
�
�

DOI: 10.2478/s12175-013-0168-4

Math. Slovaca 63 (2013), No. 6, 1233–1246

ENTIRE FUNCTIONS

SHARING SETS OF SMALL FUNCTIONS

WITH THEIR DIFFERENCE OPERATORS

OR SHIFTS

BaoQin Chen* — ZongXuan Chen**

(Communicated by Ján Borśık )

ABSTRACT. We show some interesting results concerning entire functions shar-
ing two sets of small functions CM with their difference operators or shifts.
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1. Introduction and main results

Throughout this paper, a meromorphic function always means meromorphic
in the whole complex plane, unless specifically stated otherwise. We use the
standard notations in the Nevanlinna theory of meromorphic functions (see e.g.,
[10, 12, 18, 19]). For a meromorphic function f(z), we denote by S(f) the set of
all meromorphic functions a(z) such that T (r, a) = o(T (r, f)) for all r outside of
a set with finite logarithmic measure. Functions in the set S(f) are called small
functions compared to f(z). And if a(z) ∈ S(f), we write T (r, a) = S(r, f) (see

[8]). Moreover, we also use the notation Ŝ(f) = S(f) ∪ {∞}.
For a set S ⊂ Ŝ(f), we define that

Ef (S) =
⋃
a∈S

{
z | f(z)− a(z) = 0, counting multiplicities

}
,

Ef (S) =
⋃
a∈S

{
z | f(z)− a(z) = 0, ignoring multiplicities

}
.
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We say that two meromorphic functions f and g share a set S CM, resp. IM,
provided that Ef (S) = Eg(S), resp. Ef (S) = Eg(S).

The classical results in the uniqueness theory of meromorphic functions are
the five values and four values theorems due to Nevanlinna [16], see also [10,
18]. When considering sharing sets, it is well known that there exists a set
S containing seven elements such that if f and g are two non-constant entire
functions and Ef (S) = Eg(S), then f = g (see [18: Theorem 10.56]).

We firstly recall the following result concerning an entire function f sharing
a set with its derivative f ′.

������� A� ([14]) Let f be a non-constant entire function and a1, a2 be two
distinct complex numbers. If f and f ′ share the set {a1, a2} CM, then f takes
one of the following conclusions:

(i) f = f ′;
(ii) f + f ′ = a1 + a2;

(iii) f = c1e
cz + c2e

−cz, with a1+a2 = 0, where c, c1, c2 are non-zero constants
which satisfy c2 �= 1 and c1c2 = 1

4a
2
1

(
1− 1

c2

)
.

For the case when two entire functions share common sets, we recall the
following result.

������� B� ([6]) Let S1 = {1,−1}, S2 = {0}. If f and g are non-constant
entire functions of finite order such that f and g share the sets S1 and S2 CM,
then f = g or f · g = 1.

Recently, a number of papers (including [1,3,4,7–9,11,13,15,17]) have focused
on value distribution in difference analogues of meromorphic functions. In a
recent paper [15], considering Theorems A and B, Liu investigated the cases when
f(z) shares sets with its shift f(z+c) or difference operator ∆cf := f(z+c)−f(z),
where c is a non-zero constant, and proved the following Theorems C–E.

������� C� ([15]) Let f(z) be a transcendental entire function of finite order,
c ∈ C\ {0}, and let a(z) ∈ S(f) be a non-vanishing periodic entire function with
period c. If f(z) and f(z + c) share the set {a(z),−a(z)} CM, then f(z) must
take one of the following conclusions:

(i) f(z) ≡ f(z + c);

(ii) f(z) + f(z + c) ≡ 0;

(iii) f(z) = 1
2 (h1(z)+h2(z)), where

h1(z+c)
h1(z)

= −eγ , h2(z+c)
h2(z)

= eγ, h1(z)h2(z) =

a(z)2(1− e−2γ) and γ is a polynomial.

Remark 1� From the proof of Theorem C (see [15]), we see that the condition
that a(z) is non-vanishing can be replaced by a much weaker condition that
a(z) �≡ 0.
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������� D� ([15]) Under the assumptions of Theorem C, if f(z) and f(z+c)
share the sets

{
a(z),−a(z)

}
, {0} CM, then f(z) = ±f(z + c) for all z ∈ C.

