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Drop formation in uniform and non-uniform electric fields was studied theoretically and experimentally. In the
analyses, the electric field and the drop shape were calculated numerically by use of the boundary element method
and the finite element method, respectively.
It is found that the experimental maximumdrop volume in a uniform electric field can be predicted well by

analysis and that the experimental drop profile and the drop charge are in agreement with the calculated ones.
The theoretical values of the maximumdrop volume in a non-uniform electric field are found to agree with the

experimental results of previous workers.

Introduction

As it is of great importance to know the mechanism
of drop formation in an electrostatic field for the
design of electrostatic spray painting devices, high
speed printers and electrostatic liquid-liquid extrac-
tion apparatus, many experimental works3~6) have

been carried out.
Watanabe6) studied electrostatic drop formation

from a metal capillary in the air and found that the
drop shape depends on the electrical conductivity of
the drop.

Takamatsu et al?~5) investigated drop formation
in uniform and non-uniform electric fields for liquid-
gas and liquid-liquid systems and analyzed the drop
volume and the drop charge theoretically under the
assumption of a spherical drop.

Recently, Adornato et al.1] calculated the shape

and the stability of an electrostatically levitated drop
by use of the finite element method.
For drop formation in a uniform or non-uniform

electric field, however, there have been no reports
which determine the electrostatic field and the drop
shape simultaneously.
The aim of this work is to analyze theoretically the

electrostatic field and the drop shape by use of the
boundary element method7} and the finite element
method1>2) respectively, and to confirm experimen-
tally the validity of the theoretical analyses.
1. Theory

Drop formation in uniform and non-uniform elec-
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trie fields is considered here.
Figure l(a) shows the cylindrical coordinates for

the uniform electric field, where the upper plate is the
anode and the lower one is the cathode. For the non-
uniform field, one of the parallel plate electrodes is
replaced by a vertical nozzle as shown in Fig. l(b). It
is assumed that the liquid drop is a conductor and the
surface potential is the same as that of the anode, and
that the ambient fluid is an insulator.

The governing equation for the electric field is given
by the following Laplace equation,

rV=o (i)

The boundary conditions for the uniform electric
field are expressed by Eq. (2),
at anode plane (R^r'^r^, z/=0):

9 =(Po

at cathode plane (Orgr'^r^, z''=h')\
0'=O

at side wall (r'=r'w, Ogz'^A'):-
d<l>'/dn' = 0

at drop surface:

(2-1)

(2-2)

(2-3)

(2-4)

 For the non-uniform electric field, the boundary
conditions are given by Eq. (3),
 at nozzle surface (r'=R'a, z^rgz'rgO):

at cathode plane (Ofgr'^r^, z/=h/):
0'=O

(3-1)

(3-2)
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Fig. 1. Cylindrical coordinates.

 at upper wall (R'a^r''^r'w9 z'=z'J)\

          d^'/dn'^O       (3-3)

 at side wall (r'=r'w, z'w<zz''^h')\

          d(j)'/dn' = O       (3-4)

 at drop surface:

          <£'=0o        (3-5)

where 0' and dfy'jdn' are the electric potential and its
normal derivative respectively. Accordingly, the elec-
tric field around the drop is given by solving Eq. (1)
under the boundary conditions.
 As the outward electrostatic force acts on the drop
surface in the electric field, the drop is more elongated
than that in the absence of the field. The drop shape
can be obtained by solving the modified Young-
Laplace equation1} as follows.

     2H'a = Ap' + eo(d(l) '/dn')2/2    (4)

where the second term of the right-hand side cor-
responds to the electrostatic stress.
 The drop volume is given by Eq. (5), using the
spherical coordinates shown in Fig. 1.

      F=(2/3)tt f'3sinOdO     (5)
           Jo

 The boundary conditions are expressed as follows.

       df'/dO=O  at #=0    (6-1)

       f'=R'
a  at 9=n/2    (6-2)
 To obtain the electric field from Eqs. (1) and (2) or
(3), the boundary element method (B.E.M.)7) was

 Ittft

used. For the drop shape, the Galerkin finite element
method (F.E.M.)1} was applied to Eqs. (4)~(6). Figure

2 shows the discretization of the calculation domain.
The boundary element formulations and the finite
element formulations in dimensionless expressions are
described in Appendices 1 and 2, respectively.
The numerical calculations were carried out by use
of ACOS1000 of the Computer Center of Tohoku
University.

2. Experimental Apparatus and Procedure
Figure 3 shows the experimental apparatus, which

is almost the same as that ofTakamatsu et al.3) Two
brass parallel-plate electrodes (150mmx 150mm),
the upper one of which was connected to a D.C. High
Voltage (H.V.) generator and the other was ground-
ed, were used. Distilled water was fed from a micro-
feeder to the nozzle,set in the center of the upper elec-
trode, and single drops were formed. The inertial ef-
fect was negligible because of the slow rate of drop
formation; it was approximately 1 drop per 3min.
After D.C. high voltage (0-20kV) was applied, the
drop shape was photographed periodically. The drop
volumewas calculated from numerical integration of
the profile. Nozzles of 1-5mmO.D. were used and
the distance between the electrodes was 2.9cm or
4cm.

