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BUBBLE FORMATION AT A SUBMERGED ORIFICE IN
NON-NEWTONIAN AND HIGHLY VISCOUS
NEWTONIAN LIQUIDS

Toshiro MIYAHARA, Wei-Hong WANGand Teruo TAKAHASHI
Department of Applied Chemistry, Okayama University, Okayama 700
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Bubble formation at a submergedorifice was studied experimentally for non-Newtonian liquids (aqueous CMC
solutions) and highly viscous Newtonian liquids (aqueous glycerol solutions). The bubble volumes formed in both
non-Newtonian and highly viscous Newtonian liquids are large compared to those formed in relatively low-viscosity
Newtonian liquids. The formation regime of the constant-pressure condition, usually found for low-viscosity

Newtonian liquids as reported by Tadaki et al.,12) was not observed. Using an extended two-stage bubble-formation
model, the bubble volumes formed at a submerged orifice in non-Newtonian and highly viscous Newtonian liquids
are considered. The predicted bubble volumes comparesatisfactorily with the experimental data over a wide range
of parameters of power law liquid (m<around 8Pa s", 0.95>n>0.57) and viscosities of Newtonian liquids
(5.05Pa s>/i, >0.439Pa s) including the results of the present work and that of Tsuge et a/.13 15)

Introduction

Gas-liquid contacting operations such as fermen-
tation, aerobic waste water treatment and polymer
production, where most liquids are non-Newtonian
and/or highly viscous Newtonian, include processes
where gas is dispersed as bubbles through a liquid.
However, the phenomena of bubble formation are
complex and are not fully described to date. Although
bubble formation in relatively low-viscosity New-
tonian liquids has been studied extensively,7) little

attention has been paid to bubble formation in non-
Newtonian and/or highly viscous Newtonian liquids.

Costes et al.4r~5) reported that in aqueous CMC

solutions bubbles are formed under constant-pressure
conditions for Reynolds numbers lower than 1000,
while for Reynolds numbers greater than 1000 they
are formed under constant-flow rate conditions. They

Received March 36, 1988. Correspondence concerning this article should be ad-
dressed to T. Miyahara.
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also noted that a comparison of theoretical variation
of bubble radius with the measurements seems to
show that the models ofDavidson et al.6) and Kumar
et al.7) are in good agreement, but that the former is
more suitable than the latter for representing bubble
formation. On the other hand, Acharya et al.1] com-
pared the data for power-law liquids with those
computed using the model of bubble-formation in
inviscid liquid and concluded that the rheology of the
ambient liquid has no influence on bubble volumes.
Rabiger et al.n) proved that single or double bubbles
are always formed at the orifice over a wide range of
gas throughput in both Newtonian and non-
Newtonian liquids. Tsuge et al.13A5~16) recently in-

vestigated the effect of various factors on the volume
of bubbles formed in highly viscous Newtonian and
non-Newtonian liquids in the presence of pressure
change in the gas chamber and obtained dimension-
less equations for predicting bubble volumes. Thus, in
spite of its practical importance, the mechanismof
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bubble formation in non-Newtonian and highly vis-
cous Newtonian liquids remains essentially an un-

solved problem.
In previous papers9~10) we reported studies of

bubble formation with weeping at a submergedori-
fice, especially the bubble formation pattern and the
bubble volume in relatively low-viscosity Newtonian
liquids. The present study focuses on bubble forma-
tion without weeping in non-Newtonian and highly
viscous Newtonian liquids. Experimentally obtain-
ed bubble volumes are considered using the dimen-
sionless bubble diameter and the chamber number
reported by Tadaki et al.,12) and they are compared
with the predicted bubble volumes computedfrom an
extended two-stage bubble formation model.
1. Experimental

A schematic diagram of the apparatus is given in
Fig. 1. A rectangular Plexiglas column of dimensions
16 x 16 x42cm contained the liquids employed. Gas
(air) from the compressor was fed into the gas
chamber via the air filter, the pressure regulator, the
buffer tank, the needle valve and finally through the
capillary to ensure steady supply. The orifices used
were made of brass plate with a thickness of about
lmm; the details are given in Table 1. The gas
chamber volume varied from 6 to 1045cm3. The gas
was dispersed in the liquids in the form of bubbles.
Bubble formation frequency was measured by means
of the video system. The gas flow rate was adjusted by
the needle valve and measured by the soap-film flow
rate meter collecting gas through the funnel near the
liquid surface. By assuming that bubbles were all of
the same size, the volumes were obtained as the
amount of volumetric gas flow rate divided by the
frequency. The circulating water jacket, also con-

structed of Pexiglas, was used to maintain a constant
operating temperature. All experiments were carried
out with a liquid depth of25cm.
Table 2 shows the physical properties of the liquids
employed, where aqueous glycerol solutions are

Newtonian liquids and CMC solutions are non-

Newtonian liquids represented by the power law of a
two-parameter rheological model of the form

f du\
T=-m[-- (1)\dyJ

For n= 1, it reduces to the Newtonian law ofviscosity
with =jul. The deviation ofn from unity indicates the
degree of deviation from Newtonian behavior.

