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For the CZcrystal growth of silicon and sapphire, the flow and temperature fields with non-flat melt/crystal and
melt/gas interfaces were studied theoretically by use of the finite element method.

The theoretical method used here can predict the temperature distribution and the flow pattern (forced
convection, free convection, Marangoni convection and their combined flow) in the melt and crystal, including the
shapes of the melt/crystal and melt/gas interfaces and the crystal radius, although calculation was limited to the
case of small CZ apparatus.
It is found that the melt/gas interface shape afifects the flow pattern in the melt, and that the melt/crystal

interface shape for a system of small Pr such as silicon is not sensitive to the flow field. But for a system of larger Pr
such as sapphire, the melt/crystal interface shape is strongly dependent on the flow field.
It is also found that the Marangoni effect, if it operates, plays the most important roll in promoting the flow in

the melt.

Introduction

The Czochralski (CZ) method is applied to the
growth of single crystals utilized in semiconductor
devices or acousto-optic devices. For the production
of perfect single crystals, it is necessary to control or
suppress thermal convection in the melt. In the in-
dustrial CZapparatus, the crystal and/or the crucible
are generally rotated in order to improve thermal
symmetryaround the crystal and also to homogenize
the dopant distribution. Accordingly, the various
flows, free convection, thermocapillary flow and
forced convection caused by crystal and crucible ro-
tation coexist in the melt, and thus it is very impor-
tant to acquire correct knowledge about the flow pat-
tern and the mechanism of heat transfer in the melt
and the crystal in order to control the quality of
crystals. In the crystal growth of oxide, it is well-
knownthat the melt/crystal interface changes shape
abruptly from concave to convex toward the crystal
with increasing crystal rotation rate. This means that
the temperature field in a melt of oxide with large
Prandtl number is strongly influenced by the flow

pattern in the melt, and thus it is necessary to know
the responses of melt/crystal interface shape and
crystal radius against the various processing param-
eters such as crystal rotation rate and crucible tem-
perature.
One of the methods used to predict the flow pattern

in the melt is computer simulation. Crochet et a/.,3)
Received July 4, 1987. Correspondence concerning this article should be addressed to
T.Tsukada.
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Kobayashi,7 12) Langlois13 16) and Mihelcic et
al.ll~19) computed the temperature distribution and

the flow pattern in the melt.
In the previous works, however, emphasis has been

placed on finding out the qualitative aspects of melt
flow in very simplified circumstances. These simu-
lations cannot provide the practically important
quantities such as the crystal radius, crystal/melt
interface shape, distributions of temperature and ve-
locities in the melt and crystal under a given process-
ing condition. There is an urgent need among crystal-
pull engineers for the development of a practical
numerical simulation shceme in which all components
of the CZ furnace, i.e. the crystal, the melt pool, the
crucible and the ambient walls, are taken into the
analysis so as to predict those quantities. Recently,
Derby et al.,4) Srivastava et al.21) and Tsukada et
al.22'23) have successfully applied finite-element ana-

lysis to the conduction-dominated problem for CZ
growth, and have simulated numerically the interface
shapes, crystal radius, and temperature distribution.

In these analyses, however, melt convection was not
taken into account.
The aim of this work is to develop such a practical

simulation scheme in which the flow in the melt is also
taken into the analysis. The scheme is used to reveal
the effects of several factors on the CZ pulling of
silicon and A12O3 (sapphire).
1. Theory

Figure 1 shows the cylindrical coordinates used
here.
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We

Fig. 1. Coordinate system

 The following assumptions are made in the numeri-
cal simulations. 1) The system is in a pseudo-steady
state and is rotationally symmetric. 2) The fluid is
incompressible. 3) The physical properties are con-

stant and are evaluated at the melting-point tempera-
ture, except for the density and surface tension, which
are dependent on the temperature to allow for the
effect of buoyancy and thermocapillary forces. 4)
Heat transfer in the crystal is dominated by con-
duction, while in the melt it is dominated by con-
duction and convection. 5) The crystal is pulled

continuously from the melt at a constant rate. 6) The
crucible and the ambient wall are maintained at
respective constant temperatures. 7) Heat loss from
the surfaces of melt and crystal is due to radiation
alone. 8) The melt/crystal interface is at the melting-
point temperature. 9) The contact angle of melt
against the crystal and the crucible is constant.
 Under the above assumptions, the dimensionless
forms of the Navier-Stokes equation with the
Boussinesq approximation and the continuity equa-
tion for the melt are given as follows, where the
characteristic length is crucible radius r'
c.
    v^=-FA-F-T,+Gr(r,-iK   (l)

