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A theoretical equation for oscillation of chain bubbles was obtained by use of velocity potential. To examine
theoretical considerations, experiments applying the pulse response method of sound and the floating bubble
methodwere carried out. The numerical solutions were well in accord with the experimental results, and the validity
of the theoretical considerations was demonstrated. The frequency of chain bubbles decreased with decreasing
interbubble distance and with increasing number of bubbles in water.

Introduction

Many studies of the natural frequency of a single
bubble have been made since the report by

Minnaert.3) But if there are more than one bubble in a
liquid, the frequencies of these bubbles differ from

that of a single bubble as the adjacent bubbles affect
each other. Theoretical studies of the natural fre-

quency of more than one spherical bubble in liquid
have been made by Shima,8'9) using a velocity poten-

tial around each of the bubbles (two and three
bubbles), later by Morioka4) (two bubbles), and by

Foody et al1] (two to four bubbles), while the au-

thor^ experimentally measured the natural frequen-
cies of two bubbles, changing an interbubble distance
in water. However, no paper has made reference to
the natural frequency of chain bubbles continuously
formed through a single nozzle in liquid.

The purpose of this paper is to investigate the
effects of interbubble distances and the number of
bubbles on the natural frequency of chain bubbles,

and to discuss a method of measuring the volume
mean diameter of chain bubbles.

1. Theory

Figure 1 shows a physical picture of the present
model. There are / spherical bubbles of the same size

in a vertical line in the liquid, and the interbubble
distances are all the same. In addition, the following
assumptions are made.

1) The static radius of the bubbles is small com-

pared with the interbubble distance.
2) The effects of viscosity, compressibility and

gravity are neglected.
The velocity potentials around more than one
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oscillating sphere in an inviscid and incompressible
liquid were obtained by Lorentz.2)

In this paper, the velocity potential <Pmfor the
radial motion around the m-th bubble is approxi-
mately given by Eq. (1), based on Lorentz's meth-

od.2)

where

ma~h ~ [Km~n) I2(m-n)2
, v R2RI- Ir>»C0Sa">

Fig. 1. Chain bubbles configuration.
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*mb=mY ~Ro5Rn cos am
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n=m+l **

Ro2Rm

rm2l2(n- m)2

The velocity potential &mgiven by Eq. (1) should be
satisfied by the following boundary condition at the
respective bubble surface, i.e., at rm=Rm.

s<z>'-+

1fd<Pm\2 1/3<D.\2
5f 2va^
+

2rro2 \ ^

RmRm7r(Rm)2- E

Poo ~Pw,m

rm=Rn

(2)

where t is time, p^ is pressure in liquid far from
bubbles, pwmis pressure at the surface of the m-th
bubble, and p is density of the liquid. Considering
surface tension, and assuming an adiabatic change of
the gas inside a bubble, pw m is given by the following
equation.

Pw,m-Pm\~ET~ I ~TT~ *W
\Km/ Rm

The pressure pm inside the bubble can be related to
the static radius jR0 by Plesset,7) as follows.

2(7

Pm =Poo +-^- (4)

By substituting Eqs. (3) and (4) into Eq. (2), and
neglecting the terms that include angle amand cross
terms in the obtained equation, an equation for the
zero-mode oscillation of the m-th bubble is given as
follows.

* 3.*., ^2RX2+R,2Rn

2- "" nf, \l(m-n)\
n=l

~ti UJr^fc~k;1 (5)
For the purpose of dimensionless expression of Eq.

(5), the following quantities are introduced:

Then Eq. (5) can be reduced to

  B (d2Pm\ 3(dJ^V
 ~Pm\n?~r 2 \dx )
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where

= 1--
3y

Mra

w=^

(8)

Considering that the amplitude of oscillation is
very small, em is defined as follows.

em=Pm-l (ll)

Neglecting the cross terms in Eq. (8) and supposing
that sm is very small, the next equation is obtained.

d2? l W d2?

~^+ I ^^ -^+{3)'+S(3y-l)}6m=0 (12)
dxz w=ilw-n\ dzz

Equation (12) is for the oscillation of the m-th bubble
among / bubbles, and includes Shima's solutions8'9)
for two and three bubbles of equal radius as a
particular solution.
2. Numerical Calculation

To solve the linear ordinary differential equation
with constant coefficients of Eq. (12), we put

The following equation for a was obtained.
w

w

(13)

=0 (14)

w w_p -
i-1 z-2

Whenfij is defined as the y-th root of characteristic
equation (14), the y-th frequency of each bubble

among the chain bubbles is shown by the following
equation.

