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A method is developed for on-line noninteracting control of a nonlinear multivariable process to handle
constraints on the control variables based on the derivative decoupling control approach. An extension of the
proposed modified derivative decoupling control method to load changes (unknown disturbance) is also treated.
This modified method is investigated for noninteracting control of laboratory-scale mixing tanks in series both by
digital simulation and by experiment using an on-line microcomputer. Liquid levels and temperature in tanks
mixing hot and cold water inflow streams are controlled. The results are comparedwith those obtained by
instantaneously optimal control and by the inverse Nyquist array technique. Both simulated and experimental
performances of the modified derivative decoupling controller are found to be better in comparison with those
obtained by the controller based on the inverse Nyquist array. Further, experiments showed that the modified
derivative decoupling controller can reduce interaction to a negligible level.

Intr oduction

Complexindustrial processes are of an essentially
multivariable nature and would demandtreatment as
such if a simpler approach were not adequate in most
cases. However, due to the presence of interactions in
the multivariable system, controllers tuned for a
single loop often must be retuned by trial and error to
avoid destabilizing the closed-loop responses. It has
been noted in the literature that multivariable control
design techniques4* do provide controller synthesis

strategies which directly treat the interactions among
multiple inputs and outputs, while the concept is
complex in structure and application. Besides the
complexity, almost no technique except optimal con-
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trol theory can effectively handle constraint condi-
tinos on the control variables from the theoretical
point of view.

Liu3) presented an approach for noninteracting
control based on the decoupling of the state de-
rivatives satisfying the given constraints on control
variables. Hutchinson and McAvoy2) applied this

derivative decoupling method to the servo control of
an experimental heat exchanger system in which the
objective was to control the two state variables by
manipulation of two inputs. However, a detailed
examination of this control method has revealed the
general difficulties encountered in obtaining the con-
troller equations.1>2'5) In addition, this derivative de-
coupling control method is limited to a setpoint
change.

This paper is concerned with a method to overcome
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some of the general difficulties involved in designing a
controller based on the derivative decoupling control
approach and its extension to an unknownload
change. To illustrate this modified derivative decou-
pling control method, a laboratory-scale mixing
process is used where two liquid levels and tempera-
ture are controlled. The performance of a controller
based on this modified derivative decoupling control
is evaluated via digital simulation and experiments
using an on-line microcomputer and is compared

with those obtained by instantaneously optimal con-
trol^ and by the inverse Nyquist array technique.7)
1. Theoretical Approaches

The derivative decoupling approach for nonin-
teracting process control is reviewed briefly,2'3) and a
modified method and its extension to a load change
are presented here.
1.1 Derivative decoupling control
The uncontrolled process can be characterized by a
nonlinear state-vector differential equation model of
the form

X=F(X, U, t) (1)

where X=nx l column vector of state variables;

U=nx l column vector of manipulated variables;
F=column vector of nonlinear functions fi (X, U, t);
f=time. The control objective is the control of X by
the manipulation of U satisfying the inequality
constraints.

min^ ^ max . -,ut t^UiSut i=1,à"à"à"n

With control, the manipulative input U becomes a
function of the measurable state X and the setpoint
vector R. As a result, the controlled process dynamics
can be written as a function of the error E, where
E=R-X.

X= G(E, t) (2)

If G(E, t) were specified such that
F(X, U, t)=G(E, t) (3)

by design as a column vector whose i-th component is
a function of only the corresponding element et and t,
then the state derivatives would be decoupled. This
also meansthat the state elements are decoupled.

However,it is noted5) that there are three general
difficulties which can be encountered in obtaining ut
controller equations from this system of equations.
The first difficulty is the specification of G(E,t).
Obviously, there are an infinite number of choices for
each of the gt elements. Liu3) arbitrarily assumed that
a suitable form for all of the state derivatives was a
type of proportional response:

Xi=a&i
i=U
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where at are unspecified proportional coefficients. He
then proposed an algorithm for finding the value of at
that would iteratively reduce the magnitudes starting
from initial arbitrarily large values. However, con-
straints on the control variables require an off-line
calculation of the complete solution of the nonlinear
process equations or an on-line approach involving
integration through each time step.
The second difficulty is that it may not be possible

to solve the equations for each of the ut as explicit
functions of state variables and setpoints.
The third difficulty occurs in the common process

case where only a small subset of the inputs are
manipulative and only a small subset of the state
elements are actually controlled.
1.2 Modified derivative decoupling
Here it is assumed that the right-hand side of Eq.