2. Results and Discussion
2.1 Bubble volume in non-Newtonian and highly vis-
cous Newtonian liquids
In Figs. 2 and 3, the measured bubble volumes in
CMCsolutions and glycerol solutions respectively are
plotted as a function of the gas flow rates. Bubble

Fig. 1. Schematic diagram of experimental apparatus. 1,
compressor; 2, valve; 3, air chamber; 4, orifice; 5, funnel; 6,
thermometer; 7, soap-film flow rate meter; 8, constant-

temperature water bath; 9, VTR; 10, air filter; ll, pressure
regulator; 12, buffer tank; 13, capillary

Table 1. Geometries of orifices

Office No. d0 x 103 [m] pt x 102 [m] pjdo [-]
1 3.19 0.109 0.341

2 2.05 0. 102 0.497

3 1.00 0.102 1.02

4 0.80 0.101 1.26

5 0.50 0.103 2.06

Table 2. Physical properties of liquids employed

Liquid ft [Pa-s] m [Pa s"] n [-] o [N/m] A [kg/m3]

Aqueous CMC solution 1 - 0.275 0.950 68.0 x lO"3 1003
Aqueous CMCsolution 2 - 1.688 0.768 73.0 1005
Aqueous CMC solution 3 - 1.740 0.770 73.0 1005
Aqueous CMC solution 4 - 5.820 0.740 74.0 1008
Aqueous CMCsolution 5 - 13.950 0.639 67.0 1012
Aqueous CMCsolution 6 - 29.800 0.460 67.0 1012
Aqueous CMCsolution 7 - 31.300 0.403 67.0 1012

Glycerol 1 1. 100 - - 68.0 1258.5
Glycerol 2 2.300 - - 67.5 1259.5

at25°C
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Fig. 2. Bubble volume in aqueous CMCsolution

Fig. 3. Bubble volume in glycerol

volumes increase with increasing chamber volume;
the effect of chamber volume is especially remarkable
at low gas flow rates. Similar trends were found for
bubble formation without weeping12) as well as with
weeping9~10) in relatively low-viscosity Newtonian
liquids. Figures 4 and 5 show the effect of two

parameters of non-Newtonianliquids and the effect
of viscosity of Newtonian liquids. It is apparent that
the bubble volumes increase as both the rheological
parameter m and the viscosity of Newtonian liquid
increase.

Tadaki et al.12) proposed the following correlations
for bubble formation without weepingat low gas flow
rates in relatively low-viscosity Newtonian liquids.

db{gPl/(ad0)}ll3= LS2 NC< 1 (2)

db{gPll{Gd0)}li:s= \.%2N\lz \ <NC<9 (3)

db{gpMd0)y/3=3.8 Nc>9 (4)

These correlations are shown in Fig. 6 as solid lines.
Tadaki et al.12) also suggested that the regimes of

Nc<\, 1<NC<9 and Nc>9 correspond to the
constant-flow rate condition, the condition of pres-
sure fluctuation in the gas chamber, and the
constant-pressure condition, respectively. Note that
the constant-pressure condition is not found for the
present results, although Costes et a/.4~5) found that
formation of bubbles in non-Newtonian liquids can
take place under the constant-pressure condition at
low flow rates and under the constant-flow rate
condition at high gas flow rates. As can be seen from
the figure, the bubble volumes in highly viscous
Newtonian and in non-Newtonian liquids are large

compared to those in low-viscosity Newtonian liq-
uids. These differences may be due to the effect of

viscosity and rheological parameters. Wenext try to
correlate the measurementsusing an extended two-

Fig. 4. Bubble volume in aqueous CMCsolution
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stage bubble-formation model.
2.2 Prediction of bubble volume from an extended

two-stage bubble-formation model
The authors9~10) have already proposed a theoreti-
cal model for bubble formation with weeping and

taking into account the effect of viscosity, using a

two-stage model. Here, we will try to extend the same
two-stage process for bubble formation in non-

Newtonian liquids. From the observation of bubble
formation with a video camera, it was found that

initially an almost spherical bubble is formed at an
orifice, proceeds to grow a neck and detaches. This
reflects the validity of two-stage bubble formation in
both highly viscous Newtonian and non-Newtonian

liquids.