Remark 2� Theorem D is a corollary of Theorem C and its assumption yields
that f(z) and f(z+ c) share the value 0 CM. An interesting question is whether
the conclusion still holds if we replace the set {0} with the set {b(z)}, where
b(z) ∈ S(f) \ {a(z),−a(z)}. Considering this question, we prove the following
result.

������� 1.1� Let f(z) be a transcendental entire function of finite order, c ∈
C \ {0}, and let a(z)( �≡ 0), b(z) ∈ S(f) be two distinct periodic entire functions
with period c. If f(z) and f(z + c) share the sets {a(z),−a(z)} and {b(z)} CM,
then f(z) = ±f(z+c) for all z ∈ C. Moreover, if b(z) �≡ 0, then f(z) ≡ f(z+c).

Remark 3� Suppose f(z) and f(z+c) share the sets {a1(z), a2(z)} and {b1(z)}
CM in Theorem 1.1, where a1(z), a2(z), b1(z) ∈ S(f) are three distinct peri-
odic entire functions with period c. This situation can be dealt with by tak-

ing g(z) = f(z) − a1(z)+a2(z)
2 . Obviously, g(z) and g(z + c) share the sets{

a1(z)−a2(z)
2 , a2(z)−a1(z)

2

}
and

{
b1(z)− a1(z)+a2(z)

2

}
CM. By Theorem 1.1, we

have f(z) ≡ f(z + c), if b1(z) − a1(z)+a2(z)
2 �≡ 0; we have f(z) = f(z + c) or

f(z + c) + f(z) = a1(z) + a2(z) for all z ∈ C, if b1(z) ≡ a1(z)+a2(z)
2 .

Another interesting question is what happens if f(z + c) is replaced by
P (z, f(z)) in Theorem D, where P (z, f(z)) is a linear difference polynomial in f .
Corresponding to this question, we have the following result.

������� 1.2� Let f(z) be a transcendental entire function of finite order, c ∈
C \ {0}, and let

P (z, f(z)) = bk(z)f(z + kc) + · · ·+ b1(z)f(z + c) + b0(z)f(z), (1.1)

where bk(z) �≡ 0, b0(z), . . . , bk(z) ∈ S(f) and k is a nonnegative integer. Suppose
that a(z) ∈ S(f) is a periodic entire function with period c such that a(z) �≡ 0. If
f(z) and P (z, f(z)) share the sets {a(z),−a(z)} and {0} CM, then P (z, f(z)) =
±f(z) for all z ∈ C.

If the coefficients of P (z, f(z)) in Theorem 1.2 are all polynomials, we prove
the following result.

������� 1.3� Let f(z) be a transcendental entire function of finite order, c ∈
C \ {0}, and let

P (z, f(z)) = bk(z)f(z + kc) + · · ·+ b1(z)f(z + c) + b0(z)f(z),

where bk(z) �≡ 0, b0(z), . . . , bk(z) are polynomials, and k is a nonnegative inte-
ger. Suppose that a1(z), . . . , an(z) ∈ S(f) are distinct periodic entire functions
with period c such that ai(z) �≡ 0, i = 1, 2, . . . , n, where n is a positive integer.
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If f(z) and P (z, f(z)) share the sets {a1(z), . . . , an(z)} and {0} CM, then
P (z, f(z)) = tf(z) for all z ∈ C, where t ∈ C \ {0}.
Remark 4� For two sets S1, S2 such that S1 ⊂ S2, the condition Ef (S2) =
Eg(S2) does not mean that Ef (S1) = Eg(S1). Thus Theorem 1.3 is not a
corollary of Theorem 1.2 and their proofs are different.

������� E� ([15]) Let f(z) be a transcendental entire function of finite order,
and let a be a non-zero finite constant. If f(z) and ∆cf share the set {a,−a}
CM, then f(z + c) ≡ 2f(z).

Remark 5� As mentioned in [15], it is quite natural to ask what happens if
the set {a,−a} is replaced by the set {a(z), b(z)}, where a(z), b(z) ∈ S(f) are
two distinct periodic entire functions with period c such that a(z), b(z) �≡ 0.
Considering Theorem 1.1 and Theorem E, we obtain the following Theorem 1.4.

