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A set of differential equations describing the material balance of PSAoperated at periodic steady state was
expanded into a power series of small value of k ( = KAatJps) and the following solution was derived for the average

concentration of product C^ and its swing ACA1.
C^=C»>(1+X2Há"), JCA1-JlCgilf»>

in which

C%1=(1-V)/(1-WdIPa), V=(1"^i)/(l"EiUaIud)

M(1> = (1 -pDlpA)(l - E2)I(KJKD + uJuD)

\n E1 = - (KAamLluA)(l - uJuD)l(l + ^/^)

In E2 = - (KAamLluA)(KJKD + uJuD)Kl + KJKD)

and flr(2) is a function given in the text. Parameters KAa, L, m, /?, u and ps, respectively, are overall volumetric
mass transfer coefficient, column length, adsorption coefficient, pressure, superficial gas velocity and bulk den-
sity. Subscripts A and Z>, respectively, refer to adsorption and desorption steps. The present analysis holds when
l<2 and the term k2H{2) can be neglected when A<0.5.

Introduction

Pressure swing adsorption (PSA) has gained in-
creasing intetest in commercial application to gas
separation. Manyvariables are coupled complicatedly
in a PSA system and thus the prediction of perform-
ance cannot be made straightforwardly even when
the system is restricted to gas purification in which a
trace of a single adsorbate is removedfrom non-
adsorbable carrier gas. Earlier equilibrium theory has
been followed by a recent analysis based on a
dynamic model, which is more realistic in that the
finite rate of mass transfer is taken into account to
predict the profiles of the adsorbate concentration
and amount adsorbed. The recent development of the
dynamic model for gas purification is as follows.

Kawazoeand Kawai4) extended a breakthrough curve
in fixed bed to interpret the PSAseparation of 85Kr
from nitrogen. Mitchell and Shendalmann5) and
Carter and Wyszynski,1} respectively, interpreted their
experimental results for CO2removal from He and air
drying by numerical simulation based on the dynamic
model. Chihara and Suzuki2'3) solved numerically the
governing differential equations for both isothermal
and non-isothermal operations by the finite difference
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method and discussed effects of various parameters
on PSA performance. Suzuki7) has proposed a sim-
plified model based on the analogy to countercurrent
mass transfer. Raghavan, Hassan and Ruthven6) de-
veloped an orthogonal collocation methodto save
computation time and discussed the effect of axial

dispersion of gas.
The present work is also concerned with simulation

of PSAperformance based on such a dynamic model
as above2'3'6'7), but three points should be mentioned.
Firstly, all available analyses employ numerical
methods, which can yield a solution for any set of
parameters. However, they cannot give any guidance
in correlating the effects of variables, while analytical
solution automatically involves the interrelation be-
tween variables. In addition, an analytical solution is
handier for the estimation of performance in practice.
Thus the purpose of the present work is to propose an
analytical solution to PSAperformance in a simple
form. Secondly, PSAoperation finally reaches a
periodic steady state after an oscillating transient
period. The present work is, however, limited to the
periodic steady state because it is more important in
long-time operation in practice. Finally, the highest
possible performance can be obtained whenadsorp-
tion and desorption steps are alternately switched in
a short cycle time for frequent regeneration of ad-
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sorbent. The present analysis covers in particular
this high-performance operation.

1. Basic Equation and Its Expansion
Figure 1 shows schematically a dual-column ad-

sorber in which each columnis operated alternately
in a high-pressure (adsorption) step and a low-pres-
sure (desorption) step. This two-step mode of PSA
is considered, in this study because this modeis very
fundamental in PSA and is mathematically simple.
Other simplifications employed are: single-component
adsorption of dilute adsorbate, linear isotherm, linear
driving force with constant mass transfer coefficient,
plug flow of gas with constant superficial velocities
and isothermal operation.
The basic material balance is formulated in terms of
nomenclature shown in Fig. 1 as follows.

