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The structure of turbulence in boundary layers
along concave surfaces was investigated in relation to
the appearance of Taylor-Gortler vortices caused by

centrifugal instability.

In the present paper, the neutral stability condition
for the appearance of Taylor-Gortler vortices in

concave turbulent boundary layers is studied theoreti-
cally by a numerical solution. The importance of the
normal velocity componenton the stability of turbu-

lent boundary layers is noted.

1. Theory

To formulate the present stability problem in curvi-
linear coordinates (x,y, z) (as shown in Fig. 1), the
following assumptions are made: (1) The concept of
eddy viscosity is used to handle the Reynolds stress in
the basic equations of incompressible turbulent flows.
(2) The radius R of the concave surface is uniform in x
direction and is muchlarger than the thickness 8 of

the boundary layer. (3) The velocity components in

the perturbed motion are expressed as follows8):
u= U(x,y)+ux exp{SP(x)dx}cos(2nz/X) (1)

v= V(x9 y) + 1>! exp{J p(x)dx} cos(2ttz/A) (2)
w = w1 exp{J fi(x)dx} sin(27iz//l) (3)

where ux, vu w1 <^ U, V. (4) The perturbed motion is
assumed to be steady in space and independent of the

coherent structures of the large eddies in the outer
layer and the bursts near the surface. Therefore, the

wavelength X of the perturbed motion is considered to
be much larger than the spatial periodity of such
structures (which is smaller than or equal to 8). (5)

The principle of exchange of stability is used. This has
been usually assumed, based on the experimental
indications for the Gortler stability.1>9) Then the

perturbed equations are obtained from the momen-
tum equations of incompressible turbulent flows with
Eqs. (1) to (3). In a neutral stability state (Jt=O), the

nondimensional perturbed equations are written as
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follows:

Mum-(V-MJu,+(Vn-g2M)u= UJ (4)

Mvmm-(V- Mn)vm-(p,-Mm+2o2M)vm

+a2(V-M$n +<J2(Vn +Mm+o2M)v
= ~2G2a2Uu (5)

aw=-vn (6)
where G=ReJ~S/R, M=l+fi,/n, Re=UJ/v, U=

U/Um, V=Re-V/Um, u=uJUm, v=Re-vJUm, w=

Re- wxIUm, rj=y/S, a=2nS/X, and subscript rj implies
differentiation with respect to rj. Boundary conditions
forEqs. (4)to (6) areexpressedas w=f=w=0at^=0
and 77-åºoo. In addition, M= \ and dU/drj=O at rj^oo.

The flow parameters, U, V, Mand their derivatives
with respect to rj are given empirically as a function of
r] and Re.6) The velocity profile U is expressed by the
formula of van Driest3) corrected by the wake func-
tion by Coles.2) The velocity V normal to the surface

is taken from the continuity equation. Nondimen-

sional effective viscosity Mis obtained from the
eddy viscosity expression, where the shear stress is
calculated from the momentum-integral equation

of boundary-layer theory and the empirical formula
for the skin friction C/.7)

2. Results and Discussion
Figure 2 shows typical numerical results for the

neutral stability curves of the turbulent boundary
layers at Re= \(f and the experimental neutral con-
dition by Tani9) at the same Re. Here the successive
approximation procedure and finite difference tech-

Fig. 1. Turbulent boundary layers and coordinate system.
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Fig. 2. Neutral stability diagram for Gortler parameter G
and wavenumber o. ® with V terms, (2) without V terms, (3)

without V terms (Sandmayr's analysis6)), experiment (Re=104).9)

nique are adopted as a numerical method. Curve ®
in this figure indicates the present numerical result.
The result on the assumption of F=0 in Eq. (2),

which is often used,4) is also shown by curve ©. The
present numerical method was also applied to the
perturbed equations of Sandmayr,6) where the ve-

locity component V is neglected and the growth rate
of the perturbation is treated as a function of time.

This result, shownas curve (3), agrees closely with
curve (2). Therefore, the neutral stability condition is
little affected by the assumption for the way of growth
of the perturbation. It is noted from this figure that
the neutral stability curve ®has a minimumvalue of
G at <j~0A and the Gortler parameter G becomes
large in a range of the wavenumbera<2 compared
with the other curves (2) and (3). These results are

apparently due to the contribution of the Vterms
(which means the terms including Kand Vn in Eqs. (4)
and (5)). On the contrary, for laminar boundary
layers, the parameter G becomes small in a small

wavenumber range when the V terms are included in
the analysis. This difference between the turbulent

and laminar stability results is mainly due to the fact
that the magnitude of the eddy viscosity in the outer
layer is larger than that in the inner layer of the
turbulent boundary layers.

Figure 3 shows the neutral stability relations of
Gortler parameter G and the Reynolds number Re at
thewavenumbera= 1. Curves ®, (f) and (3) inthis
figure are obtained for the same conditions as for

curves ®, (2) and (3) respectively in Fig. 2. It is
apparent that by the contribution of the V terms the
Gortler parameter increases more rapidly as the
Reynolds number increases.

Nomenclature

G = Gortler parameter [-]
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Fig. 3. Neutral stability relations for Gortler parameter G
and Reynolds number Re. Captions are the same as in Fig. 2.

M =nondimensionaleffective viscosity [-]
R = radius of surface curvature [m]

Re = Reynolds number (= UmS/v) [-]
U, V = velocities of basic flow in x, y direction [m/s]
U, V = nondimensional values of U, V [-]
Um = velocity of main flow [m/s]

u, v, w = velocity components in x, y and z direction [m/s]
u\å > vi» wi - perturbed velocity components in x, y and z

direction [m/s]
u, v, w = nondimensional values of uu vx and wx [-]
X = streamwise distance from leading edge of surface

[m]
x, y, z = orthogonal curvilinear coordinate [m]
j8 = streamwise growth rate of perturbation [m"1]
S - boundary layer thickness, where U=0.99 Um[m]
rj - nondimensional distance ( =y/S) [-]
X = wavelength of perturbation [m]
fi = viscosity of fluid [Paà" s]
fit = eddy viscosity [Pa à" s]
v = kinematic viscosity of fluid [m2/s]

a = wavenumber(=2n3/X) [-]
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