������� 1.4� Let f(z) be a transcendental entire function of finite order, c ∈
C \ {0}, and let a(z)( �≡ 0), b(z) ∈ S(f) be two periodic entire functions with
period c such that a(z) and b(z) are linearly dependent over the complex field,
but b(z) �≡ ±a(z). If f(z) and ∆cf share the sets {a(z),−a(z)} and {b(z)} CM,
and if the inequality

N

(
r,

1

f(z)− b(z)

)
≥ λT (r, f), (1.2)

holds for λ ∈ (2/3, 1], then

∆cf − b(z)

f(z)− b(z)
= t,

where t ∈ C \ {0}.
The following result is a corollary of Theorem 1.2.

������� 1.5� Let f(z) be a transcendental entire function of finite order, c ∈
C \ {0}, and let a(z) ∈ S(f) be a periodic entire function with period c such
that a(z) �≡ 0. If f(z) and ∆cf share the sets {a(z),−a(z)} and {0} CM, then
f(z + c) ≡ 2f(z).

2. Proof of Theorem 1.1

Halburd–Korhonen [7] and Chiang–Feng [4] investigated the value distribu-
tion theory of difference expressions, including the difference analogue of the
logarithmic derivative lemma, independently. We recall the following result.
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����� 2.1� ([7: Corollary 2.2]) Let f(z) be a non-constant meromorphic func-
tion of finite order, c ∈ C and δ < 1. Then

m

(
r,
f(z + c)

f(z)

)
= o

(
T (r + |c|, f)

rδ

)
,

for all r outside of a possible exceptional set with finite logarithmic measure.

By [9: Lemma 2.1], we have T (r+|c|, f(z)) = (1+o(1))T (r, f) for all r outside
of a set with finite logarithmic measure, when f(z) is of finite order.

The Lemma 2.2 below can be proved by a similar reasoning as in the proof
of [2: Lemma 3(b)]. We omit those details.

����� 2.2� Let g(z) be a transcendental meromorphic function and let E ⊂
(0,∞) be a set of finite logarithmic measure. Then we have

lim
r→∞

r∈(0,∞)\E

log T (r, g)

log r
= lim

r→∞
r∈(0,∞)

log T (r, g)

log r
= ρ(g).

����� 2.3� Let f(z) be a transcendental meromorphic function, and let a(z)
be a meromorphic function such that a(z) ∈ S(f). Then we have ρ(a) ≤ ρ(f).

P r o o f. This follows immediately from Lemma 2.2. �

P r o o f o f T h e o r e m 1.1. By Theorem D, we see that our conclusion holds
if b(z) ≡ 0. Next we suppose that b(z) �≡ 0.

If a(z) is not a constant, then a(z) is transcendental by the fact that a(z)
is a periodic entire function. As f(z) is of finite order and a(z) ∈ S(f), by
Lemma 2.3, we see that a(z) is also of finite order.

Since sums, differences, products and quotients of functions of finite order are
again of finite order, we see that if f(z) is a transcendental entire function of
finite order, then

(f(z + c)− a(z))(f(z + c) + a(z))

(f(z)− a(z))(f(z) + a(z))

is of finite order.

Moreover, since f(z) and f(z+ c) share the sets {a(z),−a(z)} CM, it follows
that

(f(z + c)− a(z))(f(z + c) + a(z))

(f(z)− a(z))(f(z) + a(z))

is an entire function of finite order without zeros. By Hadamard’s factorization
theorem, an entire function of finite order without zeros is of the form ep(z),
where p(z) is a polynomial. That is

(f(z + c)− a(z))(f(z + c) + a(z)) = (f(z)− a(z))(f(z) + a(z))ep(z). (2.1)
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Similarly, since f(z) and f(z + c) share the set {b(z)} CM, we have

f(z + c)− b(z) = (f(z)− b(z))eq(z), (2.2)

where q(z) is a polynomial.