For the case of a spherical bubble growing in an
incompressible liquid of infinite extent and negligible

gas moment, the equation of bubble growth is as-
sumed to be generally expressed for a rising, expand-
ing bubble as follows8'10*-

({3\(da\2 d2a

where F(k) is a function of the rheological parameters.
However, it is quite difficult to derive theoretically the
form of F{k) for real non-Newtonian liquids.

Burman et al.3) derived theoretically the F{k) for
an expanding bubble by solute diffusion in non-

Newtonian (power law) liquids using the equation of
continuity and momentumas

mj*pirL *\ (6)
3n \a at)For «=1, Eq. (6) is the viscosity term in a modified

Rayleigh equation15) commonly used for the growth
of bubbles in viscous liquids. In a strict sense, though

it is not correct to apply Eq. (6) for the present
condition-that is, the rising, expanding bubble-we
take Eq. (6) as an approximation of F{k). Hence, we
obtain for the first stage

W3\fda\2 d2a } Pl ,

2a n 12<n+1)/Wl da\"
+^r+p-+^r^[^-ii) (7)

and

((3\{da\2 d2a ) Pl

' 2ct 12("+1)/2m/l dflV

for the second stage.
Table 3 summarizes the fundamental equations for

the two-stage bubble-formation model obtained by
the authors10) previously. The termination of the first
stage can be expressed by Eq. (T-l) in the regime of
the presence of pressure fluctuation in the gas cham-
ber, and the equation of motion for the second stage
is Eq. (T-2).
Equations (7), (T-3), (T-5) and (T-6), the equations

for the first stage, can be solved for the initial
conditions PC=PO+ptfh+fo/d^ da/dt=0 and a=do
using Eq. (T-l) in Table 3 as the termination con-

Fig. 5. Bubble volume in glycerol

Fig. 6. Comparison of bubble diameters in the range of constant bubble volume with the correlations of
Tadaki et al.12)
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Table 3. Fundamental equations for two-stage bubble formationll

dition. For the second stage, Eqs. (8), (T-2), (T-3), (T-
4), (T-5) and (T-6) can be solved simultaneously

under the initial conditions, Pc = (Pc)f, da/dt = (da/dt)f,
a=af and x=0, and the final condition x=af or da/
dt=O as described previously.10) The above simul-

taneous differential equations are solved numerically
by the Runge-Kutta-Gill method to obtain the bubble
volume. For n= 1, these equations can be applied to a
Newtonian liquid with m= /i,.
The curves in Figs. 2, 3, 4 and 5 represent the calcu-

lated results using the following correlations as the
drag coefficient for non-Newtonian liquids:

CD= l6F(n)/Re' (9)2)

where F(n)=3{n-1)/22in'1)/2{\ -7.66(n- l)/2}, and:

CD=24/Re+4/ReO 5 +0A (10)14)

for highly viscous Newtonian liquids. The validity of
Eq. (9) for power law liquids was confirmed by
Bhauraju et al.2) and Eq. (10) is a modified Stokes'
equation.14) For comparison, the dashed lines in Figs.
3 and 5 show the calculated results by using the
Hadamard-Rybzynski equation14) applicable to slow

viscous flow past a sphere and reflecting its internal
circulation.

CD= l6/Re (ll)

The calculated curves for highly viscous Newtonian
liquids fit well with the measurements. However, as
can be seen from Fig. 4, the discrepancy between
theory and experiment for non-Newtonian liquids
sharply increases with an increase in the rheological
parameter m. Further, we compared the present pre-
diction with other investigators' findings13'15) where
glycerol solutions (0.439<^<5.05Pa-s) and CMC

solutions (1.05<m<25.0Pa-s", 0.38<«<0.852) were
employed. Agreement between theory and experiment
was generally good for glycerine solutions and non-
Newtonian liquids having smaller m. Perhaps the
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Fig. 7. Bubble formation pattern

most likely reason for the deviation in bubble volume
behavior from theoretical predictions for non-
Newtonian liquids is that bubbles become non-
spherical in shape at large rheological parameters,
and that inertial force is dominant rather than forces
based on bubble shape such as drag force. Figure 7
shows bubble formation patterns derived from the
video camera views of both Newtonian and non-

Newtonian liquids. As seen from the photographs, the
bubble during formation in a glycerine solution is al-
most spherical, whereas in a CMCsolution the vig-
orous motion of the liquid presumably causes verti-
cal motion of the bubble; longer bubbles are formed.
Further, the two-stage bubble-formation process de-
scribed above is confirmed here, too. Figure 8 illus-
trates the relative standard deviation between the
calculated values and the measurements for non-

Newtonian liquids defined by the following equation.

