
�
�

DOI: 10.2478/s12175-013-0184-4

Math. Slovaca 64 (2014), No. 1, 27–38

RADII OF STARLIKENESS AND CONVEXITY

OF ANALYTIC FUNCTIONS SATISFYING

CERTAIN COEFFICIENT INEQUALITIES

V. Ravichandran

(Communicated by Ján Borśık )

ABSTRACT. For 0 ≤ α < 1, the sharp radii of starlikeness and convexity of
order α for functions of the form f(z) = z + a2z

2 + a3z
3 + · · · whose Taylor

coefficients an satisfy the conditions |a2| = 2b, 0 ≤ b ≤ 1, and |an| ≤ n, M
or M/n (M > 0) for n ≥ 3 are obtained. Also a class of functions related to
Carathéodory functions is considered.
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1. Introduction

LetA be the class of analytic functions f in the unit disk D =
{
z ∈ C : |z| < 1

}
with Taylor series expansion f(z) = z+

∞∑
2
anz

n. For functions belonging to the

subclass S of A consisting of univalent functions, it is well-known that |an| ≤ n
for n ≥ 2. A function f whose coefficients satisfy the inequality |an| ≤ n for
n ≥ 2 are analytic in D (by the usual comparison test) and hence they are
members of A. However, they need not be univalent. For example, the function

f(z) = z − 2z2 − 3z3 − 4z4 − · · · = 2z − z

(1− z)2

satisfies the inequality |an| ≤ n but its derivative vanishes inside D and therefore
the function f is not univalent in D. In 1970, Gavrilov [5] showed that the radius
of univalence of functions satisfying the inequality |an| ≤ n is the real root of
the equation 2(1 − r)3 − (1 + r) = 0 while, for the functions whose coefficients

satisfy |an| ≤ M , the radius of univalence is 1 −√M/(1 +M ). Later, in 1982,
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Yamashita showed that the radius of univalence obtained by Gavrilov is also the
same as the radius of starlikeness of the corresponding functions. He also found
lower bounds for the radii of convexity for these functions. Recently, in 2006,
Graham et al. [7: Theorem 4.2, Lemma 5.6] considered the corresponding radius
problems for holomorphic mappings on the unit ball in C

n. Kalaj, Ponnusamy,
and Vuorinen [4] have investigated related problems for harmonic functions. In
this paper, several related radius problems for the following classes of functions
will be investigated.

For 0 ≤ α < 1, let S∗(α) and C(α) be subclasses of S consisting of star-
like functions of order α and convex functions of order α, respectively defined
analytically by the following equalities:

S∗(α) :=
{
f ∈ S : Re

(
zf ′(z)
f(z)

)
> α

}
,

and

C(α) :=
{
f ∈ S : Re

(
1 + zf ′′(z)

f ′(z)

)
> α

}
.

The classes S∗ := S∗(0) and C := C(0) are the familiar classes of starlike and
convex functions respectively. Closely related are the following classes of func-
tions:

S∗
α :=

{
f ∈ S :

∣∣∣zf ′(z)
f(z) − 1

∣∣∣ < 1− α
}
,

and

Cα :=
{
f ∈ S :

∣∣∣zf ′′(z)
f ′(z)

∣∣∣ < 1− α
}
.

Note that S∗
α ⊆ S∗(α) and Cα ⊆ C(α).

A function f ∈ S is uniformly convex if f maps every circular arc γ contained
in D with center ζ ∈ D onto a convex arc. The class of all uniformly convex
functions, introduced by Goodman [6], is denoted by UCV. Rønning [9: Theo-
rem 1, p. 190], and Ma and Minda [8: Theorem 2, p. 162], independently showed
that f ∈ S is uniformly convex if and only if

Re

(
1 +

zf ′′(z)
f ′(z)

)
>

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ (z ∈ D).

Rønning [9] also considered the class SP of parabolic starlike functions consisting
of functions f ∈ A satisfying

Re

(
zf ′(z)
f(z)

)
>

∣∣∣∣zf ′(z)
f(z)

− 1

∣∣∣∣ (z ∈ D).

