonlinear term F(X, U, a) with relation
(26).

Here we give the definition of robustness degree for
a system in the form of Eq. (5), but actually almost
the same definition can be given for a general system.
Robustness degree can be regarded as a quantitative
measure of the capability to reject or eliminate the
effects or distortion of the nonlinear term and the
parameter-induced variations. It should be empha-
sized that the robustness degree p here is related only
to the linear system Eq. (7) and the feedback control
Eq. (8), and not to the nonlinear term F(X, U, a).
Robustness degree p is a ratio of two parameters in
operator T; that is, p is related only to the properties
of matrix (4 — BK). The larger the robustness degree
p, the larger the norm of F(X, U, «) can be without
destroying the stability of the closed-loop system.

According to the development and discussion
above, the following theorem on robust stability can
be derived.

Theorem 1

A nonlinear system in the form of Eq. (5) with a
linear state feedback control law given by Eq. (8) is
robustly stable in the sense of Lyapunov with robust-
ness degree p defined by Eq. (25), if the nonlinear
term F(X, U, a) satisfies a conic sector type of in-
equality condition (26).

This theorem shows the relation between the stabil-
ity of the closed-loop system with a given feedback
law for some robustness degree and the effect of the
nonlinear function vector F(X, U, ). The concept of
robustness degree to measure the stability margin of a
closed-loop system is introduced, and will be helpful
in analyzing the characteristics of control systems.
Remark It can be seen from relation (17) that if
IEN/II X goes to zero as t— oo, then the system is
asymptotically stable with the robustness degree p.

2. Further Discussion of Robustness Degree

We have now developed robustness degree for
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control systems. But what is the relationship between
robustness degree p, i.e. w and M in Eq. (11), and the
properties of matrix (4 — BK)? From the definition of
operator 7, we can see that in a general expression the
operator function can be a transition matrix of
(4— BK), if (4— BK) is a constant matrix; then

T,=expl[(4— BK)1] 27
ie.
| T, =llexp[(4d — BK){] | < Mexp(wt)  (28)

However, it is difficult to find a precise version of
robustness degree. But an approximate and useful
measure, called matrix measure, can be used to
express system robustness degree.

Definition 2 Matrix measure u(Z)>

wZ)=lim (|I-6Z|—1)0~"
-0+

For the 2-norm concerned

wZ)=1, P (Z+ Z*)} (29)

By applying the so-called Coppel’s inequality, we
obtain the following inequality for the solution of
Eq. (7) with (8):

1X(0) [ = | XO) eXp( f uA—BK )df)

= || X(0)|| exp(u(d — BK)t) (30)

Thus, robustness degree p in one of its estimates has
the form of

p=—u(4—BK) (31

and the following corollary of the theorem can be
derived.
Corollary 1

The robustness degree p, in one of its possible
precise forms, is equal to the negative of the measure
of matrix (4 — BK) as shown by Eq. (31).

3. Application of the Results to a CSTR

Consider again the CSTR in the introduction sec-
tion. For B=8, f=0.3, v=20, D,=0.072 and x,,=0
in particular, the reactor shows an ignition/extinction
behavior corresponding to the multiple steady
states.”

[x], x3]; =[0.144, 0.886] (stable)
[x}, x5],=[0.447, 2.752] (unstable)
[x1, x3)3=[0.765, 4.705] (stable)

Suppose the unstable equilibrium point 2 [0.447,
2.752] is the desired operating point. The linearized
model on this point is
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-~ calculated value

1
:
% — real value
5

[} 0.5 1.0 1.5

robustness degree p

Fig. 1. Robustness degree p vs. maximum allowable initial
X2

A%, = —1.809 Ax, +0.346 Ax,

32
AX%,=—6.4704x,4+1.4644Ax,+0.3u (32)

where Ax; =x, —x}, Ax,=x,—x5. Obviously, this is
an unstable open-loop system.

The purpose of this simulation study is to show the
relation of the closed-loop system robustness degree
with the maximum allowable initial state that will not
lead the system to instability. As we know, a non-
linear model can be approximately described by a
linear model in some range through the Taylor expan-
sion, the higher-order terms being considered to be
much higher infinitesimals compared with its incre-
ment || 4X|/?. For this reason and the results de-
veloped above, if we design a controller so that the
closed-system robustness degree is p= — u(4 — BK),
then we have the robustly stable range

l4X|?<pl4X]| (33)

lAX| <p (34)

This relation of course includes the allowable initial
state range. For simplicity, we assume x,(0)=0, then
the stable range for x,(0) will be

p—x3<x,(0)<p+x35 (35)

As discussed above, the robustness degree condition is
only a sufficient one. We design three controllers with
different robustness degrees as follows:

K,=[-1513], p,=1252
K=[—1510], p,=0.849
K=[—15 8],  py=0.450

and then the predicted stable range by (35) and the
real simulated stable range are shown in Fig. 1. We
note that x, as defined is always greater than zero.

4. Conclusions and Discussion

The problem of robustness analysis of a closed-
loop nonlinear system with a linear state feedback
control has been discussed, and some new results have
been obtained that can be applied to the analysis of
practical problems. The definition of robustness de-
gree of a control system has been introduced. This
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concept is very helpful in practical applications
Robustness degree is a measure of the stability margin
of control systems.

Semigroup theory of functional analysis is applied
to develop the new algorithm and results, concluding
with the theorem and its corollary. Theorem 1 shows
the sufficient condition of the nonlinear function in
the system for robust stability of the closed-loop
system. Corollary 1 provides a nice relation between
robustness degree and the matrix measure so that the
robustness degree can be easily determined by the
system matrix independent of the nonlinear term. All
the results developed here can be easily determined
and applied, unlike many results derived in the fre-
quency domain, where the robustness problem of a
system cannot be measured by a simple value. Most
results are linked with the singular values of a transfer
matrix function with great difficulty to solve.

The simulation results of reactor control show the
reasonableness of the robustness degree analysis
method. This simulation is only an example of the
application of the results proposed in this paper.
Further application can be expected, e.g. omitting the
nonlinear term of a weak nonlinear system for satis-
factory linear controller design by ensuring a certain
robustness degree, reducing the offset of the system
response to a constant disturbance by increasing the
system robustness degree.

Nomenclature

A = system matrix of a state space equation
a = norm of the initial state vector

B = input matrix of a state space equation
C, = concentration of component A in reactor
Cy = concentration of component A in feed

<y = specific heat of reactant

F = feed flowrate of the reactor
F = a nonlinear function of the system
g = a nonlinear function of the system

—AH = enthalpy of reactant

= heat transfer coefficient and heat transfer area
reaction coefficient

a constant in a semigroup

reaction rate

a nonlinear semigroup

a linear semigroup

= reactor temperature

=
S
|

[

I

NN g
I

34

coolant temperature
feed temperature
time

control vector
control variable i

= the reactor volume
state vector

state variable /

a matrix

([l

NH % S8 Q™ NN
I

a variable parameter vector
variation

= variation

a positive constant

maximum eigenvalue of a matrix
matrix measure

density of reactant

system robustness degree

= integral variable

¢(1), (1), ()= nonnegative continuous functions

oox o n R
I

g
5
*

I

Ll S SR S
1l

w = a negative constant of semigroup
{Subscripts)

s = steady state

0 = initial value

{Superscripts)

* = conjugate
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