-uA-^-s-^=KAa(mcA-qA) (1)

Ps d-^f= KAa {mcA - qA) (2)

for adsorption step (0< t< tc)
dcD dcD

uD-^- s-^-= KDa (mcD - qD) (3)

Ps-^= KDd (mcD - qD) (4)

for desorption step (tc< t<2tc)
The second term in Eqs. (1) and (3), edc/dt, is

negligibly small relative to the first term since half-
cycle time tc is much greater than space time of gas
(L/u). Thus, sufficient initial and boundary conditions
for the periodic steady state lead to

Ca=cAo at *=° (5)

CD\t=iPDlPA)cA\t-tc at x=L (6)

qA=qD at t=tc (7)

qA\t=o=qD\t=2tc (8)

The initial condition Eq. (8) is equivalent to the
equation

KA [mcA-qA)dt+KD (mcD-qD)dt=0 (9)
Jo Jtc

which is obtained by summing Eqs. (2) and (4) after
integration.

Basic equations and auxiliary conditions are re-

written into nondimensional form as
dCA/dX= -NA(CA- QA) (1 0

dQA/dT =l(CA - QA) (20

dCD/dX= 3NA(CD - QD) (30
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Fig. 1. Nomenclature for material balance.

dQDldx =ydX(CD - QD) (40

CA=l at X=0 (50

CD\X=PCA\X-, at X=l (60

Qa=Qd at t=1 (70

(Q-e^T+y5 (CD-eD)^T=0 (9')

in terms of dimensionless variables defined by

C= c/cA0 (10)

Q =q/mCA0 (1 1)

*= '/'c (12)

Z=x/L (13)

N= KamL/u (14)
l=KAatc/p8 (15)

jS =^/^ (16)

y=uD/uA (17)

a=#D/^ (18)

The parameter /I can be written as 1=
KAamLcAOtc/mcAOpsL,which is a characteristic ratio
of cumulative amount adsorbed during half-cycle

time relative to the maximumamount adsorbed when
complete saturation is attained. Since the parameter 1
is a small quantity in a short cycle time operation, a
perturbation solution expanded around a small value
of X can be assumed as follows.

C=C(0)+2C(1)+22C(2)+à"à"à"+^C(f)+à" à"à" (19)

e=e(0)+^Q(i)+^g(2)+...+^e(o+... (20)

Whencoefficients of like powers of k are equated after
substituting Eqs. (19) and (20) into Eqs. (r)-^), the
basic equations and auxiliary conditions are expand-
ed as follows for perturbed functions C{i) and Q(i):

dc$/dx= -NA(cy- Q<2) (i ")
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8Q(2/dx=0 for /=0

=C(r1)-Qir1) for i^l

dCi§/dX= SNA(C<S - QiS)
dQ$/dT=O for i=0

=y<5(cri)-eri))

C(2=\ at X=\ for

C^=0 at X=\ for

Cg'^/JCS'l,^ at X=\

Q^=&S at t=1

(2")

for i^1

i=0,

i>\(3">

(4")

(5")

(6")

(7")

\ \c$-Q$)dT+yd f2(Cg>-ggyT=0 (9")
Jo Ji

For the new set of equations, i.e. Eqs. (l")-(9"),
mathematical difficulties are greatly reduced com-
pared to the original set, Eqs. (l')-^').