Note that a(z), b(z) ∈ S(f) are periodic entire functions with period c. By
Lemma 2.1 and (2.2), we have

T
(
r, eq(z)

)
= m

(
r, eq(z)

)
= m

(
r,
f(z + c)− b(z)

f(z)− b(z)

)
= o

(
T (r, f − b)

rδ

)
,

outside of a possible exceptional set with finite logarithmic measure.

That is

T
(
r, eq(z)

)
= S(r, f). (2.3)

Similarly, from (2.1) and Lemma 2.1, we get

T
(
r, ep(z)

)
= m

(
r, ep(z)

)
= m

(
r,
(f(z + c)− a(z))(f(z + c) + a(z))

(f(z)− a(z))(f(z) + a(z))

)

≤ m

(
r,
f(z + c)− a(z)

f(z)− a(z)

)
+m

(
r,
f(z + c) + a(z)

f(z) + a(z)

)
= S(r, f).

(2.4)

If eq(z) ≡ 1, it follows from (2.2) that f(z) ≡ f(z + c).

If eq(z) �≡ 1, substituting (2.2) into (2.1), we obtain that

f(z)P (z, f) = Q(z, f), (2.5)

where

P (z, f) =
(
e2q(z) − ep(z)

)
f(z), (2.6)

Q(z, f) = 2b(z)eq(z)
(
eq(z)−1

)
f(z)− b(z)2

(
eq(z)−1

)2 − a(z)2
(
ep(z)−1

)
. (2.7)

Note that eq(z) �≡ 1 and b(z) �≡ 0. By (2.5)–(2.7), we observe that e2q(z) −
ep(z) �≡ 0. Indeed, if e2q(z) − ep(z) ≡ 0, we have Q(z, f) ≡ 0. It implies that
T (r, f) = S(r, f) by (2.3),(2.4) and (2.7), which is impossible.

Thus, by (2.5)–(2.7) and the Clunie Lemma [5: Lemma 2], we see that

T
(
r,
(
e2q(z) − ep(z)

)
f(z)

)
= m

(
r,
(
e2q(z) − ep(z)

)
f(z)

)
= m(r, P (z, f)) = S(r, f).

Combining this with (2.3) and (2.4) gives that

T (r, f) ≤ T
(
r,
(
e2q(z) − ep(z)

)
f(z)

)
+ T

(
r, 1/

(
e2q(z) − ep(z)

))
= S(r, f),

a contradiction. �
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3. Proof of Theorem 1.2

As in the proof of Theorem 1.1 it follows that

(P (z, f(z))− a(z))(P (z, f(z)) + a(z)) = (f(z)− a(z))(f(z) + a(z))ep(z), (3.1)

P (z, f(z)) = f(z)eq(z), (3.2)

where p(z) and q(z) are polynomials.

If e2q(z) ≡ 1, it follows from (3.2) that P (z, f(z)) ≡ ±f(z).

If e2q(z) �≡ 1, from (3.2) and Lemma 2.1, we get

T
(
r, eq(z)

)
= m

(
r, eq(z)

)
= m

(
r,
P (z, f(z))

f(z)

)

≤ m

(
r,
f(z + kc)

f(z)

)
+ · · ·+m

(
r,
f(z + c)

f(z)

)
+m(r, bk(z))

· · ·+m(r, b0(z)) +O(1)

= S(r, f),

(3.3)

where the exceptional set associated with S(r, f) has at most finite logarithmic
measure.

Note that f(z) and P (z, f(z)) share the set {a(z),−a(z)} CM. Let z0 be
a common zero of (P (z, f(z)) − a(z))(P (z, f(z)) + a(z)) and (f(z) − a(z)) ·
· (f(z) + a(z)) such that a(z0) �= 0. Then

P (z0, f(z0)) = ±f(z0) = ±a(z0). (3.4)

From (3.2) and (3.4), we have

e2q(z0) =

(
P (z0, f(z0))

f(z0)

)2

= 1.

Hence all zeros of (f(z)− a(z))(f(z)+ a(z)) are zeros of e2q(z) − 1 as long as
they are not zeros of a(z). Thus, we deduce that

N

(
r,

1

f(z)
2 − a(z)

2

)
≤ N

(
r,

1

e2q(z) − 1

)
+N

(
r,

1

a(z)

)

≤ 2T
(
r, eq(z)

)
+ S(r, f) = S(r, f),

which implies

N

(
r,

1

f(z)− a(z)

)
+N

(
r,

1

f(z) + a(z)

)

≤ N

(
r,

1

f(z)
2 − a(z)

2

)
+N

(
r,

1

a(z)

)
= S(r, f).