In other words, the class SP consists of function f = zF ′ where F ∈ UCV. For
a recent survey on uniformly convex functions, see [2].
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For a fixed b with 0 ≤ b ≤ 1, let Ab denote the class of all analytic functions
f of the form

f(z) = z + a2z
2 + a3z

3 + a4z
4 + · · · (|a2| = 2b, z ∈ D).

The second coefficient of univalent functions determines important properties
such as growth and distortion estimates. For recent investigation of functions
with fixed second coefficients, see [1, 3]. For 0 ≤ α < 1, the sharp radii of
starlikeness and convexity of order α are obtained for functions f ∈ Ab satisfying
the condition |an| ≤ n or |an| ≤ M (M > 0) for n ≥ 3. Special case (α = 0)
of the results shows that the lower bounds for the radii of convexity obtained
by Yamashita [10] are indeed sharp. The coefficient inequalities are natural in
the sense that the inequality |an| ≤ n is satisfied by univalent functions and
while the inequality |an| ≤ M is satisfied by functions which are bounded by
M . For a function p(z) = 1 + c1z + c2z

2 + · · · with positive real part, it is
well-known that |cn| ≤ 2 and so if f ∈ A and Re f ′(z) > 0, then |an| ≤ 2/n.
In view of this, the determination of the radius of starlikeness and the radius
of convexity of functions whose coefficients satisfy the inequality |an| ≤ M/n is
also investigated. A corresponding radius problem for certain function p(z) =
1+c1z+c2z

2+ · · · with coefficients satisfying the conditions |c1| = 2b, 0 ≤ b ≤ 1
and |cn| ≤ 2M (M > 0) is also investigated.

2. Radii of starlikeness of order α
and parabolic starlikeness

In this section, the sharp S∗(α)-radius and the sharp S∗
α-radius for 0 ≤ α < 1

as well as the sharp SP -radius are obtained for functions f ∈ Ab satisfying one
of the conditions |an| ≤ n, |an| ≤ M or |an| ≤ M/n (M > 0) for n ≥ 3.

������� 2.1� Let f ∈ Ab and |an| ≤ n for n ≥ 3. Then f satisfies the
inequality ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ 1− α (|z| ≤ r0) (2.1)

where r0 = r0(α) is the smallest root in (0, 1) of the equation

1− α+ (1 + α)r = 2
(
1− α+ (2− α)(1− b)r

)
(1− r)3. (2.2)

The number r0(α) is also the radius of starlikeness of order α. The number
r0(1/2) is the radius of parabolic starlikeness of the given functions. The results
are all sharp.
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P r o o f. If
∞∑

n=2

(n− α)|an|rn−1
0 ≤ 1− α, (2.3)

then the function f(z) = z +
∞∑

n=2
anz

n satisfies, on |z| = r0,

|zf ′(z)− f(z)| − (1− α)|f(z)|

≤
∞∑

n=2

(n− 1)|an||z|n − (1− α)(|z| −
∞∑

n=2

|an| |z|n)

= −(1− α)|z|+
∞∑

n=2

(n− α)|an||z|n

≤ r0

(
−(1− α) +

∞∑
n=2

(n− α)|an|rn−1
0

)

≤ 0.

This shows that the condition (2.3) is a sufficient condition for the inequality
(2.1) to hold. Using |a2| = 2b for the function f ∈ Ab, and the inequality
|an| ≤ n for n ≥ 3, it follows that, for |z| ≤ r0,

∞∑
n=2

(n− α)|an| |z|n−1

≤
∞∑

n=2

(n− α)|an|rn−1
0

≤ 2(2− α)br0 +

∞∑
n=3

n2rn−1
0 − α

∞∑
n=3

nrn−1
0

= 2(2− α)br0 +
1 + r0

(1− r0)3
− 1− 4r0 − α

(
1

(1− r0)2
− 1− 2r0

)

= α− 1− 2(2− α)(1− b)r0 +
(1 + r0)− α(1− r0)

(1− r0)3

= 1− α

provided r0 is the root of the Equation (2.2) in the hypothesis of the theorem.
The intermediate value theorem shows that the Equation (2.2) has a root in the
interval (0,1).