          P-t>,=0         (2)

where t is the stress tensor, defined as -{Vvt+VvJ).
 The dimensionless energy equations for the melt
and the crystal are described by Eqs. (3) and (4).

       Prvl VTl= V2Tl      (3)

       Peez VTs= V2Ts      (4)

where suffixes / and s mean the melt and the crystal
respectively, and Pe corresponds to the dimensionless
pull rate.

 The boundary conditions are expressed as follows.
 At both the side wall and the bottom of the
crucible:

 Ul=Vl=09 Wl=rRec, Tt=Tc   (5-1,2,3,4)

 At the melt/gas interface:

VOL 21 NO. 2 1988

n'Vt=0, Tl:nt=MaVTl t

Tl:nee=O, -n'VTt=qradJ

At the melt/crystal interface:
ul=vl=0, Wj=r/?^s

n-VTl-Kn'VTs=KPeStn-ez

Tt=Ts=\

At the crystal side and top:

-n- VTs=qTadtS

At the center line:
W/=W;=0

(5-5, 6)

(5-7, 8)

(5-9, 10, ll)

(5-12)

(5-13)

(5-14)

(5-15, 16)

n-Vv^n VT^n VT^O (5-17, 18, 19)

where uh vt and wl are the radial, axial and azimuthal
components of velocity vector vt, respectively. grad?k

(k=Iand s) is heat loss per unit area on the boundary
surfaces due to radiation, taking into account both
directed and reflected radiation heat exchange be-
tween an individual surface element and all surround-
ing surfaces, and is given as follows.21'22)

q^,k=Rk{rt-(l AfyTpj^JA^e^ (6)
where Rk is radiation number, N is total number of
radiation surface elements present and Gjk is
Gebhart's absorption factor,21} which is the fraction
of emission from surface Aj that reaches Ak and is
absorbed.

Accordingly, the flow and temperature fields are
given by solving Eqs. (l)-(4) under the boundary
conditions.

The melt/crystal interface shape zx is determined
such that Eq. (5-13) is satisfied, i.e. the interface is at
the melting-point isotherm.

The melt/gas interface shape z2 and the crystal
radius are obtained by solving the Young-Laplace
equation, Eq. (7), under the following conditions.

2H=Boz2 +a

The boundary conditions are expressed as

e=0s at r=rs

0=0c at r=\

The melt volume is given by Eq. (9).

(7)

(8-1)
(8-2)

0

Vm= Zlrdr+ z2rdr (9)

To solve the above problem, the Galerkin finite-
element method3'4'21 "23) is used. The melt and crystal
are discretized by isoparametric elements consisting
of a nine-noded quadrilateral as shown in Fig. 2,
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Fig. 2. Discretization of calculation domain for the finite
element method

where the total number of elements and nodal points
are 719 and 2999, respectively.
In each element, velocity vector v and temperature

T are approximated with the biquadratic trial func-
tion (/>à" as follows.

v{r, z)=YJ(j)ivi (10)

rc, 2)=I>^ (ii)

The bilinear trial function cpk is used to approx-

imate pressure p.
p{r, z) =YJcpkpk (12)

The shape of the gas/melt interface is expressed by
the following equation.

where Xj is the Hermite cubic trial function.
By substituting Eqs. (10)-(13) into Eqs. (l)-(4) and

(7), the Galerkin procedure gives the set of algebraic
equations. The equations are solved by use of the
Newton-Raphson scheme. The calculations for the
fields, crystal radius, and interface shapes are repeated
until the cut-off error is less than a given value.