2. Solution of Differential Equations

2.1 Solution of the zeroth-order term (i=0)
Functions Q^ and Qd* are found to be inde-

pendent of time t from Eqs. (2") and (4"), and this
fact implies that CjJ} and C§} are also independent of
t. Integration of Eq. (9") yields

QT=Q^=Q(0)=(cT+ySC^)/(i+y^ (21)

and Eqs. (1") and (3") lead to
</C<?>A*?= -^{y5/(l +yS)}(CT~ C(D0)) (22)

dC<$>ldX= -NA{5/(1 +y$)}(C<?>-Cg>) (23)

by substituting Eq. (21). Solution of the above equa-
tions satisfying boundary conditions can easily be
obtained as

(1-C<«>)/(1-C<°>)=(1-£?)/(!-£.) (24)

(1-Cg>)/(1-C<°>)=(1-£f/y)/(l-£t) (25)

(1_e(o))/(1_C(o))=^_^£fy(1_£i) (26)

In the above equations, C^l is the concentration of
product gas and is given by

c«S=(i -*)/(! -to)

(1-El)

inE^ -NJiy- lW +yd)

in which

and

(27)

(28)

(29)

2.2 Solution of the first-order term (i=l)
Substituting Eqs. (24)-(26) into Eqs. (2//) and (4")

and integrating them yield
302

in which

QT=^(t-^JG^+A^

Ki =c2y«(i -/i)/(i +7^i

(30)

(31)

Thus, one may expect the following form of solution
of C<j> and Cg>:

Cr=KlS^-^+BT (34)

cy>=-K1^i)(r-y)+By) (35)

In Eqs. (30H35), functions A(i\ B(\\ B%\ S^ and
5(c* depend on X only and must be determined to
satisfy the following equations:

dS?/dX= - NA(Sy- E?)

dSVldX= 5NA(S<-h v- E*)
dBAi)/dX=-NA(B^-A^)

dB(l]ldX= dNA{B%» - A(1>)

B^-A^+yd(B^-Aw)=O

(36)

(37)

(38)

(39)

(40)

with boundary conditions
SW=0, B%=0 at X=0 (41)

S$=-pS$\ 5g>=j82?(i) at Z=l (42)

Solution of Eqs. (36)-{40) gives
5(i>= {(1 +7<5)/(l +<5)}£f(l -£f) (43)

5g>={(l +y<5)Ml +5)}£f[l - {l +^(l -£12)}£<31 -X)]
(44)

Aa)=Ba)=Ba)=0

lnE2= -NA(l +d)/(l +y5)

\nE3= -NAyd(l +S)/(l +yd)

in which

(45)

2.3 Solution of the second-order term (i=2)
A procedure similar to that above leads to solution

of the second-order term, of which details are given in
Appendix. For example, the solution of C(J} is derived
as

CT=\k2S^-,^^k2{BT-ST) (48)

in which

K2=K1(l +yS)/(\ +S) (49)
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Sy=E*[-NAXEl+{<S(y-l)/(l +S)}(\-E*)] (50)

B?=S(j>+{51(1 +6)}E?[y(1 -£?)

+{l +iS7(l -£2)}(£rX)-^)

-{(1-f$y)l(y-\)}(By-S*\)(\-EX) (51)

and
D(2) C(2)

%-l)£t[7(1 -£2)+{1+Wl -£2)}(1-£3)]
(i +5){y(i -/0-(i -|8y)£i}

(52)

3. Results and Discussion
In the preceding section, a perturbation solution

was derived to determine the local and instantaneous
behavior of four variables CA, CD, QA, QD of gas-

phase concentrations and amounts adsorbed in both
adsorption and desorption steps. The concentration
of product gas stream CAl is probably the most
important and thus the following discussion is de-
voted mainly to this variable CA1.
3.1 Result for product gas concentration CAl
Product gas concentration CAl can be evaluated by

equating X= l, i.e.
Qi =C<?{+AC2>+A3CS (53)

in which subscript 1 refers to X=l. The final result
for CAl up to the second-order term is summarized in
Table 1.

