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Collision efficiencies have been computed for unequal-size spherical particles settling in quiescent viscous liquids,
taking into account the hydrodynamic interaction, interparticle attraction and electrostatic repulsion. The results
are closely related to the mechanism of coagulation of colloidal particles in a sedimentation field. If the interparticle
attraction and electrostatic repulsion are both negligibly small as compared to viscous drag, the collision efficiency
r\ is very small, i.e. about 0.003. However, a relatively large Van der Waals force makes tj greater than unity. As the
ratio of the radii of the two particles (smaller divided by larger) decreases the collision efficiency also decreases.
The repulsive force between particles determines whether the collision efficiency is zero or larger than zero, but it
does not affect the magnitude of the collision efficiency. By including the effect of electrostatic repulsion we were
able to develop criteria which determine the stability (or flocculation) of colloidal particles.

Introduction

The collision efficiency for unequal-size particles
moving through viscous liquid is of importance for
the estimation of coagulation rate of small particles
settling in a water filtration pool, a lake or a marsh. It
is valuable for study of the mechanisms of turbulent
coagulation in a liquid flow.

For equal-size spherical particles in a shear flow,
Curtis and Hocking3) derived the collision efficiency
and calculated the London-Hamaker constant from
it. Lin et al.,8) Batchelor and Green,1} Van de Ven and
Mason11} and Zeichner and Schowalter13) all calcu-
lated the trajectories of pairs of equal-size spherical
particles in a shear flow. In addition, Zeichner and
Schowalter's calculation includes particles in a uni-
axial extensional flow. Van de Ven and Mason, and
Zeichner and Schowalter showed the effect of hy-
drodynamic interaction, interparticle attraction and
electrostatic repulsion. Zeichner and Schowalter de-
termined the stability criteria for both shearing and
extensional flows and showedthat the results for these
two flows are superposable by a suitable transfor-
mation of the flow strength axis. Higashitani et al.6)
made an approximate calculation of the collision
efficiency for unequal-size particles in a simple shear
flow by using the asymptotic trajectory equations for
regions where particle pairs are either very close to
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each other or very far apart. Recently Davis4) calcu-
lated the collision efficiency for unequal-size particles
by using Batchelor's expression2) for the relative
velocity of two spheres. He did not consider the
electrostatic repulsive force. He made a comparison
between the effects of Van der Waals forces and
Maxwell slip in promoting collision between aerosol
particles. Wacholder and Sather12) obtained formulae
that represent the velocity distribution of unequal-size
spherical particles moving under gravity through a
quiescent flow field. They were interested only in

determining the flow field and, therefore, they con-
sidered only the hydrodynamic interaction.
Wehave expanded this in the present project to a

study of the trajectories of unequal-size particles
where the factors of hydrodynamic interaction, inter-
particle attraction, and electrostatic repulsion forces
are all taken into account. The principal objective
of this study is to find the mechanism of the collision
of unequal-size particles moving in a quiescent vis-
cous liquid and to present the collision efficiencies as
they are related to the coagulation process. In those
cases where the effect of electrostatic repulsion be-
comes important, specific criteria for the stability of
dispersions are presented.

1. Hydrodynamic Interaction and Particle Trajectory
Equ ation

The following assumptions are made in the present
calculation: first, that the fluid is incompressible and
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Newtonian and that it is unbounded and at rest far
from the particles; also that the inertial force of the
fluid is negligibly small in comparison with the vis-
cous force; and finally that the particle inertias are
negligibly small in comparison with the viscous and
pressure forces acting on them. Brownian motion of
particles is neglected. Figure 1 shows the coordinate
geometry of our calculation.
Under conditions of negligible particle inertia the

trajectory equations are given by equating the total
forces and couples exerted on the particles to zero.

Fitj+-naf(pp-pf)g+Fv+FR=O (1)

Since there are no external couples acting on the
particles, the hydrodynamic couple is

^=0 (2)

Equations (1) and (2) and Fig. 1 show that the

translational motion of the particles lies in the plane
of r and g and that the component of their rotational
velocities is only that about the direction normal to
the plane ofr and g.

Spielman10) derived the following relations and

goes on to give the series solutions for Ku K2, Xxand
x2.

Fl,r= -K\U\AhU2,r (3)

F2,r= ~K2"2,r+Vl.r (4)

O'Neill and Majumdar9' derived the following re-
lations and present the numerical values of/n, /12,

å å å ,g21 and#22.

