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FLUID RESISTANCE ON A DISK OSCILLATING
SINUSOIDALLY IN A LIQUID AT REST

Masatoshi MINAMIZAWAand Kazuo ENDOH
Department of Chemical Process Engineering, Hokkaido University, Sapporo 060

Key Words : Fluid Mechanics, Agitation, Oscillation, Drag Coefficient, Added Mass, Power Number

An experimental investigation was performed to study the fluid resistance acting on an oscillating disk over a
wide range of Reynoldsnumbers.Data werereduced by the methodof Fourier analysis to obtain average values of
the added-mass and drag coefficients over one cycle of oscillation, i.e., kav and CDavrespectively.
The relationships between these coefficients and the modified Reynolds number, d2co/v, were found to change

between two regions of d2co/v9 where the flow pattern induced by the disk also changed. In the Reynolds number
region where inner circulations are induced exclusively, kav and CDav decreased with an increasing d2co/v and kav
was independent of the amplitude of oscillation. In the Reynolds number region where inner and outer circulations
coexist, kav was dependent only on the amplitude ratio, a/d; CDav was almost independent of d2co/v and correlated
well with a/d, provided d2co/v>200. The maximumforce on the disk during a cycle of oscillation was also
examined. Empirical equations for the added-mass, drag and maximumresistance coefficients were presented for
each region.
The average power number, NPaw9 was defined and correlations for NPav were theoretically derived from those

Introduction
It is well known that the fluid forces on bodies in

unsteady motion in fluids tend to exceed the average
forces that may be expected from the laws of drag
under steady conditions. This increase in force is

induced by the inertia force due to the added mass
and by an increase in the drag force due to the history
of motion.
In a previous paper on the resistance of fluid to an

oscillating circular cylinder,7) correlations between

the added-mass coefficient or the drag coefficient and
oscillating parameters were proposed experimentally.Although some experimental approaches3'8'9) have

been made for the fluid resistances exerted on oscillat-
ing disks, these investigations have been restricted to
cases where Reynolds numberswere large. Feware
known which study in detail the relation between fluid
force and flow field induced by a body over a wide

Received December2, 1982. Correspondence concerning this article should be ad-
dressed to M. Minamizawa, Central Laboratory, Japan Metals & Chemicals Co., Ltd.,
1719, Ohmama-machi, Yamada-gun, Gumma 376-01.
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range of Reynolds numbers.
The present investigation was undertaken with the

aim of obtaining correlations for the added-mass and
drag coefficients over wide ranges of oscillating con-
ditions. The maximumforce on the disk during a
cycle was also examined.

1. Experimental Apparatus and Procedures
The apparatus and the experimental procedure

were the same as those described in the previous
paper.7) A disk was forced to oscillate in a direction
normal to the plane of the disk in a viscous fluid by
meansof a scotch-yoke mechanismwhich converted
rotary motion into sinusoidal translation. The force
on the disk was measured by a transducer with strain
gauges. The signal from the transducer was passed
through an amplifier with a low-pasS filter of 10Hz
and was recorded on a pen-oscillograph. Mixtures of
millet jelly and water were used as test fluid, their
concentration being varied to provide a range of
Reynolds numbers.

Ranges of experimental variables are shown in
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Table 1.

2. Calculation of Added-Mass and Drag Coefficients

The resistance of a body in accelerated motion in a
fluid at rest is often expressed as follows:

F=-kM0^-CD-^pv\v\S (1)

where k and CDare the added-mass coefficient and the
drag coefficient, respectively. For a disk, the displaced
mass of the fluid, Mo, is sometimes taken as that of a
sphere of diameter equal to the disk diameter.4) Thus
M0=pnd3/6, and S=nd2/4.
For a disk oscillating sinusoidally perpendicular to

the plane of the disk, the disk velocity is given by Eq.
(2):

v= -acosmcot (2)

Substitution of Eq. (2) into Eq. (1) gives

F = k-~d3pacD2cos cot
6

+ CD-p(aco)2 sin cot | sin cat |-d2 (3)

Though k and CDare functions of the time-dependent
angular displacement, through Fourier analysis aver-
age values of these coefficients are given by:

2k

^nv

c -

7i2pacD2d 3

3
2 _2j2

npa co d

1

r

Jo(*2n

F cos cotd(eot) (4)

F sin cotd(cot) (5)

The maximumresistance force during a cycle of
oscillation, Fmax, was nondimensionalized by:

CFV =Fma^p(a(o)2 ^- d2 (6)

