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It is difficult to control the start-up of a packed-bed catalytic reactor with exothermic reaction by conventional
controller. In this paper, a controller based on the fuzzy set theory is applied to such a system. The controller treats
heuristic rules by fuzzy interpretation, and it is also equipped with adaptive scaling factors. The performance of the
controller is experimentally examined with a reactor for the catalytic oxidation of hydrogen.

Introduction

Catalytic reaction systems are notable examples of
nonlinear dynamics and are therefore very difficult to
control. The difficulties are mainly caused by the fact
that the kinetics of the catalytic reactions often
involve some uncertainties and vary with changes in
operating conditions. Such uncertainties and non-
linearities bring about many difficulties in model-
ing. For such systems the conventional control
scheme based on a linearlized model is not ap-
propriate, and some adaptive features are necessary
to compensate for variations in the characteristics of
the process. In particular, start-up control is the most
difficult task for process engineers because the control
performance is directly dependent on the accuracy of
the model used.

In practice, the start-up of such systems is often
controlled by human operators. They never solve
mathematical models in their brains but they can do
well. What is the strategy of their control operations?
Usually, their control policy may be based on vague
thoughts and a qualitative manner of thinking. The
remarkable characteristics of manual control are:
1) Flexibility in changing the system

2) Capability of learning about the system
through the experience

3) Capability of dealing with uncertain knowl-
edge

Fuzzy set theory7) is a mathematical tool for
treating uncertain information such as linguistic
statements. The main concept is that of graded
membership. In ordinary crisp set theory, a member is
either in or out of a subset. In fuzzy set theory,

however, the degree of belonging ranges from 'out' to
cin\ The theory provides a gradual transition from the
world of precise and quantitative phenomenato that
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of imprecise and qualitative concepts. Fuzzy control
based on this theory is appropriate to the control of
processes2A) which cannot be described precisely by a
mathematical model. Recently there have been
published some experimental applications.1'3'5) The
fuzzy approach represents some aspects of human

control policy on computers. Though the modeling by
fuzzy theory maynot be so precise as physical models,
most of the tasks performed by humans likewise do
not require a high degree of precision. The control
performance of a skilled human operator is satis-
factory but the speed and capacity are unfortu-
nately limited for complex and multivariable cases.
Thus, as process complexity increases, sophisticated
control objectives such as the start-up of a nonlinear
process cannot be accomplished without the aid of
a digital computer. This paper is concerned with the
experimental application of a fuzzy controller to
the temperature control of a catalytic reactor. The
system concerned is highly exothermic and non-
linear, and thus it is difficult to control by conven-
tional controllers. In fact, we previously applied

Model Reference Adaptive Control (MRAC)to the
reactor, but the control result for start-up was not
sufficient.6* In the experiments with MRAC,it was
difficult to eliminate overshootings. This is main-

ly because change in the system is too fast for the pa-
rameters to be adapted correctly. So another con-
trol method is required. The main purpose of this
paper is to answer the following questions. Can a
fuzzy controller be applied for the control of
nonlinear processes such as those in catalytic re-
actors? Especially, is it able to control the start-up
operation? It will be shown in this paper that the
answers to these questions are affirmative.

To improve the regulation performance, adaptive
scaling of the controller gain is also applied
successfully.
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1. Experimental Apparatus
The catalytic oxidation of hydrogen on platinum-

aluminum catalyst particles is investigated as an

example of nonlinear processes. A schematic diagram
of the experimental apparatus is shown in Fig. 1. The
catalyst particles contain 2% platinum and their
diameter is about 2mm. They are packed to 30mm
height in a glass tube of 12mmdiameter. The reactor
is set in a bath of polyethylene glycol in which
temperature is maintained at a constant value.
Nitrogen was used as a carrier gas. Flow rates of
nitrogen and oxygen are fixed at 800 and 200ml/min
respectively. Hydrogen gas is controlled by a mass
flow controller and is supplied to the reactor in the
range from 0 to 50 ml/min. Catalyst temperatures are
measured by copper-constantan thermocouples at
three locations, spaced at equal intervals along the
center axis of the packed bed.

