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Numerical analysis of the drag coefficients and the diffusion fluxes of two coaxially arranged spheres was made
by use of a finite difference method with bipolar coordinate system for Rep= l -30, L/DA=1.50-9.99 and
Sc = 1.0. The present numerical data were compared with existing numerical and experimental data and showed
good agreement. Newcorrelations for the effect of the distance between two spheres on the drag coefficients and the
diffusion fluxes of the two spheres were proposed. Measurements of rates of evaporation of a pendant water drop in
the presence of a coaxially arranged inert solid sphere into dry air were made for Rep=30 and the data were
compared with numerical data.

Introduction

Motion, heat and mass transfer of two adjacent
liquid drops are fundamental problems for the study
of transport phenomena in spray systems, such as
spray drying, quenching or combustion of liquid fuel.
Although many theoretical or experimental ap-
proaches to drag coefficients and heat and mass
transfer of a single drop have been made in recent
decades, relatively few works are knownthat deal
with two adjacent drops. Some theoretical ap-
proaches to this problem have been made recently,
but most are concerned with those in the low
Reynolds number range1'14'15* or those for quiescent
flujd 7,9,ll,12,16) Few W()rks except that ofTaj et al 15)
deal with the intermediate Reynolds number range,
which is important for practical application.
In our previous paper2) an experimental approach
was made to the effect of an adjacent solid sphere on
the rates of evaporation of a volatile pendant drop in
the intermediate Reynolds number range. The pur-

pose of the present work is to makea theoretical
approach to the drag coefficients and the rates of mass
transfer of coaxially arranged solid spheres of the
same diameter for the low-to-intermediate Reynolds
numberrange and to compare it with observed data.
1. Numerical Analysis
1.1 Governing equations
Figure 1 shows the bipolar grid system6) employed
in the present calculation, where RAand RBare the
radii of the two solid spheres. The direction of free

stream is parallel to the axis connecting the center of
Received October 4, 1986. Correspondence concerning this article should be ad-
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the two spheres.
The Navier-Stokes equation and the diffusion

equation for steady, incompressible, axisymmetric
flow of constant physical properties in terms of
dimensionless stream function, \j/, in bipolar coor-

dinates (rj, g) can be written as:
à" */ u n (W d W

sine ' (coshrj-cos£) à"I-z- '-rz-
drj d£ d£ drj

(coshrj-cos ^)2T72 /
sin2£

±EW (1)

where

(1-cos£à"coshrj) d

sin £ d£
d2 ., 5

~2+sinhf/ à"-
£2=(coshrj-cos <^) *

+(cosh*/-cos£) à" ^2+sinhf/ à" -5-
a 21

+(C0Sh ^-COS £) à" -r-r (2)

Fig. 1. Bipolar grid system.
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and

# d0c
1drj dl d^ drj RecSc

+ cos£coshrj-1 d9c
(coshrj-cos <f)2 d£,

sin £
coshrj-cos £

sin£sinhr\ d6c
(coshy\~cos£)2 drj

sin £ a2ec
cosh??-cos£ drj2

(3)

The diameters of the two spheres and the focus of
the bipolar coordinates can be expressed in terms of
bipolar coordinates as follows:

DA=2c/ \ sinh riA \ (4)
DB=2c/ \ sinhriB\ (5)
c=L/(l/|tanh^|+l/|tanh^|) (6)

The dimensionless orthogonal coordinates y\ and £
can be expressed in terms of ordinary rectangular
coordinates {X, Y) as follows:

X-c sinh *//(cosh rj -cos £) (7)
Y= c sin £/(cosh rj -cos £) (8)

All terms in Eqs. (l)-(3) have been made in dimen-
sionless form by the following relations:

E2=c2E'2

Re =cUJv

C=(cosh y\-cos £) - E2ij//sm i

Outer boundary X=RX
\jj = sin2£/2(cosh r\ -cos £)2

0C=O

The outer boundary of the grid system, R^, is taken
as three times the dimensionless distance between the
front stagnation point of the front sphere and the rear
stagnation of the rear sphere,

R~=
R'm 3(RA+RB+L)

=6(cosh ^+ l)/|sinh f7j (13)

according to a suggestion by Tal et al.15)
1.2 Method of calculation

Equations (1), (3) and (ll) with (12) were solved
numerically by a finite difference method with re-

laxation technique.13) The finite difference form of
Equations (1), (1 1) and (3) are shown in the Appendix.