Fue= -67r/ia1{/21(/?, r>1,e +/22(i?-1, iTV>2,s

+aJll(R, f)oh-aJ12{R-\ iTV>2} (5)

Fz,e= -6nfia2{f22(R, f)uue+f2l(R'\ R~lr)u2j

+a2f12(R, rK-ihfniR-1, R~lf)(o2} (6)

7\ = -8nj«i?{g21(R, F)uue+g22(R~", R"xr)u2i6

+a1g11(R, r)(o1 -a1g12(R-\ R-1r)cQ2} (7)

r2= -8ti^ -#22(/?, r>1>e-#21(/rS ;rV>2i(,

-a2012(i?, r>1 +tf20iiCR~ 1, *~ 1r>2} (8)

The Van der Waals -attractive force5' between two
particles is

dr 2a, dx

24a,

R(2x+R+l) R(2x+R+l)
(x2+Rx+x)2 ' (x2+Rx+x+R)2

2R(2x+R+ l)
(x2+Rx+x)(x2+Rx+R+x)
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Fig. 1. Coordinates.

where x=h/2a1 =h/2.

All the calculations reported here are those for an
unretarded case.
The electrostatic repulsive force7) is

Fr=-dE dEc

dr a. dh

R Kexp(-Kh)
1+jR l+exp(-*7i) '

(10)

Substituting Eqs. (3)-(10) into Eqs. (1) and (2), we
obtain the following:
for particle 1,

w)r - K'cos0+^K{L+NM
r-) =Vuesin6

dtJ1

for particle 2,

~) = - V2frcos6-~^T(fv+NRfR)
dt J2 NFp2

dO\ -

dtJ2

where

r=r/al , t=uUoot/a1 , VUr=6nfia1

(

1,0-\ T

å +
^12

R*_
V2 r=6niia1 1

12,

ViM
1 R3\
"+- .ft

^21
L22y

KXK2-k\

67iitxa1(X1 - A1)

K2+R3X.

K1K2-X1

L+R3Kl

K1K2-X\

K^K.-M

&%\iay(K2 - L)

fv=-j-Fv , fR=FR/4nsC2

NF=6nfialuuJA and NR=An&t1aJA.
(13)
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-J/ Rf2AR~\ R-^lRg^iR, f)g22(R~\ R-'r)

-R-2g2i2(R~1, R-1fj]

+^R3fiz(R, f) lR2f12(R, r-)g22(R-\ R~lf)

-R-tf^R-1, R-lf)g12(R-\ R-V")]

+1;R3fii(R-1, R-1rlUi2(R, rl

xR-lg12(R-\ R-lf)
-fll(R-l, R-1f)R~1gii(R, f!i]

r -L -JI f22(R-\ R-xf)

x iRgtl{R, f)g22(R-1, R-1f)
-R-2g212(R~1, R~1fi]

-^-Rf^iR, f) lR2f12(R, r)g22{R-\R-h-)

-MR~\ R-^R-'g^R-1, R~lm
+R2g22(R, f) tf12(R, f)

xg^iR-1, R-^-f^R-1, R-'fklUR, r)]

L22 =Jj -MR, r-) [Rgil(R, f)g22(R~\ R^f)

-R-2g212(R-\ R-lf)-]

+~/ll(JR, r)[*/ (*, f)g22(R-\ R-lf)

-R-2fl2(R-\ R~ir-)

xg12(R~\ R-'f)-]+-R-2f12(R-\ R~lf)

-fuiR-^ R-^^ fj]

in which

J=QJ2i(R~1, R-'f)-2QJ22(R-\ R-if)

~RUn(R, f)fn(R~l, R~1f)

+f12(R, r)g12(R-\ R-1f)]

-^2 lRf2i(R, r)f21(R-1, R-1r)

-f\2(R-\ R-'ffl lRgniR, r)g22(R~\ R'^l

-R-2gUR-i, R~1rn
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and

Q, =f11(R, r)g22(R-\ R-1r)
-2JR-3/ll(,R, f)/12(7?-1, JR-V-)

*gl2{R-\R-'r)

+R-3f212(R-\ R-1f)gn(R, r)

Q2 = Rfn(R, f)f12(R,ng^R-1, R~V")

+f12(R,r)f12(R~1,R-1r)]R-2gx2(R~i,R-1r)

+R-2f12(R-1,R-1r)fn(R-\ R-1F)gn(R, F)

Q3 = R2f\2{R, f)g22(R-\ R-'r)

xg^R-^R-'f)

+R-1f21(R-1, R-1f)gn(R, F)