2. Results and Discussion
Wecomputed the flow and temperature fields in the

melt and the crystal, and the shapes of melt/crystal
and melt/gas interfaces for the two systems: silicon as
an example of systems with small Pr (Pr=0.014) and
A12O3 (sapphire) as an example of those with rel-
atively large Pr (Pr=0.34). The calculations were

carried out for cases with the melt pool in a small
cruicible (20mm in diameter) for both silicon and

A12O3.Physical properties and processing parameters
used in numerical simulations are listed in Table 1. In
the following Sections 2.1-2.3, we describe the effects
of crystal rotation, exposure to hot cruicible wall, and
non-flat interfaces, respectively. In these sections, the
thermocapillary effect is ignored by setting Ma=0 in
Eq. (5-6), for the sake of comparison with the

previous works. The effect of thermocapillary force is
186

Table 1. Physical properties and processing parameters used
for calculations

1. Physical properties

Si A12O,

Melting point {T'm) [K]
Heat of solidification (AHS) [J-g"1
Thermal conductivity

melt O^ IW-cm^K-1]
crystal (ks) [W-cm^ K"1]

Density
melt (pt) [g-cm"3]
crystal (ps) [g-cm~3]

Kinematic viscosity (vz) [cm^ s"1]
Heat capacity
melt CC^ tJ-g^K-1]
crystal (Cps) [J-g-1 K-1]

Emissivity
melt (gj)
crystal (ss)

crucible wall (ec)
ambient wall (ea)

Thermal expansion coefficient
(fS) [K"1]

Surface tension (y) [dyn-cm J]
Temperature coefficient of surface

tension
(-dy/dT') [dyn-cm-1 K"1]

Contact angle
against crystal (0S) [deg]
against crucible (6C) [deg]

Prandtl number [-1

1683 2316

1 800 1046

0.64 0.1
0.22 0.1

2.42 3.05

2.3 4.0

0.0036 0.00892

1.0 1.26

1.0 1.26

0.3 0.33

0.46 0.33

0.59 0.3

0.8 0.3

1.41x10~5 3.0xl0"5
720 700

0 .43 0.06

ll
90

0.014

17

90

0.34

2. Processing parameter
 Crucible radius (r'c) [cm] Crucible height (zc') [cm]
 Crystal length (/;) [cm]
 Melt volume (V'J [cm3]
 Enclosing wall area (A'J [cm2]
 Enclosing wall temperature
  (T'a) [K] Crucible temperature (7^) [K]

 Crystal rotation rate
 WHmin-1]
 Crucible rotation rate
 (n'c) [min"1] Pull rate (V's) [mm-min"1]

1.0

1.9

2.7

4.7

10.0

1.0
1.9
2.7
4.7

10.0

673 1737

1718 2457

or 1737 -2473

0

1.0
0

0.1

discussed in 2.4.
2.1 Effect of crystal rotation
Figure 3 shows the velocity vectors and temperature

distributions in the melt and the crystal when the

crystal is rotated alone (Rec=0), where (a) is for those
in silicon (Gr=1.8 x 106) and (b) is for those in A12O3
(O=8.56 x 105). For Res=0, only the counterclock-
wise vortex caused by free convection is present in the
melt. Whenthe crystal is set in rotation, the flow in
the melt splits into two vortices, one caused by free
convection and the other by forced convection due to
crystal rotation. Whenthe rotation rate of crystal rod
is slow, such as for Res=300 in silicon and Res=350

JOURNAL OF CHEMICAL ENGINEERING OF JAPAN



(b): Sapphire crystal growth with 0=8.56 x 105, Tc=1.068,
Rec=0 and Ma=0

Fig. 3. Effect of crystal rotation on flow pattern and tem-
perature distribution in the melt and the crystal.

in A12O3, the clockwise vortex due to crystal rotation
exists only under the crystal rod, and the counter-
clockwise vortex prevails almost throughout the melt

VOL 21 NO. 2 1988

(b): Sapphire crystal growth with Gr=8.56 x 105, Tc= 1.068,
Rec=0 and Ma=0

Fig. 4. Effect of crystal rotation on melt/crystal interface
shape.

pool-i.e. free convection is dominant. As Res be-
comes larger (Res=500 in silicon and Res=100 in