The function f0 given by

f0(z) = 2z + 2(1− b)z2 − z

(1− z)2
= z − 2bz2 − 3z3 − 4z4 − · · · (2.4)
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satisfies the hypothesis of the theorem and, for this function, we have

zf ′
0(z)

f0(z)
− 1 =

2(1− b)z(1− z)3 − 2z

(2 + 2(1− b)z)(1− z)3 − (1− z)
.

For z = r0, we have∣∣∣∣zf ′
0(z)

f0(z)
− 1

∣∣∣∣ = 2r0 − 2(1− b)r0(1− r0)
3

(2 + 2(1− b)r0)(1− r0)3 − (1− r0)
= 1− α. (2.5)

This shows that the radius r0 of functions to satisfy (2.1) is sharp. The numer-
ator of the rational function in the middle of (2.5) is positive as 0 ≤ 1 − b ≤ 1
and 0 ≤ (1 − r0) < 1 which shows that (1 − b)(1 − r0)

3 < 1. The denominator
expression is also positive as

(2 + 2(1− b)r0)(1− r0)
2 ≥ 2(1− r0)

2 > 1.

The inequality 2(1− r0)
2 > 1 is in fact equivalent to r0 < 1− 1/

√
2 = 0.292893.

This inequality holds as r0 = r0(α) ≤ r0(0) = 0.1648776.

Since the functions satisfying (2.1) are starlike of order α, the radius of
starlikeness is at least r0(α). However, this radius is also sharp for the same
function f0 as

Re

(
zf ′

0(z)

f0(z)

)
= α (z = r0). (2.6)

The inequality ∣∣∣∣zf ′(z)
f(z)

− 1

∣∣∣∣ ≤ 1

2

is sufficient (see [2]) for the function to be parabolic starlike and hence the radius
of parabolic starlikeness is at least r0(1/2). The Equations (2.5) and (2.6) with
α = 1/2 shows that∣∣∣∣zf ′

0(z)

f0(z)
− 1

∣∣∣∣ = 1

2
= Re

(
zf ′

0(z)

f0(z)

)
(z = r0), (2.7)

and hence the radius of parabolic starlikeness is sharp. �

������	�
 2.1.1� The radius of starlikeness of order α of functions whose
coefficients satisfy |an| ≤ n for all n ≥ 2 is the smallest real root in (0, 1) of the
equation

2(1− α)(1− r)3 = 1− α+ (1 + α)r.

In particular, the radius of starlikeness is given by

r0(0) = 1 +
1

62/3

((√
330− 18

)1/3
−
(√

330 + 18
)1/3)

≈ 0.164878.
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The radius of starlikeness of order 1/2 is the same as the radius of parabolic
starlikeness and it is given by

r0(1/2) = 1 +
1√
2

((
3− 2

√
2
)1/3

−
(
3 + 2

√
2
)1/3)

≈ 0.120385.

The results are sharp.

������	�
 2.1.2� The radius of starlikeness of order α of functions whose
coefficients satisfy a2 = 0 and |an| ≤ n for all n ≥ 3 is the smallest real root in
(0, 1) of the equation

2
(
1− α+ (2− α)r

)
(1− r)3 = 1− α+ (1 + α)r.

In particular, the radius of starlikeness is the root r0 ≈ 0.253571 of the equation

2(1 + 2r)(1− r)3 = 1 + r.

The radius of starlikeness of order 1/2 which is the same as the radius of para-

bolic starlikeness is r0 = 1− 3
√

1/2 ≈ 0.206299. The results are sharp.

Remark 1� It is clear from Corollaries 2.1.1 and 2.1.2 that the various radii are
improved if the second coefficient of the function vanishes.

������� 2.2� Let f ∈ Ab and |an| ≤ M for n ≥ 3. Then f satisfies the
condition (2.1) where r0 = r0(α) is the smallest real root in (0, 1) of the equation

M (1− α+ αr) =
(
(1 +M )(1− α)− (2− α)(2b−M )r

)
(1− r)2.

The number r0(α) is also the radius of starlikeness of order α. The number
r0(1/2) is the radius of parabolic starlikeness of the given functions. The results
are all sharp.