Fu 2nR0
-I*J--

1^7^'
(15)

When the interbubble distance of the chain bubbles
becomes infinite, the natural frequency of a bubble Fo
is given by the following equation.10)

Fo
555

2iW /Vy
(16)
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Table 1. Calculated values of F-JF0 and L/Do
Do=0A6cm, S=2.86x lO-6, L=(40~i-D0)/i

i 2 3 4 5 6 7 8

1 0.988 0.971 0.951 0.931 0.91 1 0.892 0.871

2 1.012 1.0Q9 1.002 0.991 0.979 0.966 0.952

3 1.022 1.021 1.017 1.010 1.001 0.991

4 1.032 1.033 1.030 1.025 1.019
w ° J 5 1.048 1.043 1.041 1.037

6 1.050 1.052 1.054

7 1.058 1.061

8 1.068

L/Do 19.5 12.9 9.5 7.5 6.2 5.3 4.5

Hence, taking FJfi/F0 as dimensionless, the next equa-
tion is obtained.

Zj,=^ (17)

For example, for i bubbles of D0=0.46cmarranged
in achain at a depth of40cm, the values Z^ atm=1
calculated from Eq. (17) are summarized in Table 1. It

is shown in this Table that each of these bubbles has
theoretically i frequencies, the same as the number of
bubbles which composea chain.
3. Experimental Apparatus and Procedure

A schematic diagram of the experimental apparatus
is shown in Fig. 2. It had the following components.

1) Water tank, 70x70x 110 (height) cm3, made

of glass.
2) Componentwhich generates a sinusoidal pulse
of sound.

3) Digital signal analyzer which transforms a
response wave received by a hydrophone into a
frequency.

4) Component which measures interbubble dis-
tance by photography, using a strobe synchronized

with the pulse.
5) Component which measures volume mean di-
ameter of bubbles by photography, using the float-
ing bubble method.5)

6) Bubble formation component which disperses
air from a compressor into water through a single
nozzle.

The experimental procedure was the same as de-
scribed in the previous paper6) except for the method
of bubble formation. The frequencies of the chain
bubbles were measured over a range of 0.44 to

0.81cm Do and of 1.7 to 18.9 L/Do.

4. Results and Discussion

4.1 Power spectra of chain bubbles
The power spectrum of chain bubbles was obtained
from a response wave by using fast Fourier transform
(FFT), and an example is shown in Fig. 3. As the
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Fig. 2. Block diagram of experimental apparatus: 1, needle
valve; 2, nozzle; 3, phototransistor; 4, synchroscope; 5, pulse
generator; 6, power amplifier; 7, speaker; 8, hydrophone; 9,

pre-amplifier; 10, DC amplifier; ll, digital counter; 12, D.S.
analyzer; 13, synchroscope; 14, relay; 15, strobe; 16, 35mm

camera; 17, timer; 18, camera control unit; 19, film running
camera; 20, stroboscope; 21, HP-IB; 22, desktop computer;
23, printer; 24, graphic plotter; 25, digitizer.

Fig. 3. A sample of power spectra from chain bubbles. As
interbubble distance L/Do is decreased, the frequency of the
highest peak in the power spectrum decreased.

interbubble distance L/Do was smaller than 10,
several peaks appeared. Hence, we determined the
frequency Fexpfrom the centroid in a distribution
curve.

It is also observed in Fig. 3 that with decreasing

value of L/Do, Fexp decreases.
4.2 Demonstration of fundamental frequencies of
chain bubbles

The experimental data of the frequency ratios
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Table 2. Fundamental frequency ratios F1A/F0
D0=0.55cm, S=2.86x lO~6

i 2 3 4 5 6 7 8 9 10 ll

Fu/F0 0.988 0.971 0.951 0.931 0.910 0.890 0.871 0.851 0.834 0.815

L/DQ 19.5 12.8 9.5 7.5 6.1 5.2 4.5 3.9 3.5 3.1

Table 3. Fundamental frequency ratios Flti/F0
£>0=0.75cm, 5-2.86x 10~6

i 2 3 4 5 6 7 8 9 10 ll

FWJFQ 0.988 0.970 0.951 0.929 0.907 0.887 0.863 0.846 0.828 0.808

L/Do 19.3 12.6 9.3 7.3 5.9 . 5.0 4.1 3.7 3.3 2.9

Fig. 4. Comparison of calculated values with experimental
data.