Therefore, the dimensionless relative trajectory equa-
tions of two particles with relative velocity are

dr_/dr\ (dr
'W'y dfJ^ydF

= - Vrcos 9+^(fv+NRfR)

_d6 JdO\ _(dO\ -.p
r-^=r(--) -r -- =Fsm6dt \dt)1 VdtA

in which

Vr=K-Kr, Ve=Vltt-V2jBandP=

(15)

The equations fitting the values of Vr, Ve and /?

obtained by substituting Spielman's solutions for Ku
K2, Xx and A2, and by substituting O'Neill and
Majumdar's numerical values of/n,/12, à"à"à", g2i and

g22 into Eqs. (13) and (15) are shown in Appendix 1.
2. Calculated Results
2.1 Velocity distribution
Krcos0, VQ$m6 and /? in Eq. (14) are r, and 9

components of the relative velocity, and the resistance
correction coefficient of two approaching spherical
particles respectively under the combined action of
gravitational settling and hydrodynamic interaction.
The solid and the dotted lines in Fig. 2 show the series
solution of Vr and approximate values. Figure 3
shows the calculated results for the resistance cor-
rection coefficient, p. The truncated error of the series
solutions is 10~3. The differences between the approx-
imate results (dotted lines) a_nd the series solutions
(solid lines) are very small. Vr for two approaching
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Fig. 2. Dimensionless function of radial component hydro-
dynamic relative velocity. , series solution; , ap-
proximate values.

Fig. 3. Calculated resistance coefficient. , series so-
lution; , approximate values.

particles increases as the particle diameter ratio R
decreases when their separation is large. However, at
smaller separations the strong hydrodynamic interac-
tion changes the trend as shown in Fig. 2. For
example, the value of Vr for I*=0.7 at /^KT1 is

smaller than Vr for R=0A. However, it becomes
larger than Vr for R=0.l. When two particles are
approaching, the presence of a larger particle in-
creases the drag force on the smaller particle. The

drag increase for a larger particle due to the existence
of a smaller particle is much smaller. Ve decreases

with increasing R for h^0.2. However Ve for h <2 has
a maximumat the region 0.3^RS0.5. The results for
Ve are omitted here due to limited space.
2.2 Particle trajectory and collision efficiency
Based on the initial conditions, i.e. £=0, f=f0 and
6=8O, numerical integration of Eq. (14) using an

algorithm of Runge-Kutta-Merson gives the relative
trajectories of two spherical particles as they fall in a
quiescent fluid. Figure 4 shows some examples of
relative trajectories for 7VF= 105, A^ =0, and i?=0.5.
It can be seen that the larger particle movesdown-
ward relative to the smaller one, either colliding or

passing around and below it.
The trajectory equation Eq. (14) was solved, start-
VOL. 20 NO. 5 1987

Fig. 4. Particle relative trajectory.

ing with a large initial value of r0 and with different
initial values ofy0. The minimumdistance r between
the centers of the particles can be found for each
trajectory. By varying j0, a critical value yc was found
for which the minimumgap r~1-R was equal to
zero. The collision efficiency rj is then given by

ri=(ycl(l +R))2. (16)

When making the trajectory calculation to de-
termine the collision efficiency, one should choose the
initial value of r0 so large that the effect of hydro-
dynamic and interparticle forces essentially vanish.
Figure 5 shows the effect of r0 on rj. The calcu-
lated result indicates that the effect on rj is very small-
when r0 is larger than 40. Hence, we chose this as

the initial value of r0 and allowed it to decrease from
there.

Figure 6 shows the calculated results of collision
efficiency rj for NR=0. For smooth particles with

clean surfaces, the minimumseparation distance 5m is
typically 0.4nm. Thus if ^^l^m, 8m=0Anm/

l jum=4 x 10~4. As mentioned later from calculated
results, the critical separation distance 3C at which
collisions are bound to occur due to the attractive
force is actually much larger than 0.4nm by Van der
Waals attractive force. NF describes generally the

relation of the hydrodynamicforces to the attractive
force. For example, NF is defined as

4NF =- Tta\{pp - pf)glA

for gravitational settlig, and

NF=j nat(pp - pf)rcD2/A

for centrifugal settling. A small value ofNF indicates a
relative large Van der Waals attractive force com-
pared to the hydrodynamic force. As shown in Fig. 6,

a relatively large Van der Waals force with iVF=0.1
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Fig. 5. Calculated results of collision efficiency
(<5=4x l(T4 for NF=ao).