CFA = Fm^l^ d3pa(oi (7)

where CFV and CFA are the maximum resistance
coefficients.
Procedure for the determination of each
coefficient By use of a digitizer, both the forces and
the phases of twenty-two arbitrary points lying on the
force-time record chart involving a whole cycle were
read and fed to a digital computer. Making cor-
rections for the phase-lag due to the filter at each
point, which was proportional to the frequency of
oscillation, instantaneous forces were calculated by
use of Lagrange's interpolation formula at each in-
terval of 0.17i radian. By subtracting both the inertia
forces due to the effective massof the disk-transducer
system and the sinusoidal buoyancy forces due to the
supporting rod from the calculated forces, the fluid
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Table 1. Experimental conditions

Diameter of disk d [m] :
Thickness of disk tD [m] :
Amplitude of Oscillation a [m] :

Frequency / [Hz]
Kinematic viscosity of fluid0.0451, 0.06000.0023, 0.00310.0050, 0.0100, 0.0200,

0.0400, 0.07000.19-2.3

[m2/sl: 8.49xl0"7-8.07xl0-

resistances were obtained at each phase of the oscillat-
ing cycle, from which the added-mass and the drag
coefficients were determined by Eqs. (4) and (5),

respectively. To evaluate CFV defined by Eq. (6), the
maximumresistance in the cycle of oscillation was
determined by differentiating Eq. (3) with the added-
mass and drag coefficients up to fifth harmonics.

3. Results and Discussion
3.1 Flow pattern around a disk oscillating in a fluid
Kitano6) has photographically studied the flow field

around a disk oscillating in a viscous fluid and has
reported the critical conditions at-which the transition
of flow pattern occurs. His result is summarized in
Fig. 1. For relatively low Reynolds numbers, inner
circulations are formed in the vicinity of the disk, as
illustrated in flow pattern (I) in Fig. 1. For larger
Reynolds numbers, outer circulations are induced
outside the inner circulations, as illustrated in flow
pattern (II) in Fig. 1. Critical Reynolds numbers,
(d2co/v)c, where the transition of flow pattern takes
place, are dependent only on the amplitude ratio, a/d,
and are well correlated by the following equation:

(d2oj/v)c = 21.0(a/dy 1J (8)

3.2 Added-mass and drag coefficients
Figure 2 shows the relation between the added-mass

coefficients, fcav, and the modified Reynolds number,
d2oo/v, for d2co/v<(d2co/v)c. The values of fcavare
almost independent of the amplitude of oscillation.
The theoretical value of the added-mass coefficient for '
a disk was evaluated by Lamb4) for an ideal fluid, and
for the case of a disk moving perpendicular to the
plane of the disk,40

k=2/n (9)

which means that the added-mass coefficient is inde-
pendent of time. As d2co/v decreases, kav takes re-

markably larger value than the theoretical value given
by Eq. (9).
By use of expansion technique, Kanwal5) proposed

the theoretical value of the added-mass coefficient for
an oscillating disk as follows:

*=^(^)~ 1/2 <">)

which means that the added-mass coefficient is inde-
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Fig. 1. Illustration and regime offlow pattern around disk.

Fig. 2. Comparison of experimental and theoretical added-
mass coefficients before transition of flow field.

pendent of the phase of oscillation. On account of the
assumption of slow motion, Eq. (10) is only applic-
able for very small Reynolds numbers. Whend2co/v is
sufficiently large, the added-mass coefficient is expect-
ed to take values close to that obtained by potential
flow theory,4) as seen in Fig. 2; so that in order to
extend the above theoretical result given by Kanwal
to higher Reynolds numbers, we modify Eq. (9) as
follows:

It is seen from Fig. 2 that Eq. (ll) gives fairly good
agreement with the experimental results. However,
Eq. (ll) predicts slightly smaller values than the
experimental ones. This may be due to neglect of
higher terms in the inner and outer expansions.
Assuming that the value of kay approaches 2/n with
increasing d2cc>/v, an empirical equation for kaw in the
range of d2co/v<(d2co/v)c was obtained, by the least
square method, as follows:

2 /d2co\~0-43

fcav=-+4.42 , 0.083<a/d<1.55 (12)
n \v)
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The data were well correlated by Eq. (12), which is
shown by a solid line in Fig. 2.