(3.5)
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If both (P (z, f(z))− a(z))(P (z, f(z)) + a(z)) and (f(z)− a(z))(f(z) + a(z))
have no zeros, then (3.5) also holds.

Set g(z) = f(z)+a(z)
f(z)−a(z) . Then f(z) = a(z) + 2a(z)

g(z)−1 . So, we have

T (r, f) ≤ T (r, a) + T

(
r,

2a

g − 1

)
+ log 2

≤ 3T (r, a) + T (r, g − 1) +O(1) = T (r, g) + S(r, f),

(3.6)

and
T (r, g) ≤ 2T (r, f) + 2T (r, a) +O(1) = 2T (r, f) + S(r, f). (3.7)

By (3.6) and (3.7), we see that S(r, g) = S(r, f). Then, by (3.5), it follows from
the second main theorem [12: Corollary 2.5.4] that

T (r, g) ≤ N(r, g) +N

(
r,
1

g

)
+N

(
r,

1

g − 1

)
+ S(r, g)

≤ N

(
r,

1

f − a

)
+N

(
r,

1

f + a

)
+N

(
r,

1

2a

)
+ S(r, f)

= S(r, f).

(3.8)

From (3.6) and (3.8), we have T (r, f) ≤ S(r, f), which is a contradiction.

4. Proof of Theorem 1.3

����� 4.1� ([7: Corollary 3.4] or [13: Theorem 2.4]) Let w(z) be a non-constant
finite order meromorphic solution of

P (z, w) = 0,

where P (z, w) is a difference polynomial in w(z). If P (z, a) �≡ 0 for a meromor-
phic function a(z) satisfying T (r, a) = S(r, w), then

m

(
r,

1

w − a

)
= S(r, w),

where the exceptional set associated with S(r, w) has at most finite logarithmic
measure.

P r o o f o f T h e o r e m 1.3. As in the proof of Theorem 1.1 it follows that

(P (z, f(z))− a1(z)) · · · (P (z, f(z))− an(z))

= (f(z)− a1(z)) · · · (f(z)− an(z))e
p(z),

(4.1)

where p(z) is a polynomial. Now (3.2) and (3.3) should hold.

If q(z) ≡ q ∈ C, then from (3.2), we get P (z, f(z)) = tf(z), t = eq ∈ C \ {0}.
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If q(z) is a nonconstant polynomial, for any given meromorphic function g(z),
we denote

Q(z, g(z)) := P (z, g(z))− g(z)eq(z). (4.2)

By (3.2) and (4.2), we have Q(z, f(z)) ≡ 0.

Since a1(z), . . . , an(z) ∈ S(f) are distinct periodic entire functions with period
c such that ai(z) �≡ 0, for i = 1, 2, . . . , n, we have

Q(z, ai(z)) = P (z, ai(z))− ai(z)e
q(z)

= bk(z)ai(z + kc) + · · ·+ b1(z)ai(z + c) + b0(z)ai(z)− ai(z)e
q(z)

= (bk(z) + · · ·+ b1(z) + b0(z)− eq(z))ai(z).

By the assumption that b0(z), . . . , bk(z) are polynomials, ai(z) �≡ 0 (i =
1, 2, . . . , n), and q(z) is a nonconstant polynomial, we see that

Q(z, ai(z)) �≡ 0.

By Lemma 4.1, for i = 1, 2, . . . , n, we get

m

(
r,

1

f(z)− ai(z)

)
= S(r, f), (4.3)

where the exceptional set associated with S(r, f) has at most finite logarithmic
measure.