Fig. 6. Calculated results of collision efficiency. ,

NF=oo; #, calculated results by Davis.4)

makes v\ greater than unity. At this value ofNF, ax is
equal to 0.7//m for gravitational settling when the
density difference between particle and fluid is 0.1 g/
cm3 and A is 10~20 joule. On the other hand, when
7VF= 109, which means a1 =220/im for gravitational
settling, the curve is essentially identical with NF=
infinity. Under these conditions the effect of the
Van der Waals force on rj is negligibly small.
The value of rj depends upon the particle size ratio
R=a2/a1, that is, y\ increases as R increases to unity.
This is because the hydrodynamic resistance forces for
two approaching particles decreases and the Van der
Waals attractive force described in Eq. (9) increases.
The rate of change of the Van der Waals attractive
force with a change in R is smaller than that of the
hydrodynamic interaction force. This means that the
change of rj with R for small NF, where the Van der
Waals force is the dominant mechanism of particle
522

collisions, is muchsmaller than that occurring with a
large NF. Points marked à" in Fig. 6 are calculated
results by Davis.4) Our results are in good agreement
with Davis.
Figure 7 shows the effect ofS on rj at various values
of NF. The result indicates that as the Van der Waals
attractive force increases, thereby decreasing NF, Sc
increases rapidly. Sc for zero attractive force is equal
to (5m=O.4nm, so that 8C is usually much larger than
the minimum separation 3m. For example, 8C for NF =
105, which means a fairly small Van der Waals

attractive force, is 8 x 10"3 as shown in Fig. 7. When
ai is 10/mi, 5c=a18c is 80nm.

Our calculated results for rj are compared with

those (marked x in Fig. 8) obtained by Zeichner and
Schowalter13) for simple shear flow in Fig. 8. They
calculated rj for two equal-size spherical particles. Our
calculations are for two unequal spheres moving

under gravity through quiescent viscous flow, so rj for
equal-size particles (R=l) does not exist in our
calculation. In their calculation Zeichner and

Schowalter used r0= 10, and our results in Fig. 8 were
therefore calculated under the same initial condition
and extrapolated to give Zeichner and Schowalter's
values for rj shown by the points in the figure marked
x , which represent the place where R=1.

2.3 Stability of colloidal particles
Weused our method to determine the conditions

under which a suspension is completely stable for a
given flow strength. This means that the collision
efficiency is zero and that collisions do not occur for a
pair of unequal-size particles whose centers are align-
ed with each other in the direction of gravity. By
calculating the critical trajectory, which has the initial
conditions r= oo and 9=0, we were able to determine
the strength of the repulsive force, as measured by NR,
necessary to prohibit coagulation at various flow
strengths NF. Westarted by considering a pair of
unequal-size particles whose centerlines are aligned
with the direction of gravity. A large particle ap-
proaches a small one until repulsion stops it at the
point where the potential energy function is at a
minimum. After that the large particle rotates around
the small one until the large particle is directly below
the smaller one (i.e. 0=180°) at which location the

repulsion force is at a maximumbecause the gravity
force is now added to the interparticle repulsive force.
If the particles do not then separate, coagulation
occurs at a distance at which the separation between
particle surfaces is larger than the minimum sepa-
ration of 0.4nm. The doublet then forms a weakly
bound aggregate. When the interparticle attractive
force is larger or the repulsive force is smaller than in
the above case, the large particle collides with the
small one at the minimumseparation, i.e. 3m =0.4nm,
and rotates until 9= 180°. If the pair of particles does
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Fig. 7. rjvs.8.

Fig. 8. r\vs.R.

not separate there, coagulation occurs at the min-
imumseparation and the doublet forms a strongly
bound aggregate.

The critical condition for the strongly bounded
coagulation is obtained by substituting r=\ +R+
Sm, 0=180° and dr/df=0 into Eq. (14). If the min-
imumseparation distance Sm and the diameter of
larger particle a1 are 0.4nm and 10/mi respectively,
Sm is 4x 10~5. Further substitution of 0=180°, K=
104 and dr/dF=0 into Eq. (14) gives
NF= - (fv+ NRfR)/(VrP) (17)

iVK=2.60xl04-7.75xl0~6iVF for R=0.l

7V^=2.60xl04-5.07xl0-5^F for R=0.5 (18)

jVk=2.60x104-1.61x10-5A^f for R=0.9

Whendr/dfdoes not vanish at some separation that is
larger than the minimumseparation 3m and when NR
is smaller than the value of Eq. (18), the colloidal
particles form strongly bounded aggregates.
The results of numerical integration of the trajec-
tory equations are presented as a stability plane
NR-NF,with the ratio of particle radii R as a
parameter. In all cases the stability plane was divided
into five regions, as shown in Fig. 9. In region Ia,
where strongly bound aggregation with minimum
separation is expected, the effect of the repulsive force
VOL. 20 NO. 5 1987