(1) has no explicit term of t. A linearized form ofEq.
(1) can be written as

X=AX+BU (5)

with initial conditions X(0)=0=U(0) where
A,B=n xn constant matrix.
Taking the Laplace transform of Eq. (5) and re-

arranging yields
U(s) = B- \sI- A)X(s)

From Eq. (6) one obtains

j
where

(6)

(7)

Consider the control objective of setpoints change
from ^(0) to Xd. Assume that xj(s) has the following
form based on the derivative decoupling control
method:

x*s)ssd'{T-jh)' j=u '"n
(8)

where dj=j-th component of Xd; A,-=positive real
constants. Combining Eqs. (7) and (8) gives

m.^+h^4l (9)

The inverse transformation of u^s) can be written in
the form

i i

That is,

j J

Let us consider a case of setting all kt equally to

obtain monotonic behavior. Then, Eq. (10) becomes
27



           J             J

 In this case ut(t) approaches steady state monotoni-
 cally, since ut(t) is expressed as a linear combination
of e~Xt. Thus it can be observed that setting all kt

 equally makes the behavior of ut(t) monotonic.
 Since ui(G)=XYbijdj at £=0 from Eq. (12), k must
               j
 satisfy the following inequality:

   urln<^bijdj<urx, i=l,---n  (13)
             j
 Since large values of kt would provide faster mono-
 tonic behavior for ut(t), it would be desirable to

 choose the value of k as the maximum satisfying Eq.
 (13). Because of the monotonic behavior of ut(t), it

 never violates the constraint if k is chosen as men-
 tioned above. Therefore as time elapses, k can be
 chosen larger and larger.

 One can obtain the value ofk as time elapses using
 the following on-line procedure:
 Step 1:
     0<r<^: *,à"(())=0 i=l,--n

                         j

       w.min</lX^^<^max

     Choose k as the maximum value satisfying
     the above equation.

 Step 2:
    tx<t<t2\

 ur<ihijxjitj+kxbtjidj-xj(t^<rx (i4)

     Choose k as the maximum value satisfying
     Eq. (14).

 Step 3:

      If
      xj(tf) - dj       dj
          <rij for allj or somej,
     Stop the procedure and maintain k as the
    value for the interval tf_1 <t<tf to reach
    steady state. Here rij is a constant chosen
     by user.

In each time interval the manipulated variable ut{i)
can be expressed as

 Uiit^ZKjXjM+k^bijldj-Xjit)-] , tp<t<tp+1
      j          j
 where

     kip)=k chosenatstep p.

 It can be easily seen from this procedure that k
 becomes larger as time elapses. However, it would not
be desirable to make all k{ equal in the case where the

magnitudes ofb{jdp i,j= l, - - - n, differ greatly from

Fig. 1. Monotonic behavior of control action with a<0,
constant Xt and 0<2x< -a<X2.

Fig. 2. Nonmonotonic behavior of control action with

a<0, constant Xx and Xu X2> -a.

each other.
1.3 Extension to load change

Consider that an unknown disturbance is intro-
duced into Eq. (5) at £=0 as follows:

X=AX+BU+ W (15)

where Wis an w-vector of the unknown disturbance.
It should be noted that limit values of the given
constraints are not used here. The reason will be

presented in the latter part of this section. To main-
tain the initial steady states in spite of the disturbance,
one can prescribe the following form of noninteract-
ing system equations with integral action.

X=-(k1+k2)X-k1k2 \ Xdt+W (16)

Jo

where Xx and X2 are positive real constants. Then
the following controller equation can be obtained

from Eqs. (15) and (16):
U=-B-1\ AX+(k1+X2)X+X1X2 \ Xdt

L Jo

[ P 1
j Jo J=-££* Z%*j+Kc+^l+^2)+>M2 Xj4t\

k U*k JO J

(17)
Now consider the first-order single-loop system

with unknown constant disturbance at £=0 as
follows:

x=ax+u+w (18)
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Fig. 3. Schematic diagram of the mixing process.