After transition of flow field, i.e., for d2co/v>
(d2co/v)c, kay was found to be almost indepen-

dent of the Reynolds numberat constant values of
a/d. Under this condition, kay is a function of a/d

alone. The relation between kay and a/d for flow
pattern (II) is shown in Fig. 3, in which the values
plotted are the averages of all data. Making an
approximation with straight lines, the data for
d2a>/v>(d2co/v)c can be correlated by the following
equations.

kay=l.l0(a/d)012, 0.083<a/d<0.2 (13)

kay=l.64(a/d)0-37 , 0.2<a/d< l.55 (14)

Recently, Bernardinis et al.X) have made a theoreti-
cal approach to oscillatory flow around a disk on the
basis of the discrete vortex model. Their results for the
added-mass coefficient are indicated by squares in
Fig. 3 and show that the effect of a/d on the added-
mass coefficient is similar to that in this experiment.
However, agreement between the data and the theory
is unsatisfactory, especially at large a/d. The disagree-
ment may be due to the sharpness of the disk edge in
the theory.
Making the ratio of the drag term to the inertia
term due to added mass in Eq. (3), we obtain the
following equation:

(drag force)max C^ a_
(inertia force)max k d

If a/d is sufficiently small, the relative order of magni-
tude offluid resistance due to the effect of added mass
becomes so large7) that the value of kay is almost equal
to the value of CFA defined by Eq. (7). Hara and
Yokoyama3) have empirically investigated the fluid

force acting on a disk oscillating with relatively small
amplitude of oscillation and have examined the re-
lation between the maximumforce during a cycle of
oscillation and oscillatory parameters. In Fig. 3, CFA
values obtained by them are also plotted. Their data
lie very close to values of kay predicted by Eq. (13). It
is expected from Fig. 3 that the value of kay ap-
proaches the theoretical value of 2/n for low values of
a/d.

In Fig. 4 the drag coefficient CDawis plotted against
d2co/v for various values of the parameter a/d. The

figure indicates that CDayincreases as a/d decreasesand also that in the higher d2co/v range, CDay is

exclusively dependent upon a/d and is not affected by
d2co/v. In Fig. 4 the critical Reynolds numbers,

(d2co/v)c, calculated from Eq. (8) for each a/d are also
shown by dotted lines. For a/d=0.222 and 0.111, CDay
appears to be almost independent of d2co/v above
each value of (d2co/v)c. For a/d=0.443, 0.887 and

JOURNAL OF CHEMICAL ENGINEERING OF JAPAN



Fig. 3. Correlations of added-mass coefficient with ampli-
tude ratio after transition of flow field.

1.55, however, CDay takes a constant value at

d2co/v«200 in every case. This means that the lowest
value of d2co/v, where CDav is independent of d2co/v,
agrees with (d2co/v)c for (d2co/v)>200 and 200 for
(d2co/v)c<200. (d2co/v)c^200 is equivalent to
0/d^0.308 from Eq. (8).
For d2co/v<(d2co/v)c, CDay was found to be nearly
inversely proportional to the amplitude ratio, a/d, and
this relationship is shown in Fig. 5. The data are well
correlated by Eq. (16), which is indicated by a solid

line in Fig. 5.
C2)av=8.52(log(J2co/v))-2 1(^)"°-93 (16)

0.083<a/d< 1.55

In the range of d2co/v>(d2co/v)c (a/d<0.308) and
d2co/v>200 (0.308<a/d), CDav is independent of
d2co/v and a function of a/d alone as mentioned

above. This relationship is shown in Fig. 6, in which
the value of CDay are the averages of all experimental
data for each value ofa/d. The data for small a/d were
not plotted because of large scattering of the data.

From Fig. 6, one obtains the following empirical
equation:

CDay=2.31(a/dy0'51 (17)

d2a>/v>(d2co/v)c for 0.222<a/d<0.308

d2co/v x 200 for 0308<a/d< 1.55

In Fig. 6 the theoretical results of CD obtained by
Bernardinis et al.l) are also plotted for comparison.
While the variation of the drag coefficient with a\d in
the theory is similar to that in the experiments, as was
also seen for the added-mass coefficient in Fig. 3, the
theory gives muchlarger values than the experiments.
3.3 Maximumresistance coefficient
Figure 7 shows the correlation of maximumre-
sistance coefficient for. d2calv < (d2cc>/v)c. The data are
well approximated by the following equation:

CFF=7.72(log(J2o)/v))-1-54(^)"°-95 (18)

0.0833<a/d< 1.55
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Fig. 4. Variation of drag coefficient with Reynolds number
as parameter of amplitude ratio.

Fig. 5. Correlation of drag coefficient before transition of
flow field.

Fig. 6. Relation between drag coefficient and amplitude
ratio after transition of flow field.