Fig. 9. Stability plane for #=0.1. is:=104 and
<L=4x 1(T5.

on the collision efficiency is negligibly small. On the

other hand, in region Ib where strongly bound aggre-
gation with minimumseparation is also expected,
there is a slight dependency of the repulsive potential

energy on the collision efficiency. In region II weakly
bound aggregation occurs. In region III, dr/df for
6= 0 vanishes at the minimumin the potential energy
function. However, the larger particle still rotates

around the smaller one and separates. Therefore, the
suspension is also stable in this region. In region IV,
whena pair of unequal-size particles whose center-
lines aligned with the direction of gravity (0=0)

approach each other, they collide at the minimum
separation distance. However, the larger particle in
the pair rotates around the smaller one and then

separates. Therefore there should be no flocculation
and the suspension is stable to flow in this region.
Considering centrifugal force as a variable external
force which causes a relative velocity between
unequal-size particles, NF increases with increasing
rotation speed. On the other hand, JV^ remains con-
stant since it is independent of external force, as seen
in Eq. (13). For interpretation of the results in the
stability plane, consider a situation in which doublets
are present in a suspension for NR= 104 as in Fig. 9. If
the rotation speed is gradually increased the aggregate
will first deflocculate out of the weakly bound state
and then reflocculate into strongly bound aggregates.
At a higher rotation speed aggregates will deflocculate
from then minimumseparation distance.
Consider another situation in which NRis gradually
decreased by adding a coagulant under conditions
where K and Smare constant. If we set NF=5x 106
and ifNR is decreased from its value of 105 in Fig. 9,
colloidal particles will first flocculate into weakly
bound aggregate and then reflocculate into strongly

bound aggregate.
Experiments should be done to verify the calculated
results of stability criteria, since there are no experi-
mental data available for comparison.

When interparticle energy curve (EV+ER) is a
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linearly increasing function, the resultant interparticle
force is attractive at any separation distance, and the
colloidal particles then form strongly bound ag-

gregates. This case corresponds to interparticle poten-
tial energy in regions Ia and Ib. When the potential

energy function has a minimumvalue whose distance
from the particle surface is greater than the minimum
distance Sm (i.e. 0.4nm), colloidal particles form
weakly bound aggregates. This case corresponds to
the interparticle potential energy in region II at the

configuration where the larger particle is below the
smaller one. The potential energy function in the
shaded area in Fig. 9 has both a primary and a

secondary minimum.In this region colloidal particles
usually form weakly bound aggregates at the second-
ary minimum. If the interparticle potential energy
curve is continually decreasing, the resultant interpar-
ticle force is repulsive for any separation distance and
the suspension is then stable. This case corresponds to
the interparticle potential energies in regions III and
IV of Fig. 9 in the configuration where the larger
particle is directly below the smaller one.

Figure 10 shows the effect of repulsive potential
energy on the collision efficiency in region Ib. The
results indicate that in this region there is only a
minor dependency on the collision efficiency. Since
the repulsive potential energy between particles is
short-range, it determines whether the collision ef-
ficiency is zero or larger than zero, but it does not
affect the magnitude of the collision efficiency.

Appendix 1

The fitting equations of Vr, Ve, and p used in the particle
trajectory calculation are

+2 f 2 r3 +f6

for h^0.2 (Al)

where

qx= -0.00677IT1-01

q2=0A93R3 -0J43R2 +0.225R-0.04H

q3=4.83R3~6.94R2+1.32^+0.0146 ,

fr=(0.434JR3 - 1.35^2+0.660^+0.248)^-2 18(/?-° '78O)5+o-837>

for 0.04^/^0.2 (A2)
F,=(1.78i?3 -4.61iR2+2.95i?-0.102)/r(O-o8 J?03+o-9)

for /z^0.04 (A3)

, 3 (R3-l) 1 (R3-l)(R2+l) (2R2-l.S6R+0.2)
VQ=\-R2+ + + 1

4 r 4 f3 f6

for /^0.02 (A4)

V-- -V
y= e\h-0.02 (T) ffiO.375.R2-o.478J?+o.2o8) y

6 002(O"375i?2~°"478jR+o"2O8) (T)

for h^0.02 (A5)
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Fig. 10. Effect of repulsive potential energy on collision
efficiencies in Region Ib. £= 104.

where V(T) calculated by Wacholder and Sather12) is the tangential
velocity due to the rigid body rotation of two touching spheres. The
fitting equation of V{T) is

V(T)= -0.456#3+0.257#2+0.206#-0.0096. (A6)

The fitting equations of /? are
£=0.0123/T0-97 for #=0.1 and£=10~2

P=0M2h~°-91 for #=0.5and/T^lO"2 (A7)

P=0.330h~091 for #=0.9and/^lO"2

Other equations for jS used in the calculation are omitted to save
space. The fitting errors are within 1 %.