Time average concentration CA1 during the ad-

sorption step is given by
cA1=

Jo
CAldT=CW+XCW+PC% (54)

The term C{Al is independent oft as given by Eq. (27)
and thus

Cfl = C% (55)

The first-order term does not contribute to CAi
because of symmetric and linear change with t. The
second-order contribution C{Al leads to

C% =-tfi(Blll - S%) (56)

which is given by Eq. (52). The difference in con-
centration between that at the beginning of adsorp-
tion or desorption and that at the end is called con-
centration swing. The concentration swing in prod-
uct gas ACA1 is written as

'A\
T=0

ACA1-CA1 T=1-C

= AC*L\ +kAC<& +k1AC<ft (57)
Since C{A\ is independent of t and C{A\ is symmetric
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Table 1. Result of analysis

1) Instantaneous concentration in product gas stream CA1

=c<s[

1+/IM(1»(t--)+A2|m<2>(t2-t+-)+H(2)
2/ v. \ 6

(T-l)

in which

^=(1-^/(1-^) , (T-2)

r, =(V-Ei)/(l -E1/y) (T-3)

M^=KlS^/C^ ={yS(l -PW +m^ -E2) (T-4)

1 y<S2(y- l)(l -/O
Af«>=- ic2S<?>/C!?>

2(1 +d)2

(1 +S)NAE2

(T-5)

H«>=^(B<8 -S<?>)/C<?>

12(l +S)2{y(l -p)-(l -Py)E1}

2) Average concentration in product gas stream CA1
c4; = c!j>(i +A2//<2))

(T-6)

(T-7)

3) Amountof concentration swing in product gas stream ACA1
ACA1 =ICá"Má" (T-8)

about t=1/2, they do not contribute to ACA1.
Concentration swing consists of only the first-order

term and thus
AC«H=AC%l=0 (58), (59)

AC%=KlS% (60)

which is given by Eq. (43). Average concentration CAl
and concentration swing ACA1 for the product gas
stream are also summarized in Table 1.

Results for a symmetric case (y=l) may be ob-
tained straightforwardly by taking a limit as y->l.
Results for the purge gas concentration can be ob-
tained in a similar manner.
3.2 Time dependence of product gas concentration
cA1

As summarized in Table 1, the product gas con-
centration CA1consists of three contributions, each of
which has its own particular dependence on time, i.e.
a) the zeroth-order term C{Al is time-independent
b) the first-order term C{A\ is linear with time
c) the second-order term C{A\ is parabolic.

Figure 2 shows a typical example of each contribution
to product gas concentration CAl for the case of
P=0.1, y=5, 3=0.2 andNA= 10. The linearterm C(j]
always has a positive slope-given by K1Si})1 and it is a
point symmetric about (1/2, 0). The parabolic term
C{A\ is symmetric about t=1/2 and is concave or

convex depending on a combination of parameters.
Variation of product gas concentration CAl with time
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Fig. 2. Typical time dependence of perturbed terms of

zeroth, first and second orders.

is obtained by summing the three contributions
weighted by a factor of X{i) according to Eq. (53). A
sample calculation is given in Fig. 3 for various values
of X. Broken lines represent numerical results by the
Euler method. Gas concentration does not change
with time at the limit of /l->0 and only the time-

independent term C{A\ is important there. For a small
but finite value of X, say A<0.5, the concentration

changes linearly with time. Variation of CAl with time
can sufficiently be represented by approximation up

to the first-order term, i.e.
1~2CA1=C%l+ACA1(x-- ) (61)

whichis shown bychain lines in Fig. 3. As the value of
X increases further, the value of CA1 begins to deviate
from a straight line. Deviation from linear depen-
dence can be corrected by Eq. (T-l), which includes

the contribution of the second-order parabolic term.
When the A-value further increases beyond 2, the
second-order correction becomes insufficient and
higher-order approximation is necessary.
3.3 Average concentration of product gas ~CA~1

Sometypical results of average concentration CA1
in the product gas stream are shownin Fig. 4 for
/}=0.1, 7=5, <5=0.2 and various values ofNA and X.
As cycle time tc9 and then the 2-value, decrease, the
average concentration CA1 reaches a constant limiting
value at which PSA operation gives the highest
performance. This trend of the asymptotic behavior
agrees with the result of numerical analysis by
Chihara and Suzuki.2) Equation (T-2), shown by
chain lines in the figure, is a solution to this limiting
situation with short cycle time and agrees very well
with the exact numerical solution up to X=0.5.