P r o o f. Using |a2| = 2b for the function f ∈ Ab, and the inequality |an| ≤ M
for n ≥ 3, a calculation shows that, for |z| ≤ r0,

∞∑
n=2

(n− α)|an| |z|n−1

≤
∞∑

n=2

(n− α)|an|rn−1
0

≤ 2(2− α)br0 +M

( ∞∑
n=3

nrn−1
0 − α

∞∑
n=3

rn−1
0

)

= 2(2− α)br0 +M

(
1

(1− r0)2
− 1− 2r0 − α

(
1

1− r0
− 1− r0

))

= (2− α)(2b−M )r0 −M (1− α) +M
1− α+ αr0
(1− r0)2

= 1− α
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where r0 is as stated in the hypothesis of the theorem. Thus, the function f
satisfies the condition (2.1). The other two results follow easily.

The results are sharp for the function f0 given by

f0(z) = z − 2bz2 −M (z3 + z4 + · · · ) = z − 2bz2 − Mz3

1− z
. (2.8)

A calculation shows that

zf ′
0(z)

f0(z)
− 1 = −

2bz + 2Mz2

1−z + Mz3

(1−z)2

1− 2bz − Mz2

1−z

.

At the point z = r0, the function f0 satisfies

Re

(
zf ′

0(z)

f0(z)

)
= 1−

2br0 +
2Mr20
1−r0

+
Mr30

(1−r0)2

1− 2br0 − Mr20
1−r0

= α.

Since α < 1, the last equation shows that the denominator of the rational
expression in the middle is positive. This leads to the following equality:

∣∣∣∣zf ′
0(z)

f0(z)
− 1

∣∣∣∣ = 2br0 +
2Mr20
1−r0

+
Mr30

(1−r0)2

1− 2br0 − Mr20
1−r0

= 1− α.

Also the Equation (2.7) holds. This proves the sharpness of the results. �

������	�
 2.2.1� Let f ∈ A and |an| ≤ M for n ≥ 2. Then f satisfies the
condition (2.1) where r0(α) is the real root in (0, 1) of the equation

M (1− α+ αr) = (1 +M )(1− α)(1− r)2.

The number r0(α) is also the radius of starlikeness of order α. The number
r0(1/2) is the radius of parabolic starlikeness of the given functions. The results
are all sharp.

Remark 2� The radius of starlikeness of the functions f with |an| ≤ M given

by r0 = 1−√M/(1 +M ) is the root in (0, 1) of the equation

M = (1 +M )(1− r)2.

When the second coefficient a2 = 0, the radius of starlikeness r1 is the root in
(0, 1) of the equation

M = (1 +M + 2Mr)(1− r)2.

Clearly, r1 > r0.
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������� 2.3� Let f ∈ Ab and |an| ≤ M/n for n ≥ 3. Then f satisfies the
condition (2.1) where r0 = r0(α) is the smallest real root in (0, 1) of the equation

2M
(
1 + α(1− r) log(1− r)/r

)
=
(
2(1 +M )(1− α) + (2− α)(M − 4b)r

)
(1− r).

The number r0(α) is also the radius of starlikeness of order α. The number
r0(1/2) is the radius of parabolic starlikeness of the given functions. The results
are all sharp for the function f0 given by

f0(z) := (1 +M )z + (M/2− 2b)z2 +M log(1− z).

The logarithm in the above equation is the branch that takes the value 1 at
z = 0. Proof of this theorem is omitted as it is similar to those of Theorems 2.1
and 2.2.

3. Radii of convexity and uniform convexity

In this section, the sharp C(α)-radius and the sharp Cα-radius for 0 ≤ α < 1
as well as the sharp UCV-radius for functions f ∈ Ab satisfying the condition
|an| ≤ n or |an| ≤ M (M > 0) for n ≥ 3 are obtained.

������� 3.1� Let f ∈ Ab and |an| ≤ n for n ≥ 3. Then f satisfies the
condition ∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1− α (|z| ≤ r0) (3.1)

where r0 = r0(α) is the smallest real root in (0, 1) of the equation

2
(
1− α+ 2(2− α)(1− b)r

)
(1− r)4 = 1− α+ 4r + (1 + α)r2. (3.2)

The number r0(α) is also the radius of convexity of order α. The number r0(1/2)
is the radius of uniform convexity of the given functions. The results are all
sharp.