A12O3), however, the clockwise flow due to forced
convection reaches downclose to the crucible bottom.
It is seen from these figures that flow patterns in the
melt change with increasing Res in almost the same
way for both silicon and A12O3. On the other hand,
the effects of the flow pattern on the temperature
distributions in the melt are different between (a) and
(b). The Prandtl number of silicon melt is very small
and thus the temperature field is only slightly affected
by the flow field. In A12O3, however, the temperature
field is strongly influenced by the flow pattern, and
thus the melt/crystal interface shape and crystal ra-
dius also change with Res.
Figure 4 shows the effect of the crystal rotation on
the shape of the melt/crystal interface and the crystal
radius for (a) silicon and (b) A12O3 ctystal growth,
where Az represents the difference between z1 and z1
atr=rs asshowninFig. 1. For silicon asshown in (a),
the melt/crystal interface shape and the crystal radius
is practically insensitive to Res, and is similar to that
calculated by the conduction-dominated model. This
is due to the small Pr of silicon melt. For A12O3, as
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shown in Fig. 4(b), the interface shape and the crystal
radius is strongly influenced by Res, i.e. the flow
pattern in the melt. In this case, the conduction-

dominated model gives rs=0.645 and Az (at r=0)=
-0.0288. Whenfree convection is dominant, the melt
crystal interface is convex to the melt, but it reverses

to become convex to the crystal at Res=400. This
abrupt change of melt/crystal interface shape has
been observed experimentally during the crystal

growth processes of oxides,2) and has been believed
to be due to change of dominant flow in the melt
from free convection to forced convection.
2.2 Effect of hot crucible wall

So far, both directed and reflected radiation heat
exchange between an individual surface element and

all surrounding surfaces have been -taken into account
to evaluate the heat loss due to radiation on the

boundary surfaces. In most previous works, however,
heat loss was evaluated using only the effective tem-
perature Te of the surroundings as follows.

*,.<..*=Wt- 71) (14)

where the existence of the exposed hot crucible wall
was not taken into account.
Figure 5 shows the flow patterns and temperature
distributions around a crystal rod of given radius. In
case (a), Eq. (6) is used for the radiative boundary

condition, while in case (b), Eq. (14) is used. In Fig. 5,
Gr= 1.8 x 106 and Res=500 for silicon crystal growth

are used. When the exposed hot crucible wall is
ignored, radiative heat loss from the crystal rod and

the melt surface is larger than that when the hot
crucible wall is considered. Accordingly, to keep the
crystal radius constant a higher crucible temperature
is required. The intensity of counterclockwise vortex
due to free convection in (b) becomes stronger than
that in (a), and the area occupied by the clockwise

flow due to crystal rotation is smaller. This is simply
due to the larger temperature difference between the
crucible and the crystal rod in case (b).
2.3 Effect of non-flat interfaces
Figure 6 shows the flow pattern and temperature
distribution in the melt when both the melt/gas and

melt/crystal interfaces are assumed to be flat. This
calculation was madeto reveal the effect of interface
shape on the flow field. The dimensionless parameters
in Fig. 6 are similar to those in Fig. 5(b) and heat loss
due to radiation is evaluated by using Eq. (14). Under
the assumption of flat interfaces, the clockwise flow
near the melt/crystal interface caused by crystal ro-
tation is weaker and free convection is more dominant
than in the results shown in Fig. 5(b). The reason for
this difference is that in the case of a curved melt/gas
interface the counterclockwise flow caused by free

convection cannot ascend into the pulled-up meniscus
region, but separates from the gas/melt interface and

Fig. 5. Effect of the exposed hot crucible wall on the flow
pattern in silicon melt around a crystal rod of the same
diameter. With Gr=1.8x 106, Rec=0 and Ma=O

Fig. 6. Flow pattern and temperature distribution when the
melt/crystal and melt/gas interfaces are flat. With Res = 500,
Rec=Ma=0, Gr=1.8x lO6 and 7;=1.0323

returns to the bulk of the melt at a point lower than
and away from the crystal edge. Forced convection
prevails in the meniscus region. In the case of flat
interfaces, by contrast, the free convection reaches
very close to the crystal edge and the forced con-
vection is confined to a small region under the crystal.
The effect of non-flat melt/gas interface is important,
especially in a small crucible as in the present cases.