Figure 2 shows the hardware elements of the
control system. Two personal computers are used,
one for measurement of several outputs and the other
for calculating the control algorithm. Inlet flow rates
of gases are monitored by digital flow meters. All the
interfaces such as ADC, DACand I/O are hand-
made. Sampling time is chosen as 30 seconds. The
objective of the controller in the present experiments
is to adjust the flow rate of inlet hydrogen in such a
way that the maximumtemperature among three
locations in the catalyst bed becomes a desired value.
2. The Fuzzy Controller
2.1 The basis of fuzzy control
The policies of the fuzzy controller are described by

linguistic rules containing uncertain information.
These rules are usually obtained from the knowledge
of human operators and/or physical considerations.

Linguistic rules, for example, take the following form:
IF "temperature is a little higher than a

setpoint"

THEN"decrease the flow rate of the reactant
a little,"

ELSEIF "temperature is far lower than a
setpoint"

THEN"increase flow rate of the reactant a
lot,"

ELSE à"à"à" (1)

Here, the expressions such as "a little" and "a lot"
have some vagueness and are thus suitable for fuzzy
set description. In general, linguistic rules are
translated into a set of fuzzy rules with some
appropriate fuzzy sets. A fuzzy rule can be
represented as an implication in the form of "IF A
278

Fig. 2. Instrumentation diagram

THENB" where A and B are fuzzy sets. And the
fuzzy controller is composed of fuzzy union of several
fuzzy rules. From a certain input A', the controller
estimates the output B'. A more detailed description
of fuzzy-set theory appears in the Appendix.
2.2 The fuzzy controller algorithm
1) Universe of discourse The first task in the

design of the fuzzy controller is to determine the

primary fuzzy variables for the processes. Twoinput
variables and one output variable are selected in the
present work.
(i) e: Error, defined as the difference between the

present maximumvalue of the catalyst temperature
and the set point.

(ii) c: Change in error, defined as the rate of
change of the value e during a sampling period.
(iii) u: Change in flow rate, defined as the change

of the inlet reactant flow rate during a sampling
period.

All fuzzy variables are quantized into 13 points and
denoted in normalized form, ranging from -6 to 6,
as shown in Table 1. To determine the universe of
discourse for each variable, scaling factors Fe, Fc and
Fu are introduced as follows:
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Table 1. Scaling factor

Element

-6 -5 -4 -3 -2 -1 0 1 2 ,3

PB 0 0 0 0 0 0 0 0 0 0.1 0.4 0.8 1.0
PM 0 0 0 0 0 0 0 0 0.2 0.8 1.0 0.7 0.2
PS 0 0 0 0 0 0 0.2 0.8 1.0 0.7 0.2 0 0
ZO 0 0 0 0 0 0.5 1.0 0.5 0 0 0 0 0
NS 0 0 0.2 0.7 1.0 0.8 0.2 0 0 0 0 0 0
NM 0.2 0.7 1.0 0.8 0.2 0 0 0 0 0 0 0 0
NB 1.0 0.8 0.4 0.1 0 0 0 0 0 0 0 0 0

e(Fe xj) = N(j)

c(Fc xj)=N(j) (2)

u(Fu xj) = N{j)

wherej represents a quantized value of each variable
and N(j) represents grade of membership function of
normalized form at pointj. The real values of these
scaling factors and ranges are shown in Table 2.
2) Linguistic values and fuzzy sets Each fuzzy
variable has seven linguistic values: Positive Big,
Positive Medium, Positive Small, Zero, Negative
Small, Negative Medium and Negative Big. These
values are abbreviated as PB, PM, PS, ZO, NS, NM
and NB.
3) Membership functions The membership func-
tions of these fuzzy values are defined in quantized
form in Table 1. Values between the quantized

points are linearly interpolated. The grade of mem-
bership function of fuzzy implication is specified by
giving a value for each set of componentse and c.
4) Control rules Using the above-mentioned defi-
nitions, the control rules are described as follows:

IF(eisNB)AND (cisZO)THEN (uisPB)
ELSEIF à"à"à" (3)