If PI controller is used to compensate the disturbance,
the controller equation becomes

P
ax+u+w=-(&!+l2)x-X1X2 \ xdt+w

Jo
rt (19)

u= -(a-\-Xl+)i2)x-A1A2 \ xdt
Jo

From Eqs. (18) and (19) one can obtain

kl Al (20)

It can be shown easily that the larger the value of X2
with X1 being constant, the faster the state, x(t),

returns to the initial steady state. Now, let us consider
the behavior ofu(t) for a<0 shown in Figs. 1 and 2. It
can be observed that monotonic behavior of control
action in the case of 0<l1<-<3<A2 seems more
desirable than that in the case ofA1? X2> ~a m order
not to violate the given constraint. That is, after X1
being chosen such that X1 < -a, the larger the value of
vl2, the faster the control action absorbs the
disturbance.
In the case of a>0, u(t) has an extremum when

à"-[*3]/*-»
which approaches zero as X2 increases, and moreover
the magnitude of the extremum decreases as X2 in-
creases. In other words, u(t) has a behavior similar to
that obtainable when Xul2> -a. Therefore, the
larger the value of A2, the faster the control action
absorbs the disturbance.
In the case of a multivariable system, the values of
X1 and X2 in Eq. (16) may be chosen as follows: first,
choose A"x such that X1<-aii for every / such that

-au>0, and choose X2 as large as possible. Then the
term Y.akjxj becomes smaller than the term

(akk-\-l1 +h2)xk in Eq. (17). Such a choice of^ and X2
makes the transient behavior of control actions and
states in a multivariable system similar to that of a
single input-single output system. That is, the control
inputs approach new steady states fast, showing

nearly monotonic behavior. Therefore, in spite of the
fast responses it is expected that the control inputs do
not exceed new steady-state values more than by a
negligible level. This is the reason why the limit value
of the constraints on the control inputs is not used in
the extension of the modified derivative decoupling
control to load change.
2. Application to Mixing Process

To illustrate the modified derivative decoupling
control method, a multivariable model for
laboratory-scale mixing tanks in series is used where
two liquid levels and the temperature of the second
tank are to be controlled. Aschematic diagram of the
mixing process is given in Fig. 3. Assuming perfect
mixing in tanks, the levels hu h2 are set appropriately
to avoid counter flow from tank 2 to tank 1, and mass
and energy balances yield

A1 ^=qel -kly/h^h2 (21)

A2-^=qh+<lc2+k1^/h1-h2-k2^n^ (22)

pcpJt LA2(T- Tc)] =pcp\-qh(Th - Tc) - k2^ h2 (T- Tc)]
(23)

where hl9 h2 and T are controlled variables; qcl, qc2
and qh are manipulated variables; #*1? q*2, and q^ are
unknown disturbances; values of kl and k2 are 210
and 310 cm2-5/min, respectively; cross-sectional area
of tanks Ax and A2 is 283.53cm2; Th and Tc are 41°C
and 6°C, respectively. In designing the controller, the
nonlinear Eqs. (21), (22) and (23) are linearized about
the initial steady states as given below.

d *2U[B]\ x2 +[C] u2 (24)

r dt -%-

where x1=h1-h1(0), x2=h2-h2(0), x3=T-T(O),

"i =<lci ~^ci(O), u2=qc2-qc2(0), and u3 =qh-qh(0).

In experimental studies an on-line microcomputer,
Cromenco System Three, was used for implemen-
tation of the modified derivative decoupling control
algorithm and other control techniques, and the
process interface was via a Cromenco D+7AI/O

VOL. 17 NO. 1 1984
29



Fig. 4. Closed-loop responses ofhx to a setpoint change.

Fig. 5. Closed-loop responses of h2 to a setpoint change.