The charge of a drop falling through a hole in the
lower electrode was measured by an electrometer

connected to a Faraday cage.
The whole experimental system was set in an air
bath of298K.
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Fig. 2. Discretization of calculation domain

Fig. 3. Experimental apparatus.

3. Results and Discussion
3.1 Drop shape and maximumdrop volume in uniform

electric field
Figure 4 shows the effect of electric fields on the

drop shape for Bo= -0.543. The profiles on the left-
hand side show the calculated drop shapes2) of vari-
ous volume at Eq=0 and those on the right-hand
side are those at E^=3.53x 105V/m. The plotted

circles show the experimental results. Apparently, the
drop profiles in the electric field are elongated down-
ward by the electrostatic force, in comparison with
those in the absence of the electric field. The calcu-

lated profiles are found to agree well with the experi-
mental ones.

Figure 5 gives the contour lines of dimensionless
electric potential for V= 1.053 in Fig. 4(b), where the
interval of the contour lines around the drop is five
times as fine as that in the other region.

To obtain the maximum stable drop volume, a
stability analysis was carried out. According to the
bifurcation analysis1} of interface stability, the shape
stability changes only through the neutrally stable
state for a parameter value. This state corresponds to
either the bifurcation point to new shape families, or
the limit point at which no equilibrium shape exists
for parameter values larger than the critical value.
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Fig. 4. Effect of electric field on drop shape (Bo= -0.543).

Fig. 5. Contour lines of electric potential for Bo = -0.543,
£^=3.53x l05 V/m and V=1.053.

The system considered here has only the limit point
and this value is obtained by rewriting the equation

set for a newparameter in terms of which the family
of drop shape is single-valued, at least near the limit
point. In this work reference pressure difference k is
used as a new parameter, instead of dimensionless

drop volume V.
Figure 6 shows the stability analysis of the equilib-
rium shape. In each electric field strength E'o, Vtakes
the maximumvalue at the limit point. The broken
lines show the region of the unstable equilibrium
shape and no real shapes in this region exist. The
profiles shown by the broken lines in Fig. 4 cor-

respond to the unstable equilibrium drop shapes.
In Fig. 7, the experimental relations between the
maximumdrop volume F^ax and Eq for various

nozzle radii R'a are given. Apparently, V'mwi becomes
smaller as E'o becomeslarger. The experimental val-
ues are in good agreement with the theoretical pre-
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Fig. 6. Stability analysis of equilibrium drop shapes.

         Fig. 7. Effect ofE'o on Fmax.

dictions based on the stability analysis.
 Figure 8 shows the experimental relations between
the residual drop volume V'min which remains on the
nozzle after the fall of the drop, and E'o. V'
minincreases with Eq, but decreases rapidly beyond some
Eq, E'O ctiv and approaches zero. E'o crit becomes small-
er as the nozzle radius R'a becomes larger. It was
observed experimentally that the drop formed a long
liquid jet at the instant of falling when Eq was larger

than is o.crit..
3.2 Drop surface charge
 Figure 9 shows the effect of the electric field
strength on the drop surface charge Qf for R'
a=0.5
mm in the uniform electric field. Q' is calculated from
the following equation.

   2'= -e0 f (d<t>'/dn')dS'   (7)

 It is seen from the theoretical result that Q' takes a

540

Fig. 8. Experimental relations between Vmin and Eq.

Fig. 9. Effect ofE'o on drop surface charge Q'

maximumvalue at some Eq. The maximumvalue was
observed by Takamatsu et al.3) experimentally. This is
due to the reduction of the surface area because the
maximumdrop volume becomes smaller as E'o in-
creases. The theoretical results agree with our ex-
perimental results.

3.3 Drop formation in non-uniform electric field
Figure 10 shows the calculated relations between

the applied voltage <pQand the maximumdrop volume
Fmax for drop formation in a non-uniform electric
field, where one electrode is a vertical nozzle with
2.6mmO.D. and the other is a flat plate, as shown in
Fig. l(b), and the distance between them is 5cm. The
dotted line shows the calculated result in the uniform
electric field where the distance between the electrodes
is 5cm. The plots show the experimental results of

Takamatsu et al.5) and are in good agreement with the
theoretical prediction. Apparently, V^ax is consid-
erably small in comparison with the case in the
uniform electric field for the same applied voltage.
This is due to the larger electric field strength on the
drop surface, for the contour lines of the electric
potential around the drop are dense, as shown in Fig.
ll,
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Fig. 10. Effect of applied voltage on V'max in non-uniform
electric field.

Fig. ll. Contour lines of electric potential around drop for
F'=3.06 x 10~8 m3 in non-uniform electric field.