(12)
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Fig. 8. Relative standard deviation

The figure shows good agreement with the measure-
ments when the rheological parameter m is less than
about8 Pa-s".

Concluding Remarks
The effects of rheological parameters of power law

liquids and viscosities of Newtonian liquids on the
bubble volume formed at a submerged orifice were

investigated experimentally. An extended two-stage
bubble formation model was developed to predict the
bubble volume. The model accounts for the effect of
rheological parameters of power law liquids and the
effect of viscosity of Newtonian liquids. The following
results were remarked:
1) The volume ofa bubble in non-Newtonian and

highly viscous Newtonian liquids is large compared to
that in relatively low-viscosity Newtonian liquids.

2) The formation regime of the constant-pressure
condition was not observed.

3) An extended bubble-formation model taking
into account the above effects is found to compare

satisfactorily with the measurements.

No menclature
a = bubble radius [m]
CD = drag coefficient [-]
Cg = orifice coefficient [-]

db = bubble diameter [m]
d0 = orifice diameter [m]
F(k) = defined by Eq. (5) [Pa]
/ = Fanning's friction factor [-]

g = gravitational acceleration [m/s2]
h = liquid depth [m]

k = constant [m3/s-Pa0 5]

m = coefficient in power law [Paà"sn]
N = number [-]
Nc = chamber number

= 4 VCAPgl{nd20(P0 + Plgh)} [-]
n = power law liquid exponent [-]
Pb = pressure in a bubble [Pa]
Pc = pressure in gas chamber [Pa]
Po = barometric pressure [Pa]
pt = plate thickness [m]

VOL 21 NO. 6 1988

Poo = pressure at an orifice in liquid in the absence
of motion [Pa]

Re = Reynolds number=d^pJjUi or
dbiv + vMl*i [-}

Re' = Reynolds number=dnhpxv2~n\m or
dnbPl{v + vn)2 ~nlm [-]

s = distance from plate to bubble center [m]
s' = relative standard deviation [-]

t = time [s]
u = velocity [m/s]
Vb = bubble volume [m3]
Vc = chamber volume [m3]

Vg = volumetric gas flow rate [m3/s]
Vg = mean volumetric gas flow rate [m3/s]
v = growth velocity of bubble [m/s]
vn = growth velocity of neck [m/s]

v' = v+vn [m/s]
x = neck length [m]
y = coordinate [m]

7 = polytropic coefficient [-]

AP = pressure drop across an orifice for
bubbling [Pa]

Ap = Pi-Pg [kg/m3]

/ij = viscosity of liquid [Paà"s]
pg, pi = density of gas and liquid [kg/m3]

o = surface tension [N/m]
r = shear stress [Pa]

(Subscript)

/ = value at end offirst stage
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A computer language that allows both procedural and inferential programming was developed. In this language,
an inference engine of first-order predicate calculus similar to Prolog was installed in a FORTH-likeprocedural
language "The IntelligenT (TIT)." Hence one can execute the inferential treatment inside procedural routines. In
addition, one can add procedural operation to the inference. This language was applied to rule-based control for a
system with long dead time such as control of temperature of an air stream caused by natural convection. The rules
are written as if-then expressions. Since these rules are not given by a procedural program but rather as a rule-base,
their description and modification are quite easy. Satisfactory control was achieved by this rule-based controller.

Introduction

To select an AI tool or language is an essential
factor when we want to apply knowledge engineering
to the fields of chemical engineering. AI tools or
languages have inference engines with knowledge
bases and are generally designed to treat a set of
symbols. On the other hand, chemical engineering
problems require many subroutines with complex

calculations and manyinterfaces connected to sensors
and actuators.
Ideally speaking, therefore, we need some language

in which low-level treatment such as communication
through A/D and D/A interfaces is expressed by
machine languages, middle-level treatment such as

Received April 9, 1988. Correspondence concerning this article should be address
to C. Kuroda.
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mathematical calculations is expressed by functional
equations, and high-level treatment such as inference
based on predicate calculus is expressed by AI lan-
guages. Such a language will open new possibilities
in the field of computer application.
In this study we have developed a hybrid language

in which both procedural parts and inferential parts
are included in a program, and these two parts can be
compiled simultaneously. In the procedural parts,
machine codes, statements and equations can be used,
while in the inferential parts, unification can be
applied in a way similar to that of Prolog. This
language was implemented in a personal computer
PC-9801 (NEC Ltd.) and was applied to rule-based
control for a system which has a long dead time.
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