Then by (4.3) and Lemma 2.1, for i = 1, 2, . . . , n, we see that

m

(
r,
P (z, f(z))− ai(z)

f(z)− ai(z)

)

≤ m

(
r, bk(z)

f(z + kc)− ai(z)

f(z)− ai(z)

)
+ · · ·+m

(
r, b1(z)

f(z + c)− ai(z)

f(z)− ai(z)

)

+m(r, b0(z)) +m

(
r,
(bk(z) + · · ·+ b1(z) + b0(z)− 1)ai(z)

f(z)− ai(z)

)
=S(r, f),

(4.4)

where the exceptional set associated with S(r, f) has at most finite logarithmic
measure.

Therefore, by (4.1) and (4.4), we obtain

T
(
r, ep(z)

)
= m

(
r, ep(z)

)
= m

(
r,
(P (z, f(z))− a1(z)) · · · (P (z, f(z))− an(z))

(f(z)− a1(z)) · · · (f(z)− an(z))

)

≤
n∑

i=1

m

(
r,
P (z, f(z))− ai(z)

f(z)− ai(z)

)
= S(r, f).

(4.5)
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Substituting (3.2) into (4.1) yields

(enq(z) − ep(z))f(z) · f(z)n−1

=

n∑
i=1

ai(z) · (e(n−1)q(z) − ep(z))f(z)n−1

−
n∑

i=1

n∑
j=1,j �=i

ai(z)aj(z) · (e(n−2)q(z) − ep(z))f(z)n−2 + · · ·

· · ·+ (−1)n−1a1(z) · · ·an(z)(1− ep(z)).

(4.6)

Suppose that enq(z)− ep(z) �≡ 0. Thus, by (4.6) and the Clunie Lemma [5], we
see that

T
(
r,
(
enq(z) − ep(z)

)
f(z)

)
= m

(
r,
(
enq(z) − ep(z)

)
f(z)

)
= S(r, f),

which implies that T (r, f) = S(r, f) by (3.3) and (4.5), a contradiction.

Therefore, we have enq(z)−ep(z) ≡ 0. Since q(z) is a nonconstant polynomial,
we get esq(z) − ep(z) �≡ 0, for 0 ≤ s ≤ n − 1. Now we consider the coefficient of
the term (e(n−1)q(z) − ep(z))f(z)n−1. If a1(z) + · · ·+ an(z) �≡ 0, we rewrite (4.6)
as follows

n∑
i=1

ai(z) · (e(n−1)q(z) − ep(z))f(z)n−1

=

n∑
i=1

n∑
j=1,j �=i

ai(z)aj(z) · (e(n−2)q(z) − ep(z))f(z)n−2

−
n∑

i=1

n∑
j=1,j �=i

n∑
l=1,l�=i,j

ai(z)aj(z)al(z) · (e(n−3)q(z) − ep(z))f(z)n−3 + · · ·

· · ·+ (−1)na1(z) · · ·an(z)(1− ep(z)).

By the Clunie Lemma [5], we can similarly get the contradiction that T (r, f) =
S(r, f) again. Therefore, a1(z)+· · ·+an(z) ≡ 0. By induction, we can prove that
the coefficient of each term (esq(z) − ep(z))f(z)s (s = 1, . . . , n − 1) is identically
vanishing and hence we have

(−1)na1(z) · · ·an(z)(1− ep(z)) ≡ 0,

which is impossible. Thus Theorem 1.3 is proved. �
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5. Proof of Theorem 1.4

����� 5.1� ([8: Lemma 2.3]) Let c ∈ C, n ∈ N, and let f(z) be a meromorphic
function of finite order. Then for any small periodic function a(z) ∈ S(f) with
period c,

m

(
r,

∆n
c f

f(z)− a(z)

)
= S(r, f),

where the exceptional set associated with S(r, f) has at most finite logarithmic
measure.

P r o o f o f T h e o r e m 1.4. As in the proof of Theorem 1.1 it follows that

(∆cf − a(z))(∆cf + a(z)) = (f(z)− a(z))(f(z) + a(z))ep(z), (5.1)

∆cf − b(z) = (f(z)− b(z))eq(z), (5.2)

where p(z) and q(z) are polynomials.

If q(z) ≡ q ∈ C, then for t = eq ∈ C \ {0}, it follows from (5.2) that

∆cf − b(z)

f(z)− b(z)
= t.