Fig. 7. Correlation of maximumresistance coefficient be-
fore transition of flow field.
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The relation between CFVand a/d is very similar to
that for CDawas is shown in Fig. 5.
In the region of d2co/v>(d2co/v)c (a/d<0.30S) and
d2co/v>200 (0.308<a/d), CFV was almost indepen-
dent of d2co/v and a function of a/d alone in the same
manner as CDav. This relationship is shown in Fig. 8,
in which the values of CFVare the averages of all
experimental data for each a/d, and the experimental
results by Hara and Yokoyama3) are plotted. In Fig.
8, the values of CFV calculated from the data of

maximumforce during a cycle of oscillation by Ueno
and Kishioka8) are also plotted. Our experimental
result agrees well with theirs. The relationship be-

tween CFVand a/d is given as follows:
CFV= 3A3(a/dy0 61 (19)

d2co/v>(d2co/v)c for 0.083<a/d<0.308

d2co/v>200 for 0.308<a/d< 1.55

If we assume that the maximumresistance Fmaxis
nearly equal to the inertia force due to the theoreti-
cal added mass, i.e., (2/n)à"(pnd3/6)à"(aco2), CFV is

estimated by Eq. (6) as follows:
d

3n aCFV=^ ^ (20)

The dotted line in Fig. 8 represents Eq. (20). As is
clear from the data of Hara and Yokoyama,3) CFV
tends to approach the theoretical value by Eq. (20)
with decreasing a/d. The reason is that the fluid force
almost entirely consists of the inertial force due to the
added mass when a/d is small and the Reynolds

number is relatively large. On the other hand, as a/dis
increased over the experimental condition, CFV is
expected to approach the steady-state value of the

drag coefficient indicated by the dotted line.
3.4 Average power number

The instantaneous power consumption is calcu-
lated by multiplying the fluid resistance by the disk
velocity:

P=F-v (21)

Wedefine the average power number as follows:
NPaw = PJp(acofd2 (22)

where Pav is the average power consumption over a
cycle of oscillation.

Average power consumption, which is due to the
drag force, was calculated by the following equation.

P w =^- [2* Pd(cot) (23)2^Jo

From Eqs. (2), (3), (21), (22) and (23), the power
number is given by:

NPm = CDJ6 (24)
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Fig. 8. Relationship between maximumresistance coef-
ficient and amplitude ratio after transition of flow field.

Accordingly, the correlating equations for NPavare
given as follows, corresponding to Eqs. (16) and (17),
respectively:

NPav=lA2(\og(d2co/v)y2 1(a/d)-0-93 (25)

0.083<a/d< 1.55

NPaw = OAO(a/dy0 57 (26)

d2co/v>(d2co/v)c for 0.222<a/d<0.308

d2colv>200 for 0.308<a/d< 1.55

Figure 9 shows correlations of NPaw for

d2co/v < (d2co/v)c. As was expected, data showed good
agreement with Eq. (25), which is indicated by a solid
line in Fig. 9. In Fig. 10, the observed power con-
sumptions were compared with the theoretical values
by Eqs. (22) and (26) for the range ofd2co/v >(d2co/v)c
(a/d<0.30%) and d2co/v>200 (0.308<a/d) to show
agreement.

Conclusions

1) In the Reynolds number region where inner
circulation only exists (d2co/v<(d2a>/v)c), kay is a
function of d2o>/v only, which given by Eq. (12),
whereas in the region where outer circulation is
induced in addition to the inner circulation

(d2co/v >(d2co/v)c), kaw is represented as functions of
a/d only, as given by Eqs. (13) and (14) below and
above a/d= 02 respectively.

2) The dependencies of CDav and CFV on a/d
greatly change between the two regions correspond-
ing to the flow patterns. In the region of

d2co/v<(d2co/v)c, CDay and CFVare functions of both
d2co/v and a/dand are correlated by Eqs. (16) and (18)
respectively. When d2co/v > (d2co/v)c, CDay and CFV are
functions of a/d alone as given by Eqs. (17) and (19)
respectively, provided that d2co/v > 200.

3) The average power consumptions werewell
predicted with 7VPav by Eqs. (25) and (26), which were
theoretically derived from the correlations for CDav.

JOURNAL OF CHEMICAL ENGINEERING OF JAPAN



Fig. 9. Correlation of average power number for
d2co/v < (d2co/v)c.

Fig. 10. Comparison of average power consumption pre-

dicted by Eqs. (22) and (26) with experimental values after
transition of flow pattern.

Nomenclature

a = amplitude of oscillation

CD = drag coefficient [-]
CFV = maximumresistance coefficient defined by

Eq. (6) [-]

CFA = maximumresistance coefficient defined by
Eq. (7) [-]

d = diameter of disk [m]
/ = frequency of oscillation [Hz]
F = fluid resistance [N]
k = added-mass coefficient [-]
Mo = mass of fluid displaced by a body [kg]
NP = power number [-]
p = power [W]
S = effective area of body [m2]
t = time [s]
tD = thickness of disk [m]
v = velocity of disk [m/s]

p = density of fluid [kg/m3]
v = kinematic viscosity of fluid [m2/s]
co = angular frequency of oscillation [rad/s]

(Subscripts)
av = average over a cycle of oscillation
c = critical value for transition of flow pattern

cal = calculation
exp = experiment

max = maximumduring a cycle of oscillation
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