The optimum relaxation coefficients for the cal-
culaion of the Navier-Stokes equation and the dif-
fusion equation were chosen by a trial-and-error

method for each sphere spacing and Reynolds num-
(9c) ber. The initial values for the stream functions were
/q ix calculated from an analytical solution under creeping

flow condition.14)
The relation between Rec and drop Reynolds num-

ber of the front sphere is given by the following
equation:

*e-Wv=^r^ (10)

Equation (1), a fourth-order partial differential
equation, can be reduced to two simultaneous second-
order equations by introducing the dimensionless
vorticity, 4, as follows:

E2ip=£sin £/(coshr\-cos£) (ll)
The boundary conditions for Eqs. (1), (3) and (ll) are
given by:

f=0 : *A=0 (12a)

C=0 (12b)

dOc/dt=O (12c)
£=k : xl/=0 (12d)

C=0 (12e)

dOM=O (12f)
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The calculation of the stream function was made
until either of the following convergence criteria was
satisfied.

Vu 1-^.! <10
-6

<10"

The calculation of the diffusion equation was made
until either of the following convergence criteria was
satisfied.

|0?.+1-#. |<£2

where
8l=l(T5-l(r6 and 82=KT6-1(T7 (18)

Ranges ofvariables for the calculation are shown in
Table 1.
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Table 1. Ranges of variables for the present calculation

Rep L/DA ScMNAn ^ nA

0

1.50 1.0 14.0 81 61 0.024 tc/60 -0
2.00 1.0 ll.0 81 61 0.033 tt/60 -1
4.00 1.0 8.0 81 61 0.052 tt/60 -2
5.99 1.0 7.0 81 61 0.062 tt/60 -2
9.99 1.0 6.0 81 61 0.075 tt/60 -2

1.50 1.0 14.0 81 61 0.024 tt/60 -0
2.00 1.0 ll.0 81 61 0.033 tt/60 -1
4.00 1.0 8.0 81 61 0.052 tc/60 -2
5.99 1.0 7.0 81 61 0.062 tc/60 -2
9.99 1.0 6.0 81 61 0.075 tt/60 -2

1.50 1.0 14.0 81 61 0.024 tt/60 -0
2.00 1.0 ll.0 81 61 0.033 tc/60 -1
4.00 1.0 8.0 81 61 0.052 ?r/60 -2
5.99 1.0 7.0 81 61 0.062 tt/60 -2
9.99 1.0 6.0 81 61 0.075 tt/60 -2

1.50 1.0 14.0 101 61 0.019 tt/60 -0
4.00 1.0 8.0 101 61 0.041 tt/60 -2
9.99 1.0 6.0 101 61 0.060 tt/60 -2

962
317

063

477

992

962

317

063

477

992

063

477

992

1.3 Calculation of drag coefficients and diffusion
fluxes

The pressure distributions on the surface of the
spheres can be calculated from the surface vorticities
by the following equation.
Front spheres:

PA=1+
Rer *L*

Rear sphere:

C sinh r\A
coshY\A-cos £

p -Pr»-r»=^-«=« Re,

+

Re^

d£ (19)

8idt,
z=*

C sinh rj
cosh rjB-cos £ n=nB

d£ (20)

The form drag coefficients of the spheres can be
calculated from the surface pressure distributions and
the surface vorticities by the following equations.
Front sphere:

CDPA=2 |sinh nA\2

Rear sphere:

CDPB=-2\smh

PAsin £(cos £coshr\A- 1)
(cosh rjA-cos £)3

di

(21)

nB\2 PBsin £(cos ^coshrjB- 1)
(cosh%-cos 03 dt

(22)
The friction drag coefficients of the spheres can be

calculated from the surface vorticities by the follow-
ing equations.
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Front sphere:

Cd fa- ~

X

Rear sphere:

DFB

4|sinh ^|2sinh ^
Re,

sin2 £
(cosh rjA -cos £)3

4|sinh ^B|2sinh ^B
Re,

sin2 £
(cosh rjB -cos £)3

d!t (23)

(24)

Total drag coefficients can be calculated by the fol-

lowing equations:
CD = CDP+ CDF (25)

The local diffusion fluxes on the surface of the
spheres can be calculated from the concentration

profiles by usevof the following equations.
Front sphere:

\(1-<»J=-
2(cosht]A-cos£) d6

Isinh t].dn

Rear sphere:

Shn (l-cos)= - 2(cosh?7ij-cos £) dOc
|sinh t]B\dr,

(27)

The average diffusion fluxes over the surface of the
spheres can be calculated as follows.
Front sphere:

ShA(l - cos)= - \sinh rjA\

sin E,d6.

coshrjA-cos£ drj

Rear sphere:

ShB{l - cos)= - |sinh rjB\

sin <30,

coshrjB-cos£ d*7

di

d£

(29)

Calculations were made with a HITAC M-280H
computer. The CPU time for calculation of the
Navier-Stokes equation and the diffusion equation
were about 120min. and 90min., respectively.