These sample calculations, shown in 2.2 and 2.3,

reveal that the simulation of melt convection has
significance only when all the influential factors are
correctly taken into account.
2.4 Effect of thermocapillary force

In addition to forced and free (buoyancy-driven)
convection, the thermocapillary flow (Marangoni
convection) should be also taken into account.
However, the reported values of (dy/dT')lAr'i5) ofhigh-
temperature melt do not seem entirely reliable.15) In
this report, the effect of the thermocapillary force is
studied by setting Ma, in other words (dy/dTf), as an
arbitrary parameter. Figure 7 shows the effect of

Marangoni convection on the flow field in the melt for
(a) silicon and (b) A12O3 crystal growth. The figures
show the change of flow pattern with increasing
Marangoni number Ma. Here the crystal alone is
rotated (Rec=0). The intense flow near the melt/gas
interface due to the Marangoni effect, incorporated
with the free convection, enhances the counterclock-
wise vortex, and thus suppresses the clockwise flow
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Fig. 7. Effect of Marangoni convection.
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caused by crystal rotation. With large Ma (>1.0 x
105) in silicon crystal growth, the counterclockwise

flow mostly caused by Marangoni convection prevails
in the upper part of the melt pool and leaves a slow
circulating flow near the crucible bottom. In the case
of A12O3with larger Pr and at higher temperature

level, however, a large voltex reaching down to the

bottom is made up by both the thermocapillary and
the buoyancy effects in concert.

Figures 8(a) and (b) show the effect of Ma on the
melt/crystal interface shape and the crystal radius,
respectively, where Az is that at the center line, r=0.
For Si, the melt crystal interface becomes slightly
more convex to the melt and the crystal radius

becomes smaller as Ma increases. For A12O3, Az is
kept at an almost constant positive value (convex to

crystal) at 0<Ma<lx 103. In this range of Ma, the
radius of the crystal rod is also insensitive to Ma. But
with further increase of Ma, the radius shows a steep
decrease and, at the same time, Az changes its sign, i.e.
reverses from convex to concave to crystal. If the

crucible temperature is kept constant, the crystal
radius becomes smaller and may disappear at far
larger Marangoni numbers. Then, to increase the

crystal radius, the crucible temperature must be re-
duced.22) In Fig. 8, some results under reduced cruc-

ible temperatures are also shown.
With the present method of calculation and num-
ber of elements, we could not obtain converged

solutions for values of Ma larger than those cor-
responding to the right-most plot points shown in
Fig. 8. If the reported values of (dy/dT/)14''i5) are

adopted to estimate realistic values of Mafor a
20mm-dia. crucible, Ma is expected to be as large as
2.7xlO7 for silicon and 5.7x105 for A12O3.
Accordingly, in the real melt pool, the effect of

Marangoni convection is expected to be more remark-
able than that shown in Fig. 7. Present calculations
reveal that the Marangoni effect plays the most
important role among the driving mechanisms to

make up the flow field in a small pool of melt, even in
terrestrial gravity. But, it should be noticed, as re-

ported by many authors,1'5) that the Marangoni effect
is easily inhibited by the presence of a small amount

of contaminants. Although there is no report on
contaminants for melts of silicon or A12O3, further
experimental investigations are required.

In our previous studies, muchattention was paid to
the shape of the melt/crystal interface. However, the
flow pattern itself also has importance. The incorpo-
ration of dopants and/or impurities from the melt is
strongly affected by the flow field very close to the
melt/crystal interface and also by the extent of mixing
in the melt. The method of flow analysis proposed
here will provide a more realistic flow field in the melt
than do the previous methods and will help provide a
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Fig. 8. Effect of Marangoni convection on melt/crystal interface shape and crystal radius. For
silicon: Res=500; Rec=0; rc=1.0207; Gr=1.8x l06. For sapphire: Res=100; Rec=0; Gr=8.56x l05.

deeper understanding of CZ crystal growth oper-
ations. To predict the flow of melt in large-scale
industrial CZ equipment, however, the numerical
scheme in solving the Navier-Stokes equation em-
ployed in the present analysis is not directly appli-
cable, because of its fundamental assumptions of

steady state and axial symmetry.
Conclusions

For silicon and A12O3crystal growth systems, the
flow and temperature fields in the melt and the crystal
having non-flat melt/crystal and melt/gas interfaces

were studied theoretically and the following con-
clusions were obtained.