Fig. 6. Closed-loop responses of Tto a setpoint change.

module which gives seven channels of 8-bit A/D

conversion and seven channels of D/Aconversion
with a fast conversion time of 5.5 microseconds. All
programming was done in Fortran. Signals out of the
microcomputer were transduced by V/I and I/P con-
verters. For control actions pneumatic control valves
of equal percentage were used. Temperature of the
second tank was measured by a Chromel-Alumel
thermocouple connected to an amplifier. Changes in
liquid levels were measured by a wound wire re-
sistance, which is then converted to voltage to be sent
to the microcomputer.
3. Results and Discussion

Control system performance was evaluated by ex-
periments with a laboratory-scale mixing process
under a controller designed using the modified de-
rivative decoupling (MDD) control approach, and
parameter sensitivity of the controller was estimated
by comparing the results of the experiments with
those of digital simulation. The simulation results
were obtained from nonlinear model equations, Eqs.
(21), (22) and (23), through controllers based on the
linearized equation, Eq. (24).
3.1 Setpoint changes
Here setpoints are changed by 5°C, 5cm and 5cm,

respectively corresponding to temperature (T), and
two levels (h^ and h2) from the following initial
steady-states: A1=21.5cm, h2=l5.lcm, T=6°C,

qcl =523cm3/min, gc2=615cm3/min and ^=0cm3/
min. Constraints imposed on the manipulated vari-
ables are 0<w1<205, 0<w2<105 and 0<w3<240.
In controller design by the inverse Nyquist array
technique (INA), elements of the inverse of the open-
loop transfer function matrix, Q~1(s)= G(0)G~1(s),
should satisfy the stability conditions with diagonal
dominance, and thus the inverse of the matrix of the
(j(0) premultiplied by a diagonal matrix with positive
elements is taken as the controller, which means
steady-state decoupling. That is, the controller matrix
K=G~1(0)D, where D is a diagonal matrix with
positive elements. It is noted that G(s) is the open-

loop transfer function of a process. As the result of
many trial-and-error runs by digital simulation, the
elements 1.45, 2.9 and 3.9 of the diagonal matrix D
were chosen, respectively corresponding to T, h2 and
hi in order to satisfy the given constraints on the
manipulated variables. In the design of the IOP
controller, equal weights were assigned to the state
variables in the performance index. Once one of the
three controlled variables reaches 95% of the setpoint
change, the MDDcontroller is kept unchanged, and
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Fig. 7. Behavior of qcl to a setpoint change.

Fig. 8. Behavior to qc2 to a setpoint change.

Fig. 9. Behavior of qh to a setpoint change.

the control actions ofIOP are switched to new steady-
state values at setpoints.
Comparisons of MDD, INA and IOP controllers
with the setpoint changes are given in Figs. 4, 5 and 6.
As can be expected, the simulated responses of all
three controlled variables are seen to be critically
damped with the MDDcontroller. In spite of the
absence of integral action, the steady-state offset
caused by the MDDcontroller is very small because
X-} in the controlled dynamics of Eq. (8) becomes
larger as time passes. On the contrary, steady-state

offsets are considerable in both simulated and exper-
imental results with INAcontroller due to the use of
proportional action only, and also in experimental

results with the IOP controller because of model error
and hysteresis of control valves. In the INA con-

troller, an integral action can be added to reduce the
offset, which, however, adds more complexity in the
controller design to satisfy the stability conditions in
addition to manytrial and error runs required due to
additional controller parameters.
With MDDand INA, the experimental behavior of
the states is found to be similar to that of simulation,
but not with IOP as illustrated in Figs. 4 through 6.
This means that the MDD control system is as
insensitive as the INA system to model error and

hysteresis of control valves, and is less sensitive than
the IOP. The control actions required to achieve these
performances are compared in Figs. 7, 8 and 9. From
Figs. 7 through 9 the behavior of control actions
required in the experiments is seen to be similar to
simulated results.

3.2 Load changes
Results from extension of the MDDcontroller to

load changes are shown in Figs. 10 and ll, where the
performance of the INA controller is also compared.
Experimental conditions used are as follows: h1 =
19.9cm, h2= 15.45cm, r= 10°C, q*±= - 128cm3/min
and gf2=82cm3/min and qh*= -170cm3/min for
INA; A1=21.4cm, h2=16.88cm, r=10°C, q*1=

-55cm3/min, qf2=50cm3/min and qh*= - 168cm3/

min for MDD.Differences in load changes for each
case have no meaning except that it was not easy to
introduce disturbances of equal magnitude in each
case.

The INA controller for load changes is designed in
a similar mannerto setpoint changes with diagonal
matrix whose elements are 2, 2 and 4. In the MDD
controller, values of Xx and X2 in Eq. (16) are chosen
to be 1.0 and 0.1 respectively in order to make the

settling time of the control actions of the two con-
trollers nearly equal and not to saturate before steady
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Fig. 10. Responses to load changes under MDD.