Nomenclatur e
A = Hamakerconstant [J]

a^ a2 = radii of larger and smaller particles [/im]
at = radius of particle i [/xm]

ER, Ev = repulsive and attractive potential energies [J]
Fitj = j component of hydrodynamic force exerted

on particle / [N]
=interparticle repulsive and attractive forces [N]

= resistance coefficients presented by O'Neill
and Majumdar9) [-]

f&fv = dimensionless interparticle repulsive and
attractive forces defined by Eq. (1 3) [-]

g - gravitational acceleration [m/s2]

h = r-{al +a2), separation between particle
su rface s [/mi]

h = h/a, [-]

/? LtjQt = resistance coefficient functions [-]
K = axK,double-layer thickness parameter [-]

Kl,K2,Xl,X2 = Spielman's resistance coefficient10) [-]
NF = 6nixa\ul JA, dimensionless parameter

describing the relative importance of
hydrodynamic force to attractive force [-]

A^K = AnE^a^A, dimensionless parameter describing
the relative importance of repulsive forces to
attractive force [-]

R - a2/alt ratio of smaller to larger particle radii [-]
r, r = separation distance between particle centers,

radial coordinate and its dimensionless
form [m], [-]

r0 = dimensionless initial value of r for trajectory
calculation [m]

T{ = hydrodynamic couple about Ot shown
in Fig. 1 [N]

t, f = time and its dimensionless form [s], [-]
m1>00 = 2(pp- pf)gall9fi, Stokes settling velocity

of larger particle [m/s]
ui,n ut,e = radial and tangential velocity components
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of particle i [m/s] pf, pp = fluid and particle densities
dimensionless function ofj component
hydrodynamic velocity of particle / [-1
dimensionless function of j component
hydrodynamic relative velocity

dimensionless function of tangential velocity
due to the rigid-body rotation
of two touching spheres
dimensionless initial value for trajectory
calculation

[-]

P1P2KP1 +ft>)> resistance coefficient [-]
resistance coefficients defined by Eq. (13) [-]
particle surface separation distance under
which we suppose that collisions occur and
its dimensionless form
maximumparticle surface separation distance
under which collisions are bound to occur and
its dimensionless form
minimumseparation distance=0.4nm and
its dimensionless form

e

9

n

K

c

dielectric constant
angular spherical coordinate
collision efficiency defined by Eq. (16)
reciprocal Debye length
viscosity
C-potential

[r'm-1]

[-]
[-]

[kg/m -s]

[J]

CO; = angular velocity of particle i

[kg/m3]

r1]
= angular velocity of particle 1 due to external

centrifugal force Is"1]
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NUMERICAL ANALYSIS OF TERNARY MASS TRANSFER
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Numerical approaches to ternary mass transfer in a laminar boundarylayer were madeby use of a laminar
boundary layer theory considering the effects of interactions between diffusion fluxes and of mass injection or
suction.

The effects of both the driving force ratios and the multicomponent Schmidt numbers on the concentration
profiles and the diffusion fluxes are discussed. A new correlation is proposed for the effect of the interactions
between the diffusion fluxes under the condition of low mass flux and of zero tangential surface velocity, which is a
function of the driving force ratios and the multicomponent Schmidt numbers. The possibih'ty of a reverse diffusion
was also shownunder the samecondition. Someexamples of numerical analysis are presented for the effect of mass
injection or suction and of the tangential surface velocity on the diffusion fluxes.

Introduction

The phenomenonof multicomponent mass transfer
under flow conditions is a very complicated one, in
which mass flux at the interface has some effect on the
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velocity, temperature and concentration profiles near
the interface and interactions between diffusion fluxes
of different species take place. Although some theo-retical and experimental approaches2'3'10~12'14~17)

to multicomponent mass transfer under stationary
conditions have been made, few approaches under
the flow conditions have been reported.
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