2. Drag Coefficients of Two Coaxially Arranged
Solid Spheres

2.1 Drag coefficients of front sphere for the case of
large coaxial distance

The drag coefficients of the front sphere will ap-
proach those for single spheres if the distances be-
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tween the two spheres become large. To confirm the
validity of the present calculation the drag coefficients
of the front sphere at L/DA = 9.99 were calculated and
compared with those for single spheres. Figure 2
shows the results of the comparison. The solid line in
the figure is the well-known Lapple-Shepherd cor-

relation^ for single solid spheres and the dot-dash line
is the one by Clift et ai5) Good agreement between the
present calculation and the empirical correlation for
single spheres is observed.
The front stagnation pressures of the front sphere
also showed good agreement with those for single
solid sphere.3) These facts may indicate the validity of
the present calculation.
2.2 Flow field around two adjacent solid spheres
Figures 3(a) and (b) show the stream lines around
two coaxially arranged solid spheres for the case
where the distance between the two spheres is quite
small (L/DA = 1.5) but at different Reynolds numbers,
Rep~ \ and 30, respectively. For the low Reynolds
number range (Figure 3a) the stream lines are almost
symmetric with respect to the median point connect-
ing the two spheres. But for intermediate Reynolds
number range (Figure 3b), separation of flow is
observed in the region between the two spheres and
stream lines are not symmetrical.

The stream lines for the case of large distances
between the two spheres showed similar profiles to
those for single spheres.
Figure 4 shows an example of local distributions of
the surface pressures of the front (dotted lines) and
the rear (solid lines) spheres for various LjDA and at
Rep= l.O. The figure indicates that the surface pres-
sures of the front sphere are little affected by the
presence of the rear sphere for the upper-half region
and only a mild effect is observed in the lower-half
region if the distances between the spheres becomes
small. But for the rear sphere the effect becomes much
more considerable as L/DA increases.
2.3 Form-, friction- and total-drag coefficients of the
front and the rear spheres
Figure 5 shows the effect of distances between the
two spheres on the form drag coefficients of the front
and the rear spheres. The ordinates are the form drag
coefficients normalized by those for single spheres.

The abscissas are the dimensionless distances between
the two spheres. For the front sphere the effect of
L/DAon the form drag coefficients is less considerable
as the Reynolds number increases but for the rear
sphere the effect becomes much more considerable as
the Reynolds number increases. An explanation for
this is that for the front sphere the surface pressure is
only affected in the lower-half region of the front

sphere by the presence of the rear sphere but for the
rear sphere the surface pressure in the upper half is
muchaffected by the presence of the front sphere and
290

Fig. 2. Dragcoefficients offront sphere for the case of large
coaxial distance and comparison with those for single sphere.

Fig. 3a. Streamlines around two coaxial spheres at Rep=
1.0 and L/DA=1.50.

Fig. 3b. Streamlines around twocoaxial spheres at Rep=30
and L/DA= \.50.

Fig. 4. Local distribution of surface pressure of front and
rear spheres at Rep= \.O.
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Fig. 5. Form drag coefficients of front and rear spheres.

the effect becomes considerable as the Reynolds num-
ber increases.
Figure 6 shows the effect of distances between the

two spheres on the friction drag coefficients. The
ordinates are the dimensionless friction drag coef-
ficients normalized by those for the single sphere. A
similar tendency to that for the form drag coefficients
was observed.

Figure 7 shows the effect of the distances between
the two spheres on the total drag coefficients of the
front and the rear spheres. The ordinates are the total
drag coefficients of the front and the rear sphere
normalized by those for single spheres. In the figure
numerical solutions by Tal et al.15) at Rep=40 are also
shownfor comparison.
All the numerical data for the total drag coefficients

of the front and the rear spheres obtained by the
present calculation were successfully correlated by the
following equations.
Front sphere:

_^L = _H (30)

" L0+a32(^)
Rear sphere:

cD L2 on
7^ -C /t\-0.90å Rep006') V '

Cd0 0.53^J J-JR#31+1.0

with maximumdeviation less than 5%. The ranges of
the variables for the correlations are:

Rep= 1.0-30
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Fig. 6. Friction drag coefficients of front and rear spheres.

Fig. 7. Total drag coefficients of front and rear spheres.