Fig. ll. Responses to load changes by INA.

Fig. 12. Noninteracting responses to a setpoint change in T under MDD.

Fig. 13. Interacting responses to a setpoint change in T under PC.

state is attained. As illustrated in Figs. 10 and ll,

both temperature and the two liquid levels are found
to be held closely to the initial steady states with the
MDDcontroller, while large steady-state offsets are
shown with the INA controller.
From the results shown in Figs. 10 through ll, it is
evident that steady-state offsets are unavoidable in the
INA controller with constant gains, and as would be
expected the control actions of the MDDcontroller
are seen to be critically damped. In consideration of
experimental error, the responses of the MDDcon-
troller show similar behavior to that of the simulated
results indicating insensitivity to model error.
3.3 Noninteraction behavior of MDD
A setpoint of temperature only is changed from the
initial steady states to investigate noninteracting be-
havior of the MDD control system. Results are
compared with those of three single conventional

proportional controllers. In the conventional pro-

portional control system (PC), hx is paired with qcl, h2
with qc2, and Twith qh in consideration of the physical
meaning of the process, and the gains chosen are 70,
70 and 50, respectively corresponding to hu and h2
and T in order to satisfy the constraints on the
manipulated variables. Initial steady states are: qx =
530cm3/min, qc2 =680cm3/min, gft=0cm3/min, hx =
21.2cm, h2= 15.2cm, and T=6°C. Constraints on the
manipulated variables are as follows: - 1 15<ux <95,
-150<w2<0 and 0<w3<240.

A setpoint of temperature is changed by 3°C when
the MDDcontroller is applied, and by 5°C when PC
is applied in order to makethe newsteady state of
temperature obtained by PC equal to the setpoint of
temperature when the MDDcontroller is applied
in consideration of the steady-state offset caused by
PC. As would be expected, the responses of levels
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by the MDDcontroller are kept nearly unchanged,
but with PC considerable offsets are caused by inter-
action. Thus it is shown that the MDD control
system reduces the interaction to a negligible level,
as shown in Figs. 12 and 13.

4. Conclusion

This paper presents a design method that facilitates
on-line design of a noninteracting controller to handle
constraints on the control variables based on the
derivative decoupling control approach. This pro-
posed modified derivative decoupling control method
is extended to load changes (unknown disturbances).
A controller is designed that exhibits both good

simulated and experimental performance for both
setpoint and load changes for a three-input, three-
output process, although the model used for the
controller design is based on linearization about the
initial steady states.
It is demonstrated in this work that the modified

derivative decoupling controller does not require off-
line calculations to handle constraints on the control
variables. Further, both the simulated and the exper-
imental performance of the controller are found to
be better than those obtained with a controller based
on the inverse Nyquist array technique.
Nomenclature

n x n constant matrix in a linearized form
ofEq. (5)

cross-sectional areas of mixing tanks 1
and 2, respectively

proportional coefficients defined in Eq. (4)
i-j element of A
n x n constant matrix in a linearized form

CP

E

ofEq. (5)

i-j element of B'1
heat capacity of water
zth element of Xd
^-dimensional error defined by R-X
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[cm2]

[J/g-°ci

ith element of E
^-dimensional column vector of nonlinear

functions defined in Eq. (1)
^-dimensional column vector defined by

Eq. (12)

liquid levels of mixing tanks 1 and 2,
respectively

i-j element of -B~XA ofEq. (7)
contraction constants in Eqs. (21) and (22)

q

R

s

T

U

ut
X
xd
x.

w

= liquid flow rates
=̂-dimensional setpoint
= Laplace transform variable
=temperatures of liquids
= ^-dimensional manipulated variable
= zth element of U
=̂-dimensional state variable
=setpoint change
= rth element ofX
=̂-dimensional disturbance

[cm]

[cm2 - 5/min]

[cm3 /min]

[°C]

= positive real constant defined in Eq. (8)
= density of liquid [g/cm3

( Superscripts )min = lower bound
max = upper bound
* = constant disturbances

(Subscripts)
c,c1, c2 = cold streams
h = hot stream
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