It should be noted that the quantity ofrj in Eq. (T-
3) is equal to the mass transfer efficiency through a
membrane when feed gas of concentration cA0 is

contacted countercurrently with another gas stream
304

Fig. 3. Time dependence of product gas concentration.

Fig. 4. Average concentration of product gas.

of concentration cm, i.e.
n =(cA0- cA1)/(cA0- cm) (62)

Substitution of (3cAl for cm and rearrangement gives
Eq. (T-2) straightforwardly. Thus, the direct analogy

holds between countercurrent membrane transport
and PSA operation when cycle time is sufficiently

short. Suzuki7) has recently proposed a method of
computer simulation for this situation.

Equation (T-2) is reduced to

c«-£W-&-} <63)

for large positive values of (y- l)NA. In this region,
the product concentration CA1is greatly influenced bynumber of transfer units NA, as shown in Fig. 4,

because it decreases exponentially with increasing NA
according to Eq. (63).
As the X-value increases beyond 0.5, the exact value
deviates from the limiting solution Eq. (T-2) but this
deviation is evaluated by the second-order approxi-
mation Eq. (T-7), which may be valid for X<2.
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3.4 Concentration swing ACA1
The concentration swing is another important in-

dicator to characterize the performance of PSA. Some
examples of results for the concentration swing in the
product gas stream are shown in Fig. 5, again for
^=0.1, y=5, 5=0.2. When X is smallin a shortcycle

time operation, the concentration swing is propor-
tional to X as shown in the figure. Equation (T-8) well

represents this dependence quantitatively. The effect
of NAon ACA1is very large and similar to that on
CAX.For large values of NA, the relative swing M(1),

Eq. (T-4), is reduced to

Af(1)=ya(l -j8)/(l +<5) (64)

which is independent of NA. Thus, concentration

swing is directly proportional to C(A\.
3.5 Criterion of applicablity

As shown by sample calculations in the preceding
sections the present analysis is found to be an ac-
curate approximation if the value of X is less than

about 2. Further, the second-order term maybe safely
neglected for X < 0.5. This criterion for applicability of
the present analysis was confirmed with various sets
of parameters other than shown in Figs. 3-5. The
parameter X is rewritten as

KAamL/uA NA ( ,
/. = - =- (65)mpsL/uAtc nA

in which nA is a ratio of adsorption capacity to feed
volume. The above criterion (X<2) means that nA

must be greater than NA/2. For example, nA> \0 at
^=20.

C onclusion
A set of partial differential equations describing the

gas concentration and amount adsorbed of PSA
operated at periodic steady state was expanded into

power series functons of small value of X and a
solution was derived up to the second-order term. The

final result of analysis for the product gas con-
centration is shown in Table 1.
The zeroth order term is independent of time. The

first-order term is linear with time and contributes to
the concentration swing though it does not contribute
to the time average product gas concentration. The

second-order term is parabolic with time and con-
tributes to a second-order correction of the average
concentration but not to the concentration swing.
It is found that the present analysis is an accurate

approximation when half-cycle time is short enough
to satisfy the criterion of X<2. The second-order

correction can be safely neglected if A<0.5.