L/DA= 1.5-9.99

RJRB= 1.0

The solid lines in Fig. 7 represent the correla-
tion of the effect of the distance between the two
spheres on the total drag coefficients.

3. Mass Transfer for Two Coaxially Arranged Solid
Spheres
3.1 Local distribution of the diffusion fluxes
Figure 8(a) shows local distributions of the surface
diffusion fluxes of the front and the rear sphere at
Rep= 1. The ordinates are the dimensionless diffusion
fluxes normalized by those at the front stagnation
point for the single spheres.4) For the front sphere the
diffusion fluxes in the lower-half region are slightly

affected by the presence of the rear sphere, but for the
rear sphere the diffusion fluxes are much affected by
the presence of the front sphere in the upper-half
region, which takes a major role in mass transfer in
single spheres, and the effect is considerable as the
distances between the two spheres becomes small. A
similar tendency is observed for those at Rep=30 as
shown in Fig. 8(b).
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Fig. 8a. Local distribution of diffusion fluxes of front and
rear spheres at Rep=1.0.

Fig. 8b. Local distribution of diffusion fluxes of front and
rear spheres at Re =30.

3.2 Average diffusion fluxes and correlation for the

effect of two adjacent evaporating drops
Figure 9 shows the effect of the distances between
the two spheres on the average diffusion fluxes of the
front and the rear sphere. The ordinates are the
average diffusion fluxes normalized by those for the
single sphere.4) For the front sphere the effect ofL/DA
is rather mild and the diffusion fluxes approach those
for the single sphere as the Reynolds number in-
creases. For the rear sphere the effect becomes much
more considerable as Reynolds number increases. An
explanation for this may well be seen from Figs. 8(a)
and (b), where for the front sphere local fluxes in the
lower-half region are slightly affected by the presence
of the rear sphere whereas for the rear sphere the local
fluxes in the upper-half region, which takes a major
part in mass transfer in the single sphere, are much
affected by the presence of the front sphere.
The present numerical data are well correlated by
the following equations.
Front sphere:
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Fig. 9. Average diffusion fluxes of front and rear spheres.

Sh(l - cos) 1.0

Rear sphere:

Sh(l - cos) 1.0(32)

(33)

with maximumdeviation less than 3%. The ranges of
variables for the correlations are:

L/DA= 1.5-9.99

Rep= 1.0-30

Sc=l.O

RA/RB= l.O

The solid lines in Fig. 9 represent the correlation of
the effect of the distance between the two spheres on
the diffusion fluxes.
3.3 Comparison of numerical data with observed data
for evaporation of a pendant water drop
An exact comparison of the present numerical data

with observed data is rather difficult because of
technical difficulties in measuring rates of evaporation
of two coaxially arranged evaporating drops. As for a
rough comparison, evaporation of a pendant water
drop by air for the case with a coaxially arranged
solid sphere in front of an evaporating drop at
Rep=30 with the same apparatus used in our previous
work2) was carried out and compared with the present
numerical data.
Figure 10 shows the results of the comparison. The

solid line in the figure represents the prediction by Eq.
(33) at Rep=30 and the solid circle is the numerical
solution for the diffusion flux of the rear sphere be-
hind the coaxially arranged inert solid sphere (with-
out mass flux) at Rep=30. Good agreement be-
tween these is observed. For comparison, an empirical
correlation for the intermediate Reynolds number
range (Rep=53-370) by the authors,2) an empirical

correlation by Miura et al.,10) numerical solutions at
Rep=40 by Tal et al.15) and numerical solutions by
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Fig. 10. Effect of distance between two spheres on diffusion
fluxes of front and rear spheres; comparison with observed

data at Rep=30.

Aminzadehet al.l) are also shown in the figure.
Considering the fact that the order of magnitude of
Reynolds number is less than 30 for spray drying, the
proposed correlations may well be applied to practical
use.

Conclusions

Numerical analysis for drag coefficients and mass
transfer of two coaxially arranged spheres was made
by use of a finite difference method with bipolar
coordinate system for Jfa?p= l-30, L/DA= \.5-9.99
and Sc= \ to give the following conclusions.

1) New correlations for the effect of distances
between the two spheres on the drag coefficients and
the diffusion fluxes of the front and the rear spheres
were proposed.2) The proposed correlation for the diffusion
fluxes of the rear sphere showedgood agreement with
the observed data for evaporation of a pendant water
drop by air.

A ppendix
Equations (1) and (1 1) can be further simplified by introducing
the following function:

C"sin£
G= (A-l)

(cosh t]-cos Q
Hence Eqs. (1) and (ll) are reduced to the following forms:

m d # dsin£ à"(coshrj-cos<f) à" à" à"-
\dri d£ d£ drj.