C onclusion
Drop formation in the electric field was studied

experimentally and theoretically and the following
conclusions were obtained.
The maximumdrop volume in uniform and non-
uniform electric fields decreases as the electric poten-

tial increases and can be predicted by a stability
analysis of the equilibrium drop shape.

The drop profiles and the charge of the drop
surface agree well with the calculations.

Appendix 1

To obtain the electric field, Eq. (1) is solved by use of the
boundary element method.7) Firstly, the weighted residual state-
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ment of Eq. (1) is integrated twice by part, in which the weighted
function, namely the fundamental function (/>*, must satisfy the

governing equation:

F20* +«S.=O (A-l)

where dt is the Dirac delta function. "/" is the source point
representing the singularity in the delta function and is set on the

boundary surface S of the domain to formulate the boundary
problem.

The boundary integral equation with 0* is expressed as follows.

f
c,-<^+ (j)(d(l)*/dn)dS

Js

= (d4>/dn)4>*dS (A-2)
Js

where <j> and d^/dn are electric potential and its normal derivative,
ci is the unknown coefficient, (j)t is potential in "/", and <j>* and

d(j)*jdn are given as follows.

<j>* = \/4nR (A-3)

d(/)*/dn = - (\/4nR2) (dR/dn) (A-4)

in which R is the distance between the source "/" and the
appropriate point.

To solve the above equations, the boundary surface S is dis-
cretized with the finite elements, as shown in Fig. 2, and the po-
tential and its normal derivative in each element are approximated
by Eqs. (A-5) and (A-6).

0 =2>A (A-5)

d(j)ldn = ^j(d(t)ldn)j (A-6)

where xj/j is the linear trial function. Substituting Eqs. (A-5) and (A-
6) into the above equations, the set of algebraic equations is
obtained. The potential and its normal derivative are given by
solving the equations.

Appendix 2

To solve Eq. (4) with Eqs. (5) and (6), the Galerkin finite element
method is used. In each finite element in Fig. 2, dimensionless radial
distance in spherical coordinates is approximated as follows, where
the characteristic length is the radius of nozzle R'a.

f^ Zx,/, (A-7)

Xi is the Hermite cubic trial function.
Substitution of Eq. (A-7) into the dimensionless form of Eq. (4)
gives the algebraic equations as follows.

Xl{2H+Bo-f- cose-K-(d(t)/dn)2/Sn}dS=0 (A-8)
*s

where Bo is the Bond number. To solve Eq. (A-8) for the drop

shape, the Newton-Raphson iterative method is used.

Nomenclature

Bo = Bond number (=(pQ-p)R'2glo) [-]
ci - unknowncoefficient [-]
Eq = electric field strength [V-m"1]
£o,crit. = critical electric field strength [V - m"1]

/' = radial distance in spherical coordinates [m]
/ = f'lK t-I
g = gravitational acceleration [m-s 2]

H' = mean curvature [m J]
H = H'R'a I-]
h' = distance between electrodes [m]

n' = normal distance from surface [m]
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Ap
Q'

R

R'n

n'\R 'a
pressure difference across drop surface
drop surface charge
distance between source and observation
points
radius of nozzle

radial distance in cylindrical coordinates
r'lK

distance between center line and side wall
boundary area

S'\2%R?

drop volumeV'\2%R?

maximumdrop volume
residual drop volume

axial distance in cylindrical coordinates
2

2'

distance between nozzle tip and upper wall

permittivity in vacuum
polar angle in spherical coordinates

reference pressure difference
(= Ap'R 'J(T)

density of drop

r 1L J

[Pa]
[C]

r i

[m]
[m]
[-]
[m]

[m2]
H

[m3]
r IL J
[m3]
[m3]
[m]
[-]
[ml

[F-nT1]
[rad]

[-][kg-m-3]

ll^

density of surrounding fluid
surface tension

electric potential
electric potential on electrode and
drop surface

fundamental solution
trial function

[kg-m-3]

[mN-m"1]

[V]

[V]
[-]
[-]
[-]
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An operating control system for a class of combined batch/semi-continuous processes based on on-line scheduling
is proposed. The class of controlled plants is characterized by a series of units with limited intermediate storage and
statistical variabilities in processing time. The proposed system consists of a dynamical plant simulator and an
automatic scheduler. The simulator predicts the future state of the plant using the past plant record, the present
internal state of the plant and the temporal operating conditions. To makeoperation of the plant efficient and
smooth, the scheduler revises the operating conditions on the basis of the predicted state. A series of simulation
experiments has shownthat the system is effective in plant operation with uncertainties.

Introduction

The increasing variety of variants in products
and/or raw materials has enhanced the reconsider-
ation of batch units because of their inherent flexi-
bility. On the other hand, continuous units have
advantages over batch units in systematic design
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procedure and stability of operation. Therefore, the
introduction of combinedbatch/continuous processes
into the process industry is becoming of great interest.
However, there are very few studies on the operation
of these combined processes.3'4)

In actual operation of the plant, uncertainties
usually occur which affect the performance of the
whole plant. Operation of the plant which ignores
these uncertainties maycause unexpected results, as
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