All rules used in this work are summarized in Table 3.
Translation of fuzzy outputs In this controller

application, inputs and outputs are not fuzzy but are
precise numerical values. So transformation between
fuzzy and numerical values is needed. A numerical
value can be considered as a special fuzzy set of which
the membership function is zero except for one
element. Fuzzy values are transformed to numerical
values by use of the gravity center of the membership
functions.
6) Implementation The adjustable parameters of
this controller are scaling factors, fuzzy rules and

shapes of membership functions. In most cases, fuzzy
rules and membership functions are fixed. By varying
the value of the scaling factors, the sensitivity of the
controller can be adjusted. The ratio Fu/Fe cor-
responds to controller gain such as a proportional
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Table 2. Control rules

Range Scaling factor

- 25-25°C
- 10-10°C

- 3-3 ml/min

Table 3. Membership functions

NB NM
NS

e
ZO PS

PM
PB

PB PS NS NM NB NB NB NB
PM PS PS NS NM NM NB NB
PS PM PS ZO NS NS NM NB
ZO PB PM PS ZO NS NM NB
NS PB PM PS PS ZO NS NM
NM PB PB PM PM PS NS NS
NB PB PB PB PB PM PS NS

gain for the PID controller, though they are different
in some points. Scaling factor influences the accuracy
of observation as well as the sensitivity of manipu-
lation. For example, the scaling factor can be con-
sidered as a sort of range of a multirange gal-
vanometer. If the range is narrow, it is difficult to
balance the meter. Onthe other hand, if the range is
wide it is easy to balance the meter but accuracy is
sacrificed.

To represent the above-mentioned algorithm, a

computer program is coded by the following flow:
i) Measure the current temperatures and calculate

the numerical values of e and c.
ii) Infer the output fuzzy set u for each rule by

using Mamdani's implication and Zadeh's compo-
sition rule of inference.

iii) Combine all the inference results in a fuzzy set.
iv) Convert the inference result to a numerical

value by using the gravity center of the resulting fuzzy
set.

v) Manipulate the flow controller for inlet hy-

drogen gas.
vi) Wait until the next sampling point and repeat

the procedure above.
2.3 Results and discussion

An example of the start-up control experiments is
shown in Fig. 3, where the catalyst temperatures at
three locations and the flow rate of inlet hydrogen are
plotted. At the beginning, all the catalyst tem-
peratures are around 60°C, which coincides with
the inlet gas temperature. Soon after the controller
starts to work, the maximum temperature reaches
120°C. As can be seen in the figure, the controller
works well, indicating negligible overshoot. During

the initial period of control, the catalyst temperatures
remain almost constant although the inlet hydrogen
flow rate increases gradually. Around 300 seconds,
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Fig. 3. Result by basic fuzzy controller

the temperatures abruptly start to rise naturally
accompanied by ignition. Such nonlinear behavior is
often seen in catalytic reaction systems, making it

difficult to control such processes. After this period,
the controller output gradually reduces its rate of
increase.

The controlled temperatures of the catalyst indicate
small fluctuations of low frequency. This is because of
the very low sensitivity of the controller, which is

designed not to produce a big overshoot in the period
of start-up. In the present controller, controller gain
can be varied by adjusting scaling factors, and thus
the sensitivity of the regulator can be varied by its
scaling factors. Usually these small fluctuations are
not so significant. It is rather remarkable that the
fuzzy controller can control the reactor start-up
without overshootings.

3. The Modified Fuzzy Controller
3.1 Modification of the algorithm

To diminish a steady state error, decreasing a
scaling factor Fe seems to be effective. For the start-
up procedure, however, it incurs a danger of
producing overshootings or oscillations because
the scaling factor is so sensitive to the dynamical be-
havior of the closed-loop system. Thus automatic ad-
justment of the scaling factors is desirable. Consid-
ering the manner of control by a human operator,
at the first stage he takes care of the upper digits
of the thermometer to achieve a desired temperature.
Once the temperature nears the target, he mainly
pays attention to the lower digits of the meter. In
other words, the operator changes his scope from
macro to micro scale. On analogy to such operation,
the main concept of the automatic adjustment mech-
anism is based on a simple idea such as "If error is
large, then let scaling factor be large and vice versa."
To realize this consideration, a simple performance

index i(k) is defined as
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i(k)={e(k)2+e(k~ \f+e{k-2)2}/3 (4)