Fexp/F0 for the volume mean diameters Do=
0.46±0.03cm are plotted against L/Do in Fig. 4
together with the numerical solution. These curves
were calculated from the values F^JF0 and L/Do in
Table 1 using a cubic spline interpolator. The ex-

perimental data, i.e., natural frequency ratios, agreed
with the curve obtained from the smallest value,
F1A/F0, i.e., the fundamental frequency ratios in Table
1. Consequently, it was evident that a fundamental
frequency Fl t of the chain bubbles could be measured
by applying the pulse response method of sound.
4.3 Effects of L/Do on fundamental frequency

For the bubble diameters Do=0.55 and 0.75cm,

the frequency ratios Flti/F0 calculated from Eq. (17)
are summarized in Tables 2 and 3, respectively, and
the curves obtained by the cubic spline interpolator
from this numerical solution are shown together with
the experimental data in Figs. 5 and 6, respectively.
These numerical solutions agreed well with the data
obtained by the pulse response method of sound, the
same conclusion reached for the numerical solutions

of Do =0.46 cm in the previous section. Consequently,
the effectiveness of the theoretical equation, Eq. (12),
was demonstrated experimentally.
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Fig. 5. Comparison of calculated fundamental frequency

ratios with experimental data.

Fig. 6. Comparison of calculated fundamental frequency
ratios with experimental data.

Furthermore, examining the numerical values in
Tables 1, 2, and 3, it was evident that the values

Fu/F0 were not affected by the volume mean diameter
of bubble Do.
4.4 Effect of number of bubbles on fundamental
frequency
The effect of the number of bubbles in a chain on
the fundamental frequency, as calculated from Eq.
(12), are shown in Fig. 7. For any chain, the values
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Fig. 7. Variation ofFl i/F0 with L/Do. Each of these curves
was calculated from Eq. (12) using the number of bubbles as

parameter.

F1>i/F0 decreases with decreasing interbubble distance
L/Do. Even if the interbubble distance L/Do is the

same, it can be seen that the value F1AjF0 decreases
with increasing number of bubbles in the chain.
Conclusion

Atheoretical equation for the oscillation of chain
bubbles in an inviscid and incompressible liquid was
obtained by assuming that the gas in a bubble fol-
lowed the adiabatic change law and by considering
the effect of surface tension. But the effects of com-
pressibility, viscosity and gravity were neglected. This
equation includes the solution of Shima8'9) on two

and three bubbles with equal radii. The frequency of
the chain bubbles decreased with increasing number
of bubbles and with decreasing interbubble distance,
and these results agreed well with the experimental
data. Consequently, the effectiveness of this theoreti-
cal equation was demonstrated experimentally. It was
also shown that the volume meandiameter of the
chain bubbles could be measured on line, applying the
pulse response method of sound.
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Nomenclature

Do = volume mean diameter of a bubble [cm]
Fexp = frequency of chain bubbles obtained by

measurement [Hz]
Fj t = 7-th frequency of i bubbles [Hz]
Fl j = fundamental frequency of i bubbles [Hz]
Fo - natural frequency of a bubble [Hz]
H = depth of water [cm]
K = 3y+S(3y-l) [-]

L = distance between surfaces of bubbles,
(H- i- D0)/i [cm]

/ = distance between origins of bubbles [cm]
Pn = pressure in water far from bubbles [Pa]
pw i = pressure in water at bubble surfaces [Pa]
Pi = Poo +2°/Ro [Pa]
r = distance from origin [cm]
Rt = radii of bubbles [cm]
Ro = static radii of bubbles [cm]
R = dRjdt [cm-s"1]
S = (2a/R0)/Poo [-]
t = time [s]
W = R0!l [-]
zj,i = FJj/fo [-1

a = angle (see Fig. 1) [-]
ft - ^/*o [-]
y = ratio of specific heats of gas in a bubble [-]
£,- = (Ri-RoVRo^ eA K l [-]
ji = roots of the characteristic Eq. (14) [-]
p - density of water [kg-m~3]
o = surface tension of water [Nm"1]
T = t/yJp'p-^JRo [-]

(p = velocity potentials [m2 ^"1]

(Subscripts)
/ = number of bubbles [-]
j = ISj^i [-]
m = m-th bubble from top [-]
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