P r o o f. A function f satisfies (3.1) if and only if zf ′ satisfies (2.1). In view of
this and the inequality (2.3), the inequality

∞∑
n=2

n(n− α)|an||z|n−1 ≤ 1− α, (|z| ≤ r0) (3.3)

is sufficient for function f to satisfy (3.1). Let ϕ be defined by

ϕ(r) := 2
(
1− α+ 2(2− α)(1− b)r

)
(1− r)4 − (1− α)− 4r − (1 + α)r2.

Since ϕ(0) = 1 − α > 0 and ϕ(1) = −6 < 0, the intermediate value theorem
shows that the Equation (3.2) has a root in the interval (0,1). Let r0 be the
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smallest root in (0, 1) of the Equation (3.2). Now, for |z| ≤ r0,
∞∑

n=2

n(n− α)|an||z|n−1

≤
∞∑

n=2

n(n− α)|an|rn−1
0

≤ 4(2− α)br0 +

∞∑
n=3

(n− α)n2rn−1
0

= 4(2− α)br0 +

(
1 + 4r0 + r20
(1− r0)4

− 1− 8r0

)
− α

(
1 + r0

(1− r0)3
− 1− 4r0

)

= −(1− α+ 4(2− α)(1− b)r0
)
+

1− α+ 4r0 + (1 + α)r20
(1− r0)4

= 1− α.

To prove the sharpness, consider the function f0 defined by (2.4). For this
function, a calculation shows that

zf ′′
0 (z)

f ′
0(z)

=
4(1− b)z − 4z

(1−z)3 − 6z2

(1−z)4

2 + 4(1− b)z − 1
(1−z)2 − 2z

(1−z)3
.

If r0 is the root of the equation (3.2), then, at the point z = r0,

Re

(
zf ′′

0 (z)

f ′
0(z)

)
=

4(1− b)r0 − 4r0
(1−r0)3

− 6r20
(1−r0)4

2 + 4(1− b)r0 − 1
(1−r0)2

− 2r0
(1−r0)3

= α− 1.

The denominator of the rational function in the middle of the equation above is
positive while the numerator is negative. Noting this, it also follows that, at the
point z = r0,∣∣∣∣zf ′′

0 (z)

f ′
0(z)

∣∣∣∣ = −4(1− b)r0 +
4r0

(1−r0)3
+

6r20
(1−r0)4

2 + 4(1− b)r0 − 1
(1−r0)2

− 2r0
(1−r0)3

= 1− α.

In the case of α = 1/2, the equation (2.7) also holds. �

The special case where b = 1 is important and it is stated as a corollary below.

������	�
 3.1.1� Let f ∈ A and |an| ≤ n for n ≥ 2. Then f satisfies the
condition (3.1) where r0 = r0(α) is the real root in (0, 1) of the equation

2(1− α)(1− r)4 = 1− α+ 4r + (1 + α)r2 (3.4)

The number r0(α) is also the radius of convexity of order α. The number
r0(1/2) ≈ 0.064723 is the radius of uniform convexity of the given functions.
The results are all sharp.
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Remark 3� For α = 0, the Equation (3.4) reduces to

2(1− r)4 = (1 + 4r + r2).

The root of this equation in (0, 1) is approximately 0.09033. Our result shows
that radius of convexity obtained by Yamashita [10: Theorem 2] is sharp.

������	�
 3.1.2� Let f ∈ A, a2 = 0 and |an| ≤ n for n ≥ 3. Then f satisfies
the condition (3.1) holds where r0 = r0(α) is the real root in (0, 1) of the equation

2(1− α+ 2(2− α)r)(1− r)4 = 1− α+ 4r + (1 + α)r2 (3.5)

The number r0(α) is also the radius of convexity of order α. The number
r0(1/2) ≈ 0.125429 is the radius of uniform convexity of the given functions.
The results are all sharp.

Remark 4� It is easy to see from Corollaries 3.1.1 and 3.1.2 that the radius of
convexity of order α improves when a2 = 0. In the particular case α = 0, the
root of the Equation (3.4) is r0(0) ≈ 0.0903331 while the Equation (3.5) has the
root r0(0) ≈ 0.155972.