Appendix. Derivation of the second-order term
In a similar manner to the first-order solution in 2.2, time

dependence of C(2) and Q(2) takes the form of
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Fig. 5. Concentration swing of product gas.

e
?=^*1G<f(TJ-t+l)+l,c2(^«)-C<?') (A-l)

2 à"å  \ 6/ 12

Q(2)^l_K2GUT2_3T_1lY }_K2{A(2)_Gi2)) (A-2)2 V 6/ 12

C«>=i-K2S«{T2-T+-i)+iK2(B^-S«) (A-3)

1 \ 6/ 12

Cg'=^-«2Sg{t2-3t~)+-K2(Bi,2)-Sg>) (A-4)

2 \ 6/ 12

In Eqs. (A-1HA-4), functions A{2\ B{2\ B%\ Sf and 5g> depend
on X only and satisfy the following equations:

G^=EX{d(y- l)l(l +y5)-EX} (A-5)

G%)=E?[{d(y^ l)l(l+yd)}+5{l +py(l -E2)}E$-*]

(A-6)

In Eqs. (A-1HA-4), functions ^(2), 5g>, £g}, 5(i> and S(s2) depend
on X only and satisfy the following equations:
dS$ldX= - NA{Sf - Gá") (A-7)

dS$ldX= ND{S%> - G%>) (A-8)

dB<?ldX= - NA(B$ - A^) (A-9)

dBff/dX^ ND(B$ ~ A á") (A- 10)

(S2)-G<i>)+y5(Sg)-Gg))=(52)+^g>)-(l+^M^ (A-ll)

Whenthey are solved using boundary conditions same as Eqs. (41)
and (42) with superscript (1) replaced by (2), one gets Eqs. (50) and
(51) for S£> and B% and the following functions for 5g> and B%>:
S%)=EXl5(y- \)/y(l +5)+S2NA{l+m-E2)}(l-X)Eli -v

+{m +m(y-m- Vy)-tKNA(i +8)l$+y~ i)E2}ErX)}
(A-12)

B^HVy^B^-iS^-yS^-il -PyXB^l -S^)] (A-13)

in which B(l\ ~ S%1 is given by Eq. (52). Function A(2) is derived by
Eq. (A-ll) by substituting Sg>, 5g}, 5^ and flg> thus obtained.

Nomenclature
Aa\A{2) = functions ofJTto be determined [~]
a = specific mass transfer area [m2/m3]
B{i\B(2) = functions ofXto be determined [-]
C = dimensionless concentration ( = c/cA0) [-]
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ACA1 = concentration swing of product gas [-]
c = concentration of adsorbate gas [mol/m3]
EUE2,E3 = functions denned by Eqs. (29), (46) and (47),

re spec tively [-]
G{1\G{2) = functions ofXto be determined [-]
H{2) = function denned by Eq. (T-6) [-]
/ = integer [-]
K = overall mass transfer coefficient based on solid

phase driving force (= l/(\/ks+m/kf)) [kg/m2s]
kf, ks = gas-phase and solid-phase mass transfer

coefficient [m/s] , [kg/m2s]
L = columnlength [m]
M(1), M(2) = functions denned by Eqs. (T-4) and (T-5) [-]
m = adsorption coefficient, (q/c)equi\. [m3/kg]
N = number.of mass transfer units denned by

Eq. (14) [-]

n = capacity ratio defined by Eq. (65),
( = mPsL/uA tc) [-]

p = pressure in column [Pa]
Q = dimensionless amount adsorbed (=q/mcA0) [-]
q = amountadsorbed [mol/kg]
5(1), S(2) = functions of X to be determined [-]
t = time [s]
tc = half cycle time [s]
u = superficial gas velocity [m/s]
x = distance from feed inlet [m]
X = dimensionless distance (=x/L) [-]

y

s

s
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Pd/Pa
uD/uA

ND/ NA
void fraction

n

x

= defined by Eq. (28) or Eq. (T-5)
= defined by Eq. (15)

ps = bulk density of bed
x = dimensionless time defined by Eq. (12)
k19k2 = defined by Eqs. (32) and (49)

< Subscripts )
A, D = adsorption step' and desorption step
0, 1 .= x=0 (bottom) and X=L (top)

( Superscripts )
(0),(l),(2)»(0= zeroth, first, second and i-th order term

in expansion
- = time average value

[-]
[-]

kg/m3]
H
H
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