According to the performance index, the scaling
factors are adjusted as follows:

Fx(k) = C(k)Fx0 (5)

where x is a replacement ofe or c, and x0 is an initial
value ofx. C(k) is a modification coefficient defined as

C(k) =

1.0 for ix<i(k)

0.5 for i2<i(k)<ix

0.2 for i3<i(k)<i2

0.1 i{k)<L

(6)

This coefficient also may be expressible in linguistic
forms:

"IF i(k) is very large THEN C(k) is very big
ELSE

IF i{k) is large THEN C(k) is big ELSE

IF i(k) is medium THEN C(k) is medium
ELSE (7)

IF i{k) is small THEN C(k) is small."

The numerical definition of the coefficient can be
thought of as a special case of fuzzy representation.
For simplicity, numerical representation was used in
the experiment. The value of iu i2 and /3 are

determined by taking account of the performance of
the basic fuzzy controller. In this work, these values
are selected as 150, 40 and 10, respectively.
3.2 Results and discussion

An example of experimental control by the
modified controller is shown in Fig. 4. The ex-
perimental condition is the same as in Fig. 3. In this
case the steady state error is almost invisible and the
start-up performance is also satisfactory. At the
bottom of the figure the value of scaling coefficient is
plotted. It can be seen that the factor is adjusted as
expected.
To check the regulation performance and stability

of this controller, response to a disturbance was
tested, with the results shown in Fig. 5. Around 1250
seconds, the flow rate of inlet nitrogen gas is abruptly
decreased from 800 to 600 ml/min. Influenced by the
change of flow rate, catalytic temperatures increased
suddenly but then settled down to the set-point in a
few minutes. The scaling coefficient is also changed
after the disturbance.
Conclusion

Experimental application of a fuzzy control
algorithm to the control of an exothermic catalytic
reactor is examined. Even a simple fuzzy controller
was able to control the start-up of the reactor without
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Fig. 4. Result by improved controller

Fig. 5. Response of controlled process under a step
disturbance

overshootings.
Automatic adjustment of scaling factors for the

discourse of universe of membership functions was
also tested. It was shown that this adaptive

mechanism works well to reduce the error around the
steady state.
Through the work, it was demonstrated that start-
up control of the reactor can be satisfactorily
controlled on the basis of the fuzzy algorithms. It is
VOL 21 NO. 3 1988

worth noting that only simple a priori information is
used to construct the control rules. Since the
algorithm is easily modified, the fuzzy control scheme
can be applied to more complex processes,

mathematical models of which are hard to construct.
Appendix

Fuzzy set theory

A short mathematical description of fuzzy set theory is presented
here. It covers only a part of the theory related to the fuzzy

controller mentioned in this paper.
A fuzzy set ^ on a universe of discourse U is defined by its

membership function mA(x), which indicates the degree of
belonging to A for each element x. The grade of membership
function for each element is in the interval [0, 1].
Basic calculations for fuzzy sets A and B are defined by their

membership functions, for example, as follows:
1) NOT:

m lA(x)= l -mA(x) (A-l)

2) OR:

á"a ub(x) = maxtm^x), mB(x)] (A-2)

3) AND:

mA nb(x) = min[mA(x), mB(x)] (A-3)

And fuzzy rules are stated as follows:

"IF Ax THEN Bx
(A-4)

OR IF A2 THEN B2"

Here, each statement corresponds mathematically to fuzzy

implication. Among various definitions of implication operator, we
use this simple fuzzy relation:

mA^B(x, y) = min[m^(x), mB(y)] (A-5)

Fuzzy inference is a process for calculating the output from fuzzy
conditional statements whena certain input condition is given. This
calculation is defined by the compositional rule of inference. IF an
input A' is given, the inferred output B' under the condition "IF A
THEN5" is defined as

mB,(x) = max[min[m^, (x), mA^B(x, y)] (A-6)

No menclature
A, B = fuzzy sets [-]
C = modification coefficient [-]
c - changein error [-]
e - error in temperature [K]
Fe, Fc, Fu = scaling factors [-]
/ = performance index [K2]

h> h> h = boundary performance indexes [K2]
m = membership function [-]
N = normalized membership function [-]

t = time [s]
Tl = temperature at location / [°C]

U = reactant flow rate [ml/min]
u = change in reactant flow rate [ml/min]

Literature Cited
1) Kickert, W. J. M. and H. R. Van Nauta Lemke: Automatica,

12, 301 (1976).