If q(z) is a nonconstant polynomial, by (1.2), we get

m

(
r,

1

f(z)− b(z)

)
≤ T (r, f)−N

(
r,

1

f(z)− b(z)

)
+ S(r, f)

≤ (1− λ)T (r, f) + S(r, f),

(5.3)

where λ ∈ (2/3, 1]. By (5.2) and (5.3) and Lemma 5.1, we have

T
(
r, eq(z)

)
= m

(
r, eq(z)

)
= m

(
r,

∆cf − b(z)

f(z)− b(z)

)

≤ m

(
r,

∆cf

f(z)− b(z)

)
+m

(
r,

1

f(z)− b(z)

)
+m(r, b(z)) +O(1)

≤ (1− λ)T (r, f) + S(r, f),

(5.4)
where the exceptional set associated with S(r, f) has at most finite logarithmic
measure.

Note that f(z) and ∆cf share the set {a(z),−a(z)} CM. Let z0 be a common
zero of (∆cf−a(z))(∆cf+a(z)) and (f(z)−a(z))(f(z)+a(z)) such that a(z0) �= 0
and b(z0)± a(z0) �= 0. Then

∆cf(z0) = ±f(z0) = ±a(z0). (5.5)
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As a(z0) �= 0 and b(z0)± a(z0) �= 0, by (5.2), we deduce that

∆cf(z0)− b(z0)

f(z0)− b(z0)
= eq(z0). (5.6)

Since a(z) and b(z) are linearly dependent over the complex field and b(z) �≡
±a(z), there exists a α ∈ C \ {−1, 1} such that

b(z) = αa(z).

Set β = 2
α−1

+ 1. Thus, β �= 0, and we have

a(z) + b(z) = β(b(z)− a(z)).

Consider four cases for (5.5) with (5.6):

(i) if f(z0) = a(z0), ∆cf(z0) = a(z0), then eq(z0) = 1;

(ii) if f(z0) = a(z0), ∆cf(z0) = −a(z0), then eq(z0) = β;

(iii) if f(z0) = −a(z0), ∆cf(z0) = a(z0), then eq(z0) = 1
β ;

(iv) if f(z0) = −a(z0), ∆cf(z0) = −a(z0), then eq(z0) = 1.

Then we can deduce that

(eq(z0) − 1)(eq(z0) − β)

(
eq(z0) − 1

β

)
= 0.

Hence all zeros of (f(z)− a(z))(f(z) + a(z)) are zeros of eq(z) − 1, eq(z) − β or
eq(z) − 1

β as long as they are not zeros of a(z) or b(z)± a(z).

Thus, we see that

N

(
r,

1

f(z)
2 − a(z)

2

)
≤ N

(
r,

1

eq(z) − 1

)
+N

(
r,

1

eq(z) − β

)

+N

(
r,

1

eq(z) − 1
β

)
+N

(
r,

1

a(z)

)
+N

(
r,

1

b(z)± a(z)

)

≤ 3T
(
r, eq(z)

)
+ S(r, f)

≤ 3(1− λ)T (r, f) + S(r, f),

which implies that

N

(
r,

1

f(z)− a(z)

)
+N

(
r,

1

f(z) + a(z)

)
≤ 3(1− λ)T (r, f) + S(r, f). (5.7)

If both (∆cf−a(z))(∆cf+a(z)) and (f(z)−a(z))(f(z)+a(z)) have no zeros,
then (5.7) also holds.
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Set g(z) = f(z)+a(z)
f(z)−a(z)

. Thus, we can get (3.6) and S(r, g) = S(r, f) as in the

proof of Theorem 1.2. Then we get from (5.7) and the second main theorem [12:
Corollary 2.5.4] that

T (r, g) ≤ N(r, g) +N

(
r,
1

g

)
+N

(
r,

1

g − 1

)
+ S(r, g)

≤ N

(
r,

1

f − a

)
+N

(
r,

1

f + a

)
+N

(
r,

1

2a

)
+ S(r, f)

≤ 3(1− λ)T (r, f) + S(r, f).

(5.8)

From (3.6) and (5.8), we have (3λ− 2)T (r, f) ≤ S(r, f). This is impossible for
the number λ ∈ (2/3, 1]. The proof of Theorem 1.4 is thus completed. �
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