à"(cosh-f-cosO* G\ ±E2G (A.2)

sin2{ J Rec

E2il/ = G (A-3)

The finite difference forms of Eqs. (A-2), (A-3) and (3) are as

follows:

1 ((Ari)2 - (AQ2
iA?,= à" i

2(cosh»y-cos9 l{A^)2+(Ar]f

|~|2(cosh y\ -cos Q+ Ari sinh rj)
2(Arj)
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x Li j^ 1*1* *

j2(cosh rj -cos £)- Ay\ sinh rj}
+i w K>

f(2sin£-J£cosQcoshry-sin2£+dfj

+i w^ 1^+'
j(2sm £+.A£cos Qcoshri-sin2£-A£\+\ w^Ti rli-l

1 r-1w-cos£ 'J

cosh?/-cosf WJ (A"4)
2(cosh»/-cosf) (^^)2+(zl^)2

ff2(cosh^7-cos Q+Arjsinh 771
x Lt-w-H- -'

{2(cosh y\ -cos £)- Ar\ sinh 77]
5^ \GU

J

ti2s\n£-Al;cos £)coshri-sm2à¬+AO
+i 2(^)2 sin ^ iG?J+1
|(2sin^+A£cos f)coshrj-sin2£-A£+1 2(zlQ2 sin ^

i^ec(coshr\-cos£) (2lf/)(A0
8 sin ^ {AtfHAn)2

-(^m -^-iMGiVij-Gr-w)}

^cGf^ (zl^)2(zlQ2
+ sin2^ (zlQ2+(^)2

>?+ij-W-ij

»,-,]

{å 

x (cosh?7cosf-1)2(ZI^)
^L+i-^L-iji

2(A£) JJ

+sin<^sinhn{ ' \ (A-5)
2(zlg^k+i= (Jiy)2(2l{)2 fj 1 sinh^

2{(Arj)2+(AZ)2} Ll(Arj)2 2(Arj)(coshrj-cos£)

(cosh rj -cos £)RecSc
4(21»y)(JO sin £

{ 1 sinh»y
+i r+

à" (^å +i-^-i)K-i

l(J^)2 2(Jiy)(coshn-cos£)

(cosh rj -cos £)RecSc
4(Arj)(A0sm ^

(^j+i-^j-i)^.^
f 1 cos£coshf/-1

+1 r+

((A02 2(A0sin£(cosh17-cos{)

(cosh rj -cos £)RecSc

+1-

4(zl>7) (^ )sin £
1 cos £coshrj-1' (+i+ij-+i-iM.J+1

l(AQ1 2(A{)sin^(cosh^7-cosQ
(cosh?7 - cos £)RecSc } ~|

+ .,.,,.,å  ; à"Wmj-fc-ijfc,-. (A"6)
4(zl?7) (zl9 sin ^ J J

Nomenclature
CD = total drag coefficient [-]
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friction drag coefficient
form drag coefficient

focal length of bipolar coordinate system
diameter of front or rear sphere
binary diffusion coefficient
operater defined by Eq. (2)
distance between centers of two spheres
number of mesh points in the rj direction
number of mesh points in the £, direction
dimensionless pressure

Rec
**p

Sc
Sh

X
Y

rj
e
e

V

p

CO
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static pressure of free stream
radius of front or rear sphere
dimensionless distance defined
by Eq. (13)

dimensional distance from median point
connecting two spheres to outer boundary
Reynolds number defined by Eq. (9d)
Reynolds number (= A^x/V)
Schmidt number ( = v/0)
Sherwood number defined by

Eqs. (26), (27)

free stream velocity
x componentof rectangular coordinate
y component of rectangular coordinate

difference
allowable maximumerror in convergence

criterion
vorticity defined by Eq. (1 1)

bipolar coordinate, normal to £

angle from forward stagnation points
dimensionless concentration

( =(co-coy, )l(cos-(D^.))
kinematic viscosity of gas

bipolar coordinate, angle
density

dimensionless stream function
mass fraction

front sphere
rear sphere

front stagnation point
mesh point in n direction

[-]
[m]
[m]

[m2/s]
[-]
[m]
H
H

H
[Pa]
[ml

[m]
H
[-]

[-]
[m/s]

[m]
[m]

[-]
[-]
[-]

[rad]

[-]
[m2/s]

[rad]
[kg/m3]

[-]
H

J

s mesh point in £ directionsurface of sphere
free stream
local value in 6 direction
single sphere

(Superscript)
k = numberof iteration
n = numberof iteration
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