2) Mamdani, E. H. and S. Assilian: Int. J. Man-Machine Studies,
7, 1 (1975).

3) Sheridan, S. E. and P. Skjoth: IEEE Trans. Ind. AppL, IA-20,
562 (1984).

281



4) Tong, R. M.: Automatica, 13, 559 (1977).

5) Tong, R. M., M. B. Beck and A. Latten: Automatica, 16, 659
(1980).

6) Yamashita, Y., S. Matsumoto and M. Suzuki: Gunma

Meeting of Chem. Eng. Soc. Japan, E123, July (1986).
7) Zadeh, L. A.: IEEE Trans., System, Man and Cybern., SMC-

3, 28 (1973).

RADIAL AND VERTICAL DISTRIBUTIONS OF THE
INTERSTITIAL GAS VELOCITY IN A
FLUIDIZED BED
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The radial and vertical distributions of the interstitial gas velocity in a fluidized bed of group B particles were
measured over a wide range of superficial gas velocity by applying the optical fiber technique with ozone used as
tracer gas. The bed materials were sand particles, dp= lS4fim, and alumina beads, dp=250fim.
The interstitial gas velocities in the jet region were found to be higher than those predicted by the ideal two-phase

postulate. This increase reached 30 % and 20 % of (Uo - Umf) for sand particles and alumina beads respectively.
These velocities decreased with height above the distributor, approaching those at incipient fluidization near the bed
wall but taking still higher values at mid-points.
The leakage factor K calculated from the observed interstitial gas velocity was compared to that predicted by a

recently developed bubble simulator which was inherently based on the observation of radial and vertical
distributions of size and frequency of bubbles, and good agreement was obtained.

Introduction

It is essential in fluidized-bed reactor modeling and
simulation to predict how the fluidizing gas fed into it
is divided into bubble and interstitial phases. Wemay
intuitively assume that the gas in the interstitial phase
is much more effective in bringing about chemical
reaction between gas and solid so that wrong
prediction of this division may result in significant
error in the calculation of reaction performance.

The well-known ideal two-phase postulate is

usually formulated as
QB/A= U0- Umf (1)

i.e., the gas flowing in the dense phase is that at Umf,
and the gas in excess forms a visible bubble flow.

Equation (1) has been questioned and a great deal of
experimental work indicates that this postulate
largely overestimates the visible bubble flow
rate.1/M4'15'17) To account for this discrepancy, Eq.

(1) is written as
Received September 5, 1987. Correspondence concerning this article should be

addressed to M. Ishida.
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QB/A = U0- KUmf (2)

The values of the leakage factor K were summarized
by Grace and Clift6) based on a number of works
which allowed direct measurementor estimation of
the visible bubble flow rate. Kwas found to vary from
system to system and, within a given system, is
dependent on height and superficial gas velocity. In
the literature, there is controversy on the cause of the
observed discrepancy between Eq. (1) and the

experimental results represented by Eq. (2).
Roweet al.,16) using an X-ray technique deduced

that the interstitial gas flow is much greater than Umf,
say, 10 to 25 times in a bed of sand particles of
average diameter 52/mi. Although this technique
does not disturb the flow in the bed, it cannot be

applied to the measurement of the local interstitial gas
velocity. Kawanashi and Yamazaki12) used oxygen
sensors to detect oxygen which was used as tracer gas
in a bed of cracking catalyst, dp=60jum, fluidized by
nitrogen, and concluded that the interstitial gas
velocity is larger than Umfand decreases with height
above the distributor. But their oxygen sensors were
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