������� 3.2� Let f ∈ Ab and |an| ≤ M for n ≥ 3. Then f satisfies the
condition (3.1) where r0 = r0(α) is the smallest real root in (0, 1) of the equation(

(1− α)(1 +M )− 2(2− α)(2b−M )r
)
(1− r)3 = M

(
1− α+ (1 + α)r

)
. (3.6)

The number r0(α) is also the radius of convexity of order α. The number r0(1/2)
is the radius of uniform convexity of the given functions. The results are all
sharp.

P r o o f. Let ϕ be defined by

ϕ(r) :=
(
(1− α)(1 +M )− 2(2− α)(2b−M )r

)
(1− r)3 −M

(
1− α+ (1 + α)r

)
.

Since ϕ(0) = 1 − α > 0 and ϕ(1) = −2M < 0, the intermediate value theorem
shows that the Equation (3.6) has a root in the interval (0,1). Let r0 be the
smallest root in (0, 1) of the Equation (3.6). Using |a2| = 2b for the function
f ∈ Ab, and the inequality |an| ≤ M for n ≥ 3, a calculation shows that, for
|z| ≤ r0,

∞∑
n=2

n(n− α)|an| |z|n−1 ≤
∞∑

n=2

n(n− α)|an|rn−1
0

≤ 4(2− α)br0 +M

( ∞∑
n=3

n2rn−1
0 − α

∞∑
n=3

nrn−1
0

)

= 4(2− α)br0 +M

(
1 + r0

(1− r0)3
− 1− 4r0 − α

(
1

(1− r0)2
− 1− 2r0

))

= −M (1− α) + 2(2− α)(2b−M )r0 +M

(
1− α+ (1 + α)r0

(1− r0)3

)
= 1− α.
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Thus, the function f satisfies the condition (3.1). The other two results follow
easily. The results are sharp for the function f0 given by (2.8). �
������	�
 3.2.1� Let f ∈ A and |an| ≤ M for n ≥ 2. Then f satisfies the
condition (3.1) where r0 = r0(α) is the real root in (0, 1) of the equation

(1− α)(1 +M )(1− r)3 = M
(
1− α+ (1 + α)r

)
. (3.7)

The number r0(α) is also the radius of convexity of order α. The number r0(1/2)
is the radius of uniform convexity of the given functions. The results are all
sharp.

Remark 5� For α = 0, the Equation (3.7) reduces to

(1 +M−1)(1− r)3 = 1 + r.

Our result again shows that radius of convexity obtained by Yamashita [10:
Theorem 2] is sharp.

Remark 6� The problem of determining the radius of convexity of functions
satisfying |an| ≤ M/n is the same as the determination of radius of starlikeness of
functions satisfying the inequality |an| ≤ M . The latter problem is investigated
in Theorem 2.3.

4. Carathéodory functions

An analytic function p of the form p(z) = 1 + c1z + c2z
2 + · · · is called a

Carathéodory function if Re p(z) > 0 for all z ∈ D. The class of all such functions
is denoted by P . For such functions p ∈ P , it is well-known that |cn| ≤ 2. Denote
the class of all Carathéodory functions satisfying the inequality Re p(z) > α for
some 0 ≤ α < 1 by P(α). It is easy to see that |cn| ≤ 2(1 − α) for p ∈ P(α).
In this section, we determine P(α)-radius of functions satisfying the inequality
|cn| ≤ 2M for n ≥ 3 with |c2| = 2b fixed. The proof of the following result is
straightforward and the details are omitted.

������� 4.1� Let p be an analytic function of the form p(z) = 1 + c1z +
c2z

2 + · · · with |c2| = 2b and |cn| ≤ 2M for n ≥ 3. Then

|p(z)− 1| ≤ 1− α (|z| ≤ r0)

where

r0 = r0(α) =
2(1− α)

1− α+ 2b+
√
(1− α+ 2b)2 + 8(1− α)(M − b)

.

Also Re p(z) > α for |z| ≤ r0(α). These results are sharp for the function p0
given by

p0(z) = 1− 2bz − 2M
z2

1− z
.
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