The theoretical method described here can predict
the flow pattern in the melt, the temperature distri-
butions in the melt and the crystal, the crystal radius

and the shapes of both melt/crystal and melt/gas
interfaces, although calculation was restricted here to
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the case of a small pool of melt.
For a fluid of small Prandtl number, such as silicon
melt, the temperature distribution and the melt/
crystal interface are not sensitively affected by the
flow field, however, those for A12O3with relatively
large Pr are influenced by the flow field.
The Marangoni effect is, if it operates, the most
important factor in promoting convection, at least in
a small pool of melt such as is treated in the present
analysis.
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Nomenclature

[m2]
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Bo

Gr

g
w
H
AHS
k
K

Is
Ma

n
n'

Pe
Pr
P'

Pg

Po

P

tf rad
^rad

Rk

Re

r, rs

St
T
T'c

T'm

T'a

T, Te, Ta
AT

t

u'

vm
vM

v'

v'

w'

U. V.V. W

z'

^2

Az'

Az

A 'kl2nr 'c2
Bond number (=Pir'c2gh)
heat capacity
unit vector
Gebhart's absorption factor
Grashof number (=r/c3pT/mg/v2)
gravitational acceleration

meancurvature
r'cH'
latent heat of solidification
thermal conductivity

[-]
[-]

[J kg-' K"1]

H

H

[-]
[nvs-2]

[m-'J

[-]
[J kg-1]

[W m-' K"1]

crystal length
I'JK
Marangoni number
( = - dy/dT')r'e T'Jpri)
outward-pointing normal at the boundary

 rotation rate
 Peclet number ( =PsCp Vfsr/Jk^
 Prandtl number (foCJkd
 pressure
 pressure in gas phase
 pressure at reference position
 (P' -Po + Pi9zy'c2/Pitf
 heat flux due to radiation
 tfr'ad'cVfc' - r;
 radiation number ( = Ek(rr/c T^/k^)
 Reynolds number (=r/c2co//vl)
 radial distance in cylindrical coordinates
 crucible radius
 crystal radius
 r'lr'c, r'slr'c Stefan number (=AHJCp T'm)
 temperature
 crucible temperature
 melting-point temperature
 enclosing-wall temperature
 T'/T'm, T'cIT'm, T'

JTm

 interval of isotherms
 tangential unit vector
 radial component of velocity vectors
 melt volume
 VJlKV?
 crystal pull rate
 velocity vectors
 axial component of velocity vectors
 azimuthal component of velocity
  vectors
 u'r'

Jv^ v'r'

Jv^ v'r'Jvh

 axial distance in cylindrical coordinates
 crucible height
 z'/r'c, z'

Jr'c

 distance between crucible bottom and
 melt/crystal interface
 distance between crucible bottom and
 melt/gas interface

 z[ -z'2(r'=r's)
 Az'lr'c

 thermal expansion coefficient
 surface tension
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Is"']

[-]
[-]
[Pa]
[Pa]
[Pa]

M
[W-m-2]

[-]

[m]
[m]

[-]
H
[K]
[K]
[K]
[K]
H
H
H

[m s-']
[m3]
[-]

[m-s-1]

[m-s-1]

[m-s-'l

[m-s-1]

[-]
[m]
[m]
H

[m]

[-]
[-]
[m]
H

[K"1]

[N-m"1]

8

es, e
K
X

T

a/
0>V,X

emissivity
contact angle

{Po -PoYch
viscosity
kinematic viscosity
density
Stefan-Boltzmanconstant
stress tensor
*'r 'c2/Pivt
angular velocity (=2nn/)
trial functions

( Subscripts)
/ = melt
s = crystal
r = radial

e = z directional
=azimuthal

[Pa-s]

[kg-m-3]

[W-m-2-K~4]

[Pa]
H